
Floorplanning Optimization with Trajectory
Piecewise-Linear Model for Pipelined Interconnects∗

Changbo Long Lucanus J. Simonson Weiping Liao Lei He
EE Department, University of California at Los Angeles

Los Angeles, CA, 90095

ABSTRACT
Interconnect pipelining has a great impact on system performance,
but has not been considered by automatic floorplanning. Consid-
ering interconnect pipelining, we study the floorplanning optimiza-
tion problem to minimize system CPI (cycles per instruction) and in
turn maximize system performance. We develop an efficient table-
based model called trajectory piece-wise linear (TPWL) model to
estimate CPI with interconnect pipelining. Experiments show that
the TPWL model differs from cycle-accurate simulations by less
than 3.0%. We integrate this model with a simulated-annealing
based floorplan optimization to obtain CPI-aware floorplanning.
Compared to the conventional floorplanning to minimize area and
wire length, our CPI-aware floorplanning can reduce CPI by up to
28.6% with a small area overhead of 5.69% under 100nm technol-
ogy and obtain better results under 70nm technology. To the best of
our knowledge, this paper is the first in-depth study on floorplan-
ning optimization with consideration of interconnect pipelining.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design.

Keywords
Floorplanning, pipeline, interconnect, piecewise-linear, performance

1. INTRODUCTION
Traditional high performance design separates the architectural

optimization minimizing the average CPI (cycles per instruction)

∗This paper is partially supported by NSF CAREER award CCR-
0093273, SRC grant HJ-1008, a UC MICRO grant sponsored by
Analog Devices, Fujitsu Laboratories of America, Intel and LSI
Logic, and a Faculty Partner Award by IBM. Address comments to
lhe@ee.ucla.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

and the physical optimization maximizing clock frequency. This
separation is based on the assumption that inter-block communi-
cation can be finished within one clock cycle. This assumption is
expected to become invalid due to technology scaling in the future.
In fact, the delay of a wire crossing a leading edge chip in ITRS
0.07µm technology can be up to eight clock cycles [1]. Given this,
it is highly possible that flip-flops are needed for inter-block com-
munication. The number of flip-flops used for interconnect pipelin-
ing has been estimated at the full-chip level in [2, 3] and the num-
ber is expected to increase exponentially between generations of
microprocessors [2].

We measure system performance by CPI (cycles per instruction).
The lower the CPI, the higher the system performance. Pipelined
interconnects impact the system performance significantly. For in-
stance, increasing the latency between the fetch logic and L1 in-
struction cache from one cycle to two can increase the average CPI
by 12.6% for the microprocessor similar to Alpha 21264 in Ta-
ble 1. However, this impact has not yet been considered in phys-
ical design. Because floorplanning decides the length of intercon-
nects between blocks and therefore decides interconnect pipelining,
we study in this paper the floorplanning optimization problem to
maximize system performance with consideration of interconnect
pipelining.

The first contribution of this work is to develop an efficient yet
accurate model for CPI estimation of out-of-order modern Super-
Scalar processors. Our model is based on the trajectory piecewise-
linear (TPWL) approach originally developed for nonlinear circuits
and micro-machined devices [4]. Existing work on CPI estima-
tion relies upon techniques such as statistically generated synthetic
benches [5] and statistical sampling of cycle accurate simulation
[6]. These methods are too slow to be used in iteration based floor-
planning optimization. Our model is table-based with one time use
of a limited number of cycle accurate simulation, and has an aver-
age estimation error of less than 3.0% compared to cycle accurate
simulation.

Our second contribution is to develop an efficient and effective
floorplanner using the proposed TPWL model. Our experiment re-
sults for a microprocessor implemented in 100nm technology show
that our floorplanning with consideration of pipelined interconnects
achieves 28.6% CPI reduction compared to conventional floorplan-
ning minimizing area and total wire length. Such CPI reduction is
equivalent to a 40.0% increase in throughput for a fixed clock rate.

The rest of the paper is organized as follows. In Section 2 we
present background information on architecture and floorplanning.
In Section 3 and Section 4, we propose the trajectory piecewise-
linear model for pipelined interconnect and CPI-aware floorplan-
ning, respectively. We report the experiment results in Section 5
and conclude the paper in Section 6. More details of this study is

1

in a technical report [?].

2. BACKGROUND AND PROBLEM STATE-
MENT

2.1 Architecture and Partitioning
We demonstrate the effectiveness of our CPI-aware floorplan-

ning on two out-of-order SuperScalar implementations of the MIPS
instruction set. One is similar to the Alpha 21264 implemented in
100nm technology with an issue width of four and the other is im-
plemented in 70nm technology with an issue width of eight. A
summary of the microprocessor configurations is presented in Ta-
ble 1. We group these modules into blocks that are each treated as
an independent unit during floorplanning. We assume that intercon-
nects between modules within the same block will not be pipelined.
Blocks that are composed of multiple modules are the RUU block,

Technology 100nm 70nm

ISA MIPS MIPS
SuperScalar Width 4 Width 8

Functional Units 3 Integer ALU 6 Integer ALU
1 Integer Mult. 2 Integer Mult.

1 FP Adder 2 FP Adder
1 FP Mult. 2 FP Mult.

Register Update Unit 64 Instructions 128 Instructions
Load Store Queue 32 Instructions 64 Instructions

Fetch Queue 8 Instructions 16 Instructions
Clock Frequency 3 GHz 6 GHz

FF Insertion Length 2000µm 707µm

Table 1: Processor used in experiments. The four-way Super-
Scalar is similar to Alpha 21264.

including Register Update Unit and Load Store Queue, Decode
block, including Fetch Queue and the Decoder, Branch block, in-
cluding Fetch Unit and Branch Predictor, DL1 block, including the
Level 1 Data Cache and the DTLB, and the IL1 block, including
the Level 1 Instruction Cache and the ITLB. The L2 unified cache
and all functional units are treated as independent blocks. We sum-
marize the block area in Table 2.

Block Area (mm2) Block Area (mm2)

IALU 1.00 IMULT 1.00
F_ADD 1.94 F_MULT 2.07

RUU 3.04 Decode 1.44
Branch 2.27 L2 75.6

IL1 8.99 DL1 10.03

Table 2: Area of logical blocks in 100nm technology. The area
for 70nm technology is scaled down by a factor of (10/7)2 .

2.2 Bus Latency Vectors
The latencies of the interconnects between two blocks in Table

2 are computed according to the Manhattan distance between the
centers of two blocks in the floorplan. We treat the latency of each
such interconnect as an independent variable. Changing the latency
of one of these interconnects is effectively a change in the micro-
architecture and will impact performance. In Table 3 we specify
these interconnects with respect to their terminal blocks.

We define a bus latency vector (~B) for characterizing a floorplan
as a vector containing the latency of each interconnect in Table 3.

Bus id Terminal blocks Bus id Terminal blocks

1 IALU, RUU 6 IL1, L2
2 IMULT, RUU 7 DL1, L2
3 FPAdd, RUU 8 Branch, IL1
4 FPMul, RUU 9 Decode, Branch
5 LSQ, DL1 10 Decode, RUU

Table 3: Buses that potentially affect IPC.

If, for a given floorplan, Bus 1 has a latency of 3, Bus 2 has a
latency of 4, Bus 3 has a latency of 7 etc. The ~B for that floorplan
would be ~B = {3, 4, 7, ...}. These latencies can be determined
from the floorplan by dividing the length of each interconnect by
the flip-flop(FF) insertion length as computed by the simultaneous
buffer and FF insertion algorithm presented in [3].

2.3 Cycle Accurate Simulation
For a given ~B we use out-of-order issue, cycle accurate simu-

lation in the SimpleScalar 2.0 [7] framework to measure CPI for
a subset of the SPEC2000 benchmark suite. The floating point
benchmarks we use are equake and mesa while the integer bench-
marks are gzip, vortex and mcf . These benchmarks were chosen
to be representative of a varied workload.

In order to summarize the performance of a floorplan as de-
scribed by ~B we take the arithmetic mean of the CPI for above
benchmarks. To obtain results more quickly we simulate truncated
runs of twenty million instructions for each benchmark. During
the initialization period of a program the cache behavior and in-
struction mix is not representative of its typical workload. For this
reason the CPI of a benchmark is disregarded for the first ten mil-
lion instructions of simulation. Implementation details to simulate
interconnect latency will be included in a technical report as cycle
accurate simulation is not the focus of this paper.

2.4 Floorplanning Formulation and Algorithm
Floorplanning determines the positions and shapes of blocks on

a chip subject to the minimization of a cost function. In traditional
floorplanning, the cost function is often based upon area and/or to-
tal wire length. In this paper, we additionally consider CPI, i.e., our
objective is to minimize

Warea · Area + Wwire · wire_length + WCPI · CPI,

where Area and wire_length are the area and total wire length of
the floorplan, respectively. We denote the objective of area, total
wire length and CPI as ALC. We also denote the objective of area
and total wire length as AL, and the objective of area and CPI as
AC.

A category of floorplanning tools are based on simulated anneal-
ing (SA) [8, 9, 10]. SA starts with an initial floorplan and moves
to a new one by changing the positions or shapes of blocks. In each
iteration the cost of the new floorplan is evaluated and the move
is accepted if the cost of the new floorplan is smaller than the old
one. The move may also be accepted regardless of cost with a
probability dictated by the simulated “temperature” of the anneal-
ing. A move that increases the cost is more likely to be accepted at
a higher temperature. The temperature is decreased throughout the
simulation based upon a schedule so that by the end only moves
that reduce the cost are likely to be accepted.

3. TRAJECTORY PIECEWISE-LINEAR CPI
MODEL

2

In this paper, we propose the TPWL model for pipelined inter-
connects to estimate CPI for the following reasons. 1) The accu-
racy of the CPI estimation during the SA optimization process has
a tremendous impact to the quality of the final floorplan, and the
TPWL model is accurate with error less than 3.0%. 2) The TPWL
model is analytical. Once the model is built using limited cycle
accurate simulation the cost of an estimation is negligible.

3.1 Construction of the TPWL model
The construction of the TPWL model consists of the following

phases. 1) Sampling: Assume the total number of buses is n, each
bus latency vector ~B ∈ R

n represents a floorplan and a point in the
n−dimension space (n = 12 in this paper). The ~B points traversed
by a SA process during floorplanning defines a trajectory within the
solution space. We sample these points in a particular SA process to
represent the trajectory with reduced complexity. Specifically, a SA
process of floorplanning for AL is conducted first. We construct the
trajectory based on the moves in this SA optimization process.

Trajectory

Collecting trajectory by "balls"

 Latency (bus1)

Latency (bus2)

+

++
+

+

+

+

+
+

+

+

+

+
+

+

+++

Figure 1: Illustration of collecting trajectory in 2-dimension
space.

2) Collecting: In the collecting phase, we collect the points
of the trajectory in as few “balls” as possible. Shown in Fig. 1 is
an illustration of using “balls” to collect points in the 2-dimension
space, where the x-axis represents the latency of bus1 and y-axis
represents the latency of bus2.

We formulate the problem of minimizing the number of “balls”
required to collect the points in a given trajectory as follows.

FORMULATION 1. Trajectory points collecting (TPC): Given
a set of points P ⊂ R

n and radius r ∈ R, find C ⊂ R
n with min-

imum |C| while satisfying

min
cj∈C

‖ pi − cj ‖≤ r, ∀pi ∈ P. (1)

With respect to Fig. 1, cj is the center of a ball and minimum
|C| leads to the smallest number of balls. One can see that TPC is
NP-hard via analogy to the set-cover problem [11]. In this paper,
we solve TPC by the greedy algorithm employed to solve the set-
cover problem [12, 13]. The idea is to consecutively find a ball c
which covers as many points in P as possible. We define a termi-
nation criteria T such that when the number of remaining points is
smaller than T , the algorithm terminates.

3) Simulating: By solving the TPC problem via the greedy al-
gorithm, we obtain a set of points C ⊂ R

n, which covers most
points in the trajectory with a given radius r. In fact, each point
cj ∈ C represents a bus latency vector ~B, which specifies the la-
tency for all buses in Table 3. We obtain CPI by cycle accurate

simulation for each ~B (See Section 2.3) and build a CPI table in-
dexed by the bus latency vector ~B.

3.2 CPI estimation under TPWL model
Assume the size of ~B is n and there are m entries in the CPI table.

The ith table entry is represented as (~Bi, CPIi). To compute CPI

for a particular ~B, we first obtain the distance di between ~B to each
~Bi as

di =‖ ~B − ~Bi ‖, i = 1, · · · , m. (2)

Then, we compute the weight of each entry by di:

ŵi = e−βdi/d, i = 1, · · · , m, (3)

where

d = min di, i = 1, · · · , m. (4)

Note that β is a positive constant and is set to 25 in this paper1.
Afterward, we compute the normalized weights as

wi = ŵi/

|C|�
i=1

ŵi, i = 1, · · · , m. (5)

Actually, from each entry in the CPI table, we can estimate the
CPI value for the target ~B by the first order expansion,

CPIi
~B

= CPIi +
−−−−→
∇CPIi · (~B − ~Bi), (6)

where

−−−−→
∇CPIi =

���
�

∂CPI

∂ ~B(1)

...
∂CPI

∂ ~B(n)

� ��
�

|~B=~Bi

, (7)

and ∂CPI

∂ ~B(j)
is computed as follows

∂CPI

∂ ~B(j)
=

CPI(~Bi + ∆) − CPI(~B)

∆
. (8)

Note that CPI(~Bi + ∆) should be obtained from cycle accurate

simulation. However, it is time-consuming to compute
−−−−→
∇CPI for

each entry in the CPI table. In this paper, we compute the aver-
age

−−−−→
∇CPI and use it for all entries in the CPI table. The average

−−−−→
∇CPI is obtained as follows:

∆max(j) = CPI(~Bmax−min(j)) − CPI(~Bmax),

∆min(j) = CPI(~Bmin) − CPI(~Bmin−max(j))),

−−−−→
∇CPI(j) =

∆max(j) + ∆min(j)

2 · D
, j = 1, · · · , n, (9)

where ~Bmax and ~Bmin is the bus latency vector with maximum
and minimum latency on all buses, respectively. In this paper, we
assume the maximum and minimum latency of a bus is 10 and 0,
respectively, and denote the difference between them as D, i.e.
D = 10. Also, ~Bmax−min(j) is the same as ~Bmax except the
latency of the jth bus is the minimum. Similarly, ~Bmin−max(j) is
the same as ~Bmin except the latency of the jth bus is the maximum.

The estimated CPI value for ~B is computed as the weighted
sum of CPIi

~B
, i.e,

CPI~B =
m�

i=1

wi · CPIi
~B
. (10)

1This setting is proposed in [4].

3

For convenience, we summarize the computations to estimate
CPI for a bus vector ~B as in Fig. 2.

Compute CPI for ~B

di =‖ ~B − ~Bi ‖, i = 1, · · · , m.
d = min di, i = 1, · · · ,m.

ŵi = e−βdi/d, i = 1, · · · , m., β = 10.

CPIi
~B

= CPIi +
−−−−→
∇CPI · (~B − ~Bi)

CPI(~B) = CPI~B
= � m

i=1 wi · CPIi
~B
.

Figure 2: CPI estimation under the TPWL model.

4. CPI-AWARE FLOORPLANNING
We implement a prototype CPI-aware floorplanning tool based

on the Parquet package [10]. Parquet employs SA to minimize
the given floorplanning objective. In this section, we first introduce
the overview of CPI-aware floorplanning and then focus on how
to integrate the TPWL model with the SA optimization process of
floorplanning. To improve the accuracy of the TPWL model, we
also introduce an iterative TPWL (iTPWL) model.

4.1 Overview

Simple−scalar
Simulation

Trajectory

Floorplanning

Solve the TPC problem

"Balls" to
cover trajectory

Start

Integrated to
floorplanning

Sampling

N
estimation

?

Y
ExitAccurate CPI

Floorplanning
Considering CPI

CPI table

Figure 3: Overview of CPI-aware floorplanning.

Shown in Fig. 3 is the overview of the CPI-aware floorplanning
process. It starts with a traditional floorplanning with objective of
AL, and generates a trajectory. Then, the set of balls C is found by
solving the TPC problem on the trajectory. Accurate CPI value for
all balls in C are found by cycle accurate simulation to generate the
CPI table.

As shown in [10], the objective of AL is a linear combination
of area and total wire length. In [10], after each move in SA, ∆
of the objective is computed as the weighted sum of the changes
of area and total wire length. In this paper, we optimize ALC in

the floorplanning by changing the objective function. Similar to
[10], in our floorplanning, we compute ∆ of the objective as the
weighted sum of the changes in area, total wire length and CPI
after each move. I.e.,

∆area =
areanew − areaold�

areablock
(11)

∆wire =
wirenew − wireold

wireold
(12)

∆CPI =
CPInew − CPIold

CPIold
(13)

∆ = warea · ∆area + wwire · ∆wire + wCPI · ∆CPI , (14)

where
�

areablock is the area of all blocks in the floorplan, and
warea, wwire and wCPI are the weights for area, total wire length
and CPI, respectively. Note that in SA, a move is accepted if and
only if �

∆ < 0

R < exp(−∆·ti

tc
) ∆ ≥ 0

(15)

where R is a random value between 0 and 1, ti and tc are initial
temperature and current temperature, respectively.

One may notice in Fig. 3 that when the CPI estimation is not
accurate enough, we return to the sampling phase. Because the
TPWL model is built upon the trajectory that is sampled from a SA
optimization process with objective of AL, this trajectory might
differ from the trajectory of the SA with objective of ALC. Under
this circumstance, the CPI estimation by TPWL model may be in-
accurate. Therefore, we use iteration to improve the accuracy of the
TPWL model, and denote this as iterative TPWL (iTPWL) model.

The iTPWL model is based on the TPWL model and constructed
by expanding the CPI table in each iteration. After building the
CPI table for the TPWL model (we call it the first iteration), we em-
ploy this CPI table to estimate CPI and conduct SA with objective
of ALC. A new trajectory is sampled from the SA optimization
process and the CPI table is expanded by adding more entries ob-
tained from the new trajectory2. Our experiment results will show
that two extra iterations can improve the accuracy of the model and
produce a considerably better final floorplan.

4.2 Justification of TPWL
The TPWL model was originally proposed to model nonlinear

dynamic systems[4]. In [4], the trajectory is generated by perform-
ing a single simulation of the system for a fixed “training” input. At
first glance, one may think the TPWL model can be accurate only
around the trajectory. It is shown in [4], however, that in practice
TPWL can easily outperform other recently developed techniques
based on quadratic reduction.

TPWL model is suitable for our floorplanning optimization. The
objective of traditional floorplanning is AL, and SA starts with an
initial solution and reaches the high quality solution by following
a trajectory of decreasing AL. With objective of ALC, this trajec-
tory changes but remains close to the original because AL is still
part of the objective. Therefore, by tracing the original trajectory
of SA which optimizes AL, we obtain a prediction of the trajectory
that SA follows with consideration of CPI. When these two trajec-
tories are close the TPWL model is very accurate. When they are
not close we employ the iTPWL model. The iTPWL model itera-
tively employs an established CPI model and traces the trajectory of
SA with consideration of CPI. The convergence of the trajectories
in consequent iterations indicates a highly accurate model. Note
2A new entry with a small enough distance to an entry in the
CPI table in fact is not calculated.

4

that we have improved the original TPWL model in the following
aspects: 1) We introduce the TPC problem and solve it by applying
the greedy set-cover algorithm to reduce the number of “balls”. 2)
We expand the TPWL to iTPWL with considerable improvement
in accuracy.

5. EXPERIMENT RESULTS
In this section, we compare the accuracy of the proposed TPWL

and iTPWL models and the quality of the floorplans obtained using
TPWL and iTPWL models. Finally, we report the running time to
build the models. We use clock frequency and FF insertion length
from Table 1.

5.1 CPI Models
The purpose of the CPI model developed in this paper is to esti-

mate CPI accurately during a SA optimization process with consid-
eration of CPI minimization. To verify the accuracy of the proposed
model, we compare it with the CPI obtained by cycle accurate sim-
ulation. We present both the TPWL and iTPWL models to justify
the cost of extra iterations in iTPWL. Note that each model gen-
erates a CPI table to estimate CPI, but the CPI table of the iTPWL
model expands upon that of the TPWL model with each iteration.

When build up the TPWL and iTPWL models, the radius r of
“balls” is empirically decided. Small r leads to large |C| and large
number of cycle-accurate simulations to construct the CPI table.
In general, a bigger CPI table has better accuracy. Therefore, we
choose r as small as possible while the number of cycle-accurate
simulations is acceptable in our experiment.

We conduct SA to minimize AL and build up the CPI table of
the TPWL model by sampling the SA process and running cycle
accurate simulations. We repeat the SA process two more times
with objective of ALC to build the iTPWL model.

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

Accurate
TPWL
iTPWL, iteration=3

CPI

Floorplan

Figure 4: TPWL model estimation results. (The error of the
TPWL model and iTPWL model are 2.62% and 1.66%, respec-
tively)

We compare TPWL and iTPWL models with cycle-accurate sim-
ulations for floorplanning solutions selected from SA-based floor-
planning. We select one solution from every 500 accepted moves,
then calculate bus latency vector ~B and obtain CPI via TPWL,
iTPWL and cycle accurate simulations. As shown in Fig. 4, for
the processor in 100nm technology, the error of TPWL and iTPWL
model are 2.62% and 1.66%, respectively. At the first glance, both
models are accurate enough. However, we will show in Section 5.3
that the more accurate iTPWL model eventually leads to a consid-
erably better floorplan.

5.2 Comparison of floorplanning with differ-
ent objectives

We compare the floorplans obtained by SA subject to the objec-
tives of AL, AC and ALC. Note that the AL objective is used
by the traditional floorplanning and the area for each block in the
floorplan is shown in Table 2. We summarize the results of floor-
planning using these objectives in Table 4. For each objective we
ran ten cases of floorplanning as the floorplanning algorithm in [10]
is not deterministic. We choose the best solution for comparison.

We first show the white space rate of these floorplans in the first
row. The low rate indicates the good quality of these floorplans. We
show the CPI of floorplans in the second row. We observe that the
ALC and AC solutions reduce CPI over AL by 28.6% and 24.3%,
respectively under 100nm technology and 56.8% and 60.9%, re-
spectively under 70nm technology. It is observed that the total wire
length of the AL solution is significantly smaller than that of AC
in both cases. Together with the significantly larger CPI of AL
compared to AC, we conclude that minimizing total wire length
does not necessarily maximize performance. Instead, latency of
pipelined interconnects in CPI-critical paths should be considered
to maximize performance. Similarly, the results in the fourth row
show that minimizing total wire length does not necessarily reduce
the total number of flip-flops and the maximum number of flip-
flops in a single bus. We show the area in the fifth row. The ALC
results in the lowest CPI with only a small area overhead of 5.69%
over AL under 100nm technology and no area overhead but 18.3%
wirelength increase under 70nm technology.

5.3 Comparison of floorplans under different
CPI models

It has been shown in Fig. 4 that both TPWL model and iTPWL
model are accurate. However, if these accurate CPI models are not
available, heuristics such as minimizing the weighted sum of bus
latencies, where the weight is the access ratio, can be employed.
Note that access ratio is the fraction of clock cycles in which that
bus is accessed during program execution. In this section, we com-
pare the floorplan under TPWL, iTPWL and this heuristic based on
bus access ratio.

Table 5 compares the three floorplans for the processor in 100nm
technology. It can be seen that iTPWL model produces the best
floorplan with a few percentage better result than the other two.
But the floorplans obtained by both TPWL model and access ratio
heuristics are acceptable.

Metrics Access TPWL iTPWL
ratio

White Space (%) 10.98 16.16 12.20
CPI 1.06 1.09 (+2.83%) 1.00 (-5.66%)

TWL (102 mm) 5.37 5.08 (-5.40%) 5.08 (-5.40%)
Total/Max. #FF 18/2 39/11 24/4

Area (102 mm2) 1.28 1.36 (+6.25%) 1.30 (+1.56%)
Error (%) – 2.62 1.66

Table 5: Comparison between the floorplans obtained by ac-
cess ratio heuristic, TPWL and iTPWL model with objective of
minimizing area, total wire length and CPI simultaneously.

5.4 Running time
Because the running time of SA for the floorplanning is negli-

gible compared to that of cycle accurate simulation with over 20
million instructions we only present the number of simulations.
Shown in Table 6 is the number of simulations required to build the
TPWL and iTPWL models for each benchmark. Because iTPWL

5

Objective
100nm 70nm

Row Metrics AL AC ALC AL AC ALC

1 White Space(%) 7.47 5.45 12.2 16.7 15.5 16.7
2 CPI 1.40 1.06 (-24.3%) 1.00 (-28.6%) 2.71 1.17 (-56.8%) 1.06 (-60.9%)
3 TWL(102 mm) 5.56 10.1 (+81.7%) 5.08 (-8.63%) 7.04 17.7 (+151%) 8.33 (+18.3%)
4 Total/Max. #FF 41/6 28/5 24/4 354/46 109/33 95/27
5 Area(102 mm2) 1.23 1.21 (-1.63%) 1.30 (+5.69%) 7.66 7.56 (-1.31%) 7.66 (-0.00%)

Table 4: Comparison between floorplans obtained by different objectives (CPI is estimated by iTPWL model).

model is based on TPWL model, We show the simulation times in
an accumulative fashion. For example, under 100nm technology
we carried out 53 simulations to build the TPWL model. To build
iTPWL model with one extra iteration, we need 20 more simula-
tions. So, the simulation time is 73. For the third iteration, we need
another 20 simulations, which increases the total number of simu-
lations to 93. The number of simulations under 70nm is larger due
to increased number of buses and larger solution space. It is much
smaller than brute-force enumeration of ten latency cases for each
of the twelve buses3.

Simple-scalar simulations

100nm 70nm
TPWL 53 138

iTPWL, i=2 73 186
iTPWL, i=3 93 238

Table 6: Simple-scaler simulation times to build up the TPWL
and iTPWL model.

6. CONCLUSIONS AND DISCUSSIONS
To consider the performance impact of pipelined interconnects,

we have developed an efficient yet accurate iterative trajectory piecewise-
linear (iTPWL) model with error less than 3.0% compared to cycle
accruate simulation. We have also developed a floorplanning opti-
mization minimizing CPI (cycles per instruction). Compared to the
conventional floorplanning minimizing area and wire length, the
new floorplanning formulation obtains a floorplan with 28.6% CPI
reduction and a small area overhead of 5.69% under 100nm tech-
nology and even better result for 70nm technology. For a fixed
clock rate, 28.6% CPI reduction is equivalent to 40.0% system
throughput increase. To the best of our knowledge, this paper is
the first in-depth study on floorplanning optimization with consid-
eration of interconnect pipelining.

CPI optimization during floorplanning is achieved by shorten-
ing the lengths of CPI-critical buses. At first glance, the set of
CPI-critical buses is a subset of all global interconnects and the
traditional floorplanning objective of minimizing total wire length
should lead to a floorplan with optimized system performance. How-
ever, we have shown in the experiment that minimizing total wire
length does not necessarily lead to minimization of CPI. Further-
more, the accuracy of iTPWL model leads to floorplanning so-
lutions with high quality and enables us to develop good heuris-
tics minimizing CPI without explicit CPI calculation. We show
that minimizing weighted wire length with bus access ratio as the
weight is such a good heuristic. Since heavier interconnect pipelin-
ing is expected for future generation circuits and systems [2], we

31012 times of cycle accurate simulations are needed for enumera-
tion.

expect that floorplanning considering interconnect pipelining for
CPI reduction will gain a growing importance.

A related work has studied micro-architecture and floorplanning
co-optimization without considering interconnect pipelining [14].
A table-based CPI model in a brute-force fashion (i.e., cycle accu-
rate simulation for each micro-architecture change) was employed.
We intend to apply our iterative TPWL model to co-optimization
of micro-architecture and floorplanning with interconnect pipelin-
ing. We expect that the effectiveness and efficiency of the iterative
TPWL model will help to explore a bigger solution space and ob-
tain better micro-architecture and floorplanning designs.

7. REFERENCES
[1] D. Matzke, “Will physical scalability sabotage performance gains?,”

Computer, vol. 30, pp. 37–39, 1997.
[2] P. Cocchini, “Concurrent flip-flop and repeater insertion for high

performance integrated circuits,” in Proceedings of the International
Conference on Computer-Aided Design, pp. 268–273, Nov 2002.

[3] W. Liao and L. He, “Full-chip interconnect power estimation and
simulation considering concurrent repearter and flip-flop insertion,”
in ICCAD, pp. 574–580, 2003.

[4] M. Rewienski and J. White, “A trajectory piecewise-linear approach
to model order reduction and fast simulation of nonlinear circuits and
micromachined devices,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pp. 155–170, 2003.

[5] S. Nussbaum and J. Smith, “Modeling superscalar processors via
statistical simulation,” in International Conference on Parallel
Architectures and Compilation Techniques, pp. 15–24, 2001.

[6] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical
sampling,” in International Symposium on Computer Architecture,
pp. 84–95, 2003.

[7] D. Burger and T. Austin, The simplescalar tool set version 2.0.
University of Wisconsin-Madison, 1997.

[8] N. Sherwani, Algorithms For VLSI Design Automation. Kluwer, 3rd
ed., 1999.

[9] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence pair,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1518–1524, 1996.

[10] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through
better local search,” in Proc. IEEE Int. Conf. on Computer Design,
pp. 328–334, 2001.

[11] S. Rajagopalan and V. Vazirani, “Primal-dual rnc approximation
algorithms for (multi)-set (multi)-cover and covering integer
programs,” in Foundations of Computer Science, 1993. Proceedings.,
34th Annual Symposium on, pp. 322–331, 1993.

[12] D. S. Johnson, “Approximation algorithms for combinatorial
problems,” J. Comput. Sys. Sci., vol. 9, pp. 256–278.

[13] L. Lovasz, “On the ratio of optimal integral and fractional covers,”
Discrete Math., vol. 13, pp. 383–390.

[14] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis,
“Microarchitecture evaluation with physical planning,” in Proc.
Design Automation Conf, pp. 32–35, 2003.

6

