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An iterative mincut heuristic for parti- 
tioning networks is presented whose worst 
case computation time, per pass, grows 
linearly with the size of the network. In 
practice, only a very small number of 
passes are typically needed, leading to a 
fast approximation algorithm for mincut 
partitioning. To deal with cells of vari- 
ous sizes, the algorithm progresses by 
moving one cell at a time between the 
blocks of the partition while maintaining 
a desired balance based on the size of the 
blocks rather than the number of cells per 
block. Efficient data structures are used 
to avoid unnecessary searching for the 
best cell to move and to minimize unneces- 
sary updating of cells affected by each 
move. 

Introduction 

Given a network consisting of a set of 
cells (modules) connected by a set of nets 
(signals), the mincut partitioning problem 
consists of finding a partition of the set 
of cells into two blocks A and B such that 
the number of nets which have cells in 
both blocks in minimal. In general, this 
process is subject to a balancing condi- 
tion which admits only those partitions 
whose blocks satisfy a user specified cri- 
terion based on size or cardinality con- 
straints. 

An exact solution to this problem is 
currently intractable in the sense that no 
polynomial-time algorithm for it is known 
to exist. Since in practice the network 
may be very large, a practical algorithm 
must of necessity employ heuristics which 
exhibit nearly linear running times. This 
problem has been treated by a number of 

researchers I-5 over the last decade. We 
present an iterative algorithm whose worst 
case running time, per pass, grows 
linearly with the size of the network, and 
which in practice typically converges in 
several passes. This linear-time behavior 
is achieved by a process of moving one 
cell at a time, from one block of the par- 

tition to the other, in a attempt to 
reduce the number of nets which have cells 
in both blocks. This idea has been 
independently applied by Shiraishi and 

Hirose 5. A technique due to Kernighan and 

Lin 3 is used to reduce the chance that the 
minimization process becomes trapped at 
local minima. Our main contribution con- 
sists of an analysis of the effects a cell 
move has on its neighboring cells and a 
subsequent efficient implementation of 
these results. 

After specifying the network parti- 
tioning problem, we discuss the Kernighan 

and Lin 3 heuristic and introduce the basic 
concept of cell gain which is used to 
select the cell to be moved from one block 
of the partition to the other. The pro- 
perties of gain are then exploited to con- 
struct a data structure that allows effi- 
cient management of changing cell gains. 
We then address the problem of achieving a 
desired balance between the sizes of the 
two blocks of the partition in an environ- 
ment which allows for differing cell 
sizes. The problem of determining which 
cells have their gains affected by each 
move is then addressed. In both cases, 
the total amount of work required, per 
pass, is shown to grow linearly with the 
size of the network. We close with a dis- 
cussion of the behavior of a VAX-based 
implementation of the algorithm by giving 
the results and the execution times 
encountered when the program was run on 
several examples. 

The Problem 

Following Schweikert and Kernighan 4 we 
view a network as a set of C cells 
(modules) cell(1),...,cell(C) connected by 
a set of N nets (signals) 
net(1),...,net(N). As far as partitioning 
is concerned, we may without loss of gen- 
erality make the assumptions listed below 
about what comprises a network. We assume 
that a net is defined as a set consisting 
of at least two cells, and that each cell 
is contained in at least in one net. The 
number of cells in net(i) will be denoted 
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by n(i). Any two cells which share at 
least one net are said to be neighbors. 
Each ceil is assumed to have a size s(i) 
and a number of pins p(i), indicating that 
it belongs to exactly that many nets. 
These assumptions are easily established 
by the input routine. For input, we assume 
that the nets are presented one at a time, 
in any order; each net being completely 
given before another net is started. 
Since each pin is on one and only one net, 
the total number of pins p(1) + ... + 
p(C), call it P, may be taken as the 
"length" of the input and, hence, as the 
"size" of the network. It is clear that 
neither C nor N will serve this purpose, 
since neither the number of pins per cell 
p(i) nor the number of cells per net n(i) 
is bounded. In any event, both C and N 
are O(P). 

The following input routine will deal 
with real networks, whose nets are often 
given as lists of (cell, pin) pairs, which 
violate some of the above assumptions con- 
cerning what constitutes a net. Nets are 
sequentially numbered 1,2,...N as they are 
encountered in the input stream. Cells 
are assumed to be identified by integers 
in the range 1,2,...C. The principal 
function performed by the routine is to 
construct two data structures from the 
sequence of nets given as input. The 
first structure is a CELL array, which for 
each cell contains a linked list of the 
nets that contain the cell. The second 
structure is a NET array, which for each 
net contains a linked list of the cells on 
the net. In both cases, each linked list 
created is regarded as a set, with no 
duplicates and no implicit order. Each 
record in each of the arrays also contains 
several additional fields which the algo- 
rithm uses to perform its function. 

/* net-list input routine */ 
FOR each net n = 1 ... N DO 

FOR each (cell, pin) pair 
(i,j) on net n DO 
/* maintain set property */ 
IF net n is not at the front of 

the net-list for cell i 
THEN insert cell i into the 

cell-list of net n and 
insert net n into the 
net-list of cell i 

END FOR 
END FOR 

One should also delete nets with only one 
cell and a cells that may no longer be on 
any of the resulting nets. It is clear 
that O(P) time will suffice to do all of 
the above work, provided that the number 
of (cell, pin) pairs in the input stream 
is O(P). 

Given any partition of the cells into 
two blocks A and B, a net is said to be 

cut if it has at least one cell in each 
block and / ~  otherwise. Call this the 
cutstate of the net. This state may be 
deduced from the net's ~ ,  this 
being the number of cells it has in blocks 
A and B respectively. Define the cutset 
of the partition to be the set of all nets 
which are cut. Finally, define the size 
IXl of a block of cells X to be the sum of 
the sizes s(i) of its constituent cells. 

Given a fraction (ratio) 0<r<l, we 
wish to partition the network into two 
blocks A and B such that IAI/(IAI+IBI)Sr, 
and such that the size (cardinality) of 
the resulting cutset is minimized. The 
ratio r is only intended to capture the 
balance criterion of the final partition 
produced by the algorithm. This should 
not be taken to mean that each move must 
maintain balance (although this is cer- 
tainly not ruled out) nor that, in partic- 
ular, the initial partition need be 
balanced. We will discuss this point in 
more detail later. In addition to speci- 
fying the ratio r and an initial partition 
(with one of A or B possibly empty), the 
user is allowed to designate certain cells 
as being "fixed" in either block A or 
block B of the partition. This allows the 
algorithm to be used to further refine 
blocks created by previous partitions. 

The Basic Idea 

Given a partition (A,B) of the cells, the 
main idea of the algorithm is to move a 
cell at a time from one block of the par- 
tition to the other in an attempt to 
minimize the cutset of the final parti- 
tion. The cell to be moved, call it the 
base G@II, is chosen both on the basis of 
the balance criterion and its effect on 
the size of the current cutset. Define 
the ~ain g(i) of cell(i) as the number of 
nets by which the cutset would decrease 
were cell(i) to be moved from its current 
block to its complimentary block. Note 
that a cell's gain may be negative. 
Indeed, g(i) must be an integer in the 
range -p(i) to +p(i). It is also clear 
that during each move we must keep in mind 
the balance criterion to prevent all cells 
from migrating to one block of the parti- 
tion. For surely that would be the best 
partition were balance to be ignored. 
Thus the balance criterion is used to 
select the block from which a cell of 
highest gain is to be moved. It will 
often be the case that this cell has a 
non-positive gain. In that case, we still 
move the cell with the expectation that 
the move will allow the algorithm to 
"climb out of local minima". After all 
moves have been made, the best partition 
encountered during the pass is taken as 
the output of the pass. This minimization 
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To prevent the cell-moving process 
from "thrashing" or going into an infinite 
loop, each base cell is immediately 
"locked" in its new block for the 
remainder of the pass. Thus only "free" 
cells are actually allowed to make one 
move during a pass, until either all cells 
become locked or the balancing criterion 
prevents further moves. The best parti- 
tion encountered during the pass is then 
returned. Additional passes may then be 
performed until no further improvements 
are obtained. In practice this typically 
occurs quickly, in several passes, result- 
ing in a nearly linear algorithm; however, 
we make no claims about the number of 
passes required in the worst case, except 
to point out the obvious fact that, only 
O(N) passes are possible since the cutset 
is bounded by the number of nets. 

The bulk of the work needed to make a 
move consists of selecting the base cell, 
moving it, and then adjusting the gains of 
its free neighbors. Unless this is care- 
fully done, each cell will have its gain 
recomputed each time one of its neighbors 
moves. This is definitely not necessary. 
The naive approach will lead to an algo- 

rithm which performs (n(i))2+...+(n(i)) 2 = 

O(P 2) gain computations per pass. This 
stems from the fact that the neighborhood 
relation induced by a net containing n 

cells is a complete graph with O(n 2 ) 
edges. Since a single gain computation 
for a cell with p(i) pins takes O(p(i)) 
work, this approach to maintaining cell 

gains will require more than O(P 2) work. 
This is particularly expensive even when 
one large net exists. 

We solve the first problem, that of 
selecting a base cell having the largest 
gain in its block, by the use of a data 
structure which quickly returns a cell of 
highest gain and allows recomputed cell 
gains to be reentered into the structure 
in constant time. We consider the solu- 
tion to this problem in the next section 
where we discuss the notion of cell gain. 

The second problem, that of updating 
the gains of the neighbors of the base 
cell, is much more interesting. The naive 
algorithm consists of recomputing the gain 
of every free cell on every net of the 
base cell. We avoid these time consuming 
pitfalls by showing that a net(i) never 
accounts for more than 2n(i) gain recompu- 
tations during one entire pass. Moreover, 
we show that each gain recomputation can 
be replaced by an appropriate sequence of 
simple gain increment/decrements which can 
be done in constant time. These solutions 
to the two problems reduce the total work 
required to perform one pass to O(P) in 
the worst case. 

For any partition (A,B) we have defined 
the gain g(i) of cell(i) as the number of 
nets by which the cutset would decrease, 
were cell(i) to be moved from its current 
block to its complimentary block. 

I 

Figure i. Example of cell gains 

Clearly, g(i) is an integer in the range 
-p(i) to + p(i), so that each cell has its 
gain in the range -pmax to +pmax, where 
pmax=max{p(i) Icell(i) is initially free}. 
In view of the restricted set of values 
which cell gains may take on, we can use 
"bucket" sorting to maintain a sorted list 
of cell gains. This is done using an 

array BUCKET[-pmax ... pmax], whose k th 
entry contains a doubly-linked list of 
free cells with gains currently equal to 
k. Two such arrays are needed, one for 
block A and one for block B. Each array 
is maintained by quickly moving a cell to 
the appropriate bucket whenever its gain 
changes due to the movement of one of its 
neighbors. Direct access to each cell, 
from a separate field in the CELL array, 
allows us to yank a cell from its current 
list and move it to the head of its new 
bucket list in constant time. Because 
only free cells are allowed to move, only 
they need to have their gains updated. 
Whenever a base cell is moved, it is 
"locked", removed from its bucket list, 
and placed on a "FREE CELL LIST" which is 
later used to reinitialize the BUCKET 
array for the next pass. This "FREE CELL 
LIST" saves a great deal of work when a 
large number of cells have permanent block 
assignments and are thus not free to move. 

+ pmax 

>  loe  4 Ice  4d " 
GAIN 

- pmax 

1 2 ... C 

Figure 2. Bucket list structure 
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For each BUCKET array, a MAXGAIN index is 
maintained which is used to keep track of 
the bucket having a cell of highest gain. 
This index is updated by decrementing it 
whenever its bucket is found to be empty 
and resetting it to a higher bucket when- 
ever a cell moves to a bucket above MAX- 
GAIN. Experience with integrated circuit 
networks shows that gains tend to cluster 
sharply around the origin and that MAXGAIN 
moves very little indeed, making the above 
implementation exceptionally fast and sim- 
ple. We now establish that, despite its 
simplicity, this scheme actually does only 
linear work per pass. 

• The total amount of work 
required to maintain each BUCKET array is 
O(P) per pass. 

Proof. Let f = O(P) be the number of 
cells in the network which are initially 
free. Initialization requires O(pmax) + 
O(f) = O(P) time. If g is the total 
number of gain adjustments performed dur- 
ing one pass, then O(g) work is sufficient 
to move all free cells to their appropri- 
ate bucket lists, since each cell can be 
moved in constant time. In the section on 
maintaining cell gains, we establish that 
g = O(P). We must finally account for the 
work required to return a cell of highest 
gain when one is requested. Let R be the 
sum of all the amounts by which MAXGAIN is 
reset by all the various reset actions. 
Although we cannot in general search and 
return a cell in constant time, the total 
time, per pass, used to search down for a 
non-empty bucket and to return and remove 
a cell of highest gain is O(R + pmax) + 
O(f) = O(R) + O(P). In the next section 
we show that R = O(g); so that O(P) total 
work, per pass, is sufficient to initial- 
ize and maintain the bucket lists. QED 

Establishina Balance 

The concept of mincut partitioning is 
meaningless unless a restriction is placed 
on the sizes of the two blocks; otherwise, 
we could achieve an empty cutset by moving 
all of the cells to one block of the par- 
tition. The approach we have taken is to 
specify a fraction (ratio), 0 < r < i, to 
suggest that only final partitions satis- 
fying IAI/(JAJ + IBJ) ~ r are acceptable. 
Since in general equality cannot be 
achieved, some notion of an acceptable 
tolerance must be incorporated into the 
balancing scheme. We have considered 
several approaches, including the use of 
cost functions based on the size of the 
cutset and the amount by which the parti- 
tion deviates from the desired ratio r. 
We are currently using a scheme which is 
both fast and seems to work well when the 
variance in cell sizes is not too large. 

Call a partition (A,B) balanced pro- 
vided that 

rW - smax i IAI i rW + smax 

where W = IAI + IBi is the sum of the 
s(i), and smax = max{s(i)} is the size of 
the largest cell which is initially free. 
A special initial pass is used to estab- 
lish the balance by moving cells to or 
from block A depending on the sizes of 
blocks A and B and the desired ratio r. 
During this pass, as in all other passes, 
the base cell is selected according to the 
highest gain criterion. Once balance is 
achieved, it is possible to maintain it 
with every move because the tolerance 
always allows at least one free cell from 
either A or B to be moved. If desired, a 
tolerance of ~k*smax may be used, where 
k = k(s) Z 1 is some slowly growing func- 
tion of the number of free cells in the 
network. 

Having established balance, the basic 
idea of repeatedly choosing a base cell to 
be moved is described as follows: 

i. Consider the first cell (if any) of 
highest gain from each BUCKET array, 
rejecting it if moving it would cause 
imbalance. If neither block has a 
qualifying cell, no more moves will 
be attempted. 

2. Among those cells returned in step 
one, choose a cell of highest gain, 
breaking ties by choosing the one 
which gives the best balance. Break 
remaining ties as desired. 

3. Return this as the base cell; remove 
it from its bucket list; and place it 
on the FREE CELL LIST. 

Having chosen a base cell, we now move it 
to its complimentary block; lock it; and 
determine the effects it produces on the 
distributions of its nets and on the gains 
of its neighboring cells. Unless this is 
done carefully, the resulting time, per 

pass, will be worse than O(p2). We next 
show how to do this in linear time per 
pass. 

~omputating and Maintainina Cell Gains 

We have yet to describe how to compute and 
maintain cell gains. To do this, we must 
introduce the notion of a critical net. 
Consider an arbitrary net n. Given a par- 
tition (A,B), define the distribution of 
net n, relative to this partition, as an 
ordered pair of integers (A(n),B(n)) which 
represents the number of cells the net n 
has in blocks A and B respectively. These 
are clearly computable in O(P) time for 
all nets. Recalling the definition of the 
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cutstate of a net, we say that a net is 
9ritical if there exists a cell on it 
which if moved would change the net's cut- 
state. It is easy to see that n is criti- 
cal iff: either A(n) or B(n) is equal to 0 
or I. 

I I 

A(n) = 1 I A(n) = 0 

i I 

B(n) = 1 B(n) = 0 I 

Figure 3. Critical nets 

It is now clear that the gain of a cell, 
previously defined in terms of its effect 
on the cutset, depends only on its criti- 
cal nets. This means that if the net is 
not critical, its cutstate cannot be 
affected by a move. What is more impor- 
tant, a net which is not critical either 
before or after a move cannot possibly 
influence the gains of any of its cells. 
This observation, coupled with the fact 

that base cells are "locked" after being 
moved, will form the basis of our linear- 
time claim. 

Let F ("From") be the current block 
of cell(i) and T ("To") be its complimen- 
tary block; so that F=A and T=B or vice- 
versa. The gain of cell(i) is then given 
by 

g(i) = FS(i) - TE(i), 

where FS(i) is the number on nets which 
have cell(i) as their only F cell, and 
TE(i) is the number of nets which contain 
cell(i) and have an empty T side. Thus a 
critical net on cell(i) contributes +i or 
-i to g(i). The following algorithm com- 
putes the initial gains of all free cells. 

/* compute cell gains */ 
FOR each free cell i DO 

g(i) <-- 0 
F <-- the "from block" of cell(i) 
T <-- the "to block" of cell(i) 
FOR each net n on cell i DO 

IF F(n) = 1 THEN increment g(i) 
IF T(n) = 0 THEN then decrement g(i) 

END FOR 
END FOR 

~ i i . ~ .  Initialization of all cell 
gains requires O(P) work. 

Proof. Making use of the FREE CELL LIST, 
the outer loop scans through the free 
cells in the network. For each free cell, 

the inner loop scans through each of the 
cell's nets and performs a simple incre- 
ment or decrement operation. Thus the 
total work involved is O(rp) = O(P), where 
rp is the number of pins reachable from 
all the free cells. QED 

Next we prove that a linear amount of 
time is sufficient to maintain the gains 
of all free cells during a single pass of 
the algorithm. Since a net is critical if 
and only if it contains a cell which if 
moved would alter the cutstate of the net, 
we need look at only those nets, connected 
to the base cell, that are critical before 
or after the move. Only nets consisting 
of either two or three cells can be criti- 
cal both before and after a move. For 
such nets, two gain adjustment actions 
might be required: two-cell nets will have 
one cell incremenetd or decremented twice, 
whereas three-cell nets will have one cell 
incremented and another cell decremented. 

I I 
I t 

I 

I 
I 

I 

Figure 4. Nets requiring 2 adjustments 

If a net is critical, either before or 
after a move, the contributions it makes 
to the gains of its cells need to be 
adjusted. Of course, this should only be 
done if the net's distribution is changed 
by the move; that is, only for nets on the 
base cell. Using the "from-to" terminol- 
ogy of the gain computation algorithm, we 
see that a net is critical before the move 
iff 

F(n) = 1 or T(n) = 0 or T(n) = i. 

The case F(n) = 0 can not occur because 
the base cell is on the F side before the 
move. Similarly, a net is critical after 
a move iff 

T(n) = 1 or F(n) = 0 or F(n) = i. 

TO simplify the situation, we further note 
that F(n) = 1 before the move iff F(n) = 0 
after the move, and that T(n) = 1 after 
the move iff T(n) = 0 before the move. 
The following code checks for each of 
these four cases to see if gain updates 
are required. A careful analysis of the 
four cases, which are not independent, 
will assure the reader that the correct 
updates are applied. 
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/* move base cell and update 
neighbors' gains */ 

F <-- the "from block" of base cell 
T <-- the "to block" of base cell 
Lock the base cell and 
Compliment its block 
FOR each net n on the base cell DO 

/* check critical nets 
before the move */ 

IF T(n) = 0 THEN increment gains of 
all free cells on 
net(n) 

ELSE IF T(n) = 1 THEN decrement gain 
of the only T cell on 
net(n), if it is free 

/* change the net distribution 
to reflect the move */ 

decrement F(n) 
increment T(n) 
/* check critical nets 

after the move */ 
IF F(n) = 0 THEN decrement gains of 

all free cells on 
net(n) 

ELSE IF F(n) = 1 THEN increment gain 
of the only F cell on 
net(n), if it is free 

END FOR 

The action of incrementing or decrementing 
the gains of a specific subset of the 
cells, on a net consisting of n cells, 
requires at most O(n) work because, in one 
scan of the net, each cell can be reached 
from the net's cell list and can be moved 
from one bucket to another in constant 
time. We shall refer to one scan of a 
net's cell list as an update operation. 

Proposition 3. No more than four update 
operations per net are performed during 
one pass of the algorithm. 

Proof. We first transform the inner loop 
of the gain update algorithm to simplify 
the discussion. To do this, we need to 
distinguish between the free and locked 
cells of net(n) in each block of the par- 
tition. Let LF(n) and FF(n) respectively 
refer to the number of locked and free 
cells net(n) has on the F side of the par- 
tition. A similar notation is used for 
the T side. Concentrating on the first 
conditional in the loop body, notice that 
T(n) = 0 requires that LT(n) = FT(n) = 0. 
The condition T(n) = 1 requires that 
either LT(n) = 1 and FT(n) = 0, or that 
LT(n) = 0 and FT(n) = I; however, the 
update is performed only if the cell on 
the T side is free; that is, only if LT(n) 
= 0. Using this observation, and a similar 
observation for the conditional updates 
after the distribution shift, the code for 
the inner loop of the gain adjustment 
algorithm can be restated as: 

/* check for critical nets 
before the move */ 

IF LT(n) = 0 
THEN IF FT(n) = 0 THEN "update gains" 
ELSE IF FT(n) = 1 THEN "update gains" 

/* change the net distribution 
to reflect the move */ 

decrement FF(n) 
increment LT(n) 
/* check for critical nets 

after the move */ 
IF LF(n) = 0 

THEN IF FF(n) = 0 THEN "update gains" 
ELSE IF FF(n) = 1 THEN "update gains" 

Observe that once both blocks A and B have 
served in the capacity of the T side for a 
given net n, no further update operations 
will occur for that net. This is because 
the code which updates the net's distribu- 
tion will have incremented the locked cell 
count on both sides. Once this occurs, 
the net is essentially "dead", meaning 
that its cutstate can no longer change, 
thus ruling out the possibility of future 
updates. 

This observation allows us to concen- 
trate on only that portion of the move 
sequence, for an individual net n, which 
includes the first change in direction of 
cell movement. We will consider a 
sequence of moves (with respect to the net 
n) of cells from the A side (A-move) fol- 
lowed by a single move of a cell from the 
B side. During the first A-move T=B, thus 
for all subsequent moves LB(n) will be 
positive. Therefore, the B side, having 
only 0 or 1 cells, can only cause an 
update on the first A-move of the 
sequence. During the sequence of A-moves, 
each move causes the FA(n) component of 
the net distribution to be decremented by 
one. Updates can occur only for values of 
FA(n) = 1 and FA(n) = 0, and only once for 
each value with F=A. The final move with 
B=F could also cause an update if the A 
side has 1 or 0 cells. Since no further 
updates can be required, we get a total of 
at most four updates per net. A more 
careful analysis reveals that three 
updates will be sufficient for any net, 
and that three updates are necessary for 
certain nets. During these three updates, 
the gain g(i) of a given cell(i) is 
adjusted at most twice. QED 

Using facts from the previous proof, 
we can now complete the proof of Proposi- 
tion i. We see that g, the total number 
of gain adjustments per pass is O(f), 
where f is the number of initially free 
cells. Thus g = O(f) = O(P) in Proposi- 
tion i. Each time a net is updated, the 
gain of any cell on that net can be incre- 
mented at most twice, by Proposition 3; 
thus, during one update, the value of MAX- 
GAIN can be reset to at most MAXGAIN + 2. 
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This shows that R, in Proposition i, is 
O(N) = O(P). This establishing that the 
bucket lists can be maintained with O(P) 
work per pass. QED 

We are now in a position to establish 
the behavior of the our algorithm for 
maintaining cell gains. 

proposition 4. The total work required to 
initialize and maintain cell gains is O(P) 
per pass. 

Proof. The total amount of work required 
for gain maintenance during one pass of 
the algorithm is the sum of the work 
required for each individual net. Each 
update of net(i) uses O(n(i)) work. Pro- 
position 3 shows that only a constant 
number of updates are required, per net 
per pass; Since n(1) +...+n(N) = O(P), the 
linear behavior is obtained. QED 

Combining Propositions 1 and 4, we 
may now state our main result. 

Theorem. The minimization algorithm 
requires O(P) time to complete one pass. 

Performance and Application~ 

The algorithm has been implemented in the 
language C, and runs on a VAX 11/780. Its 
performance was evaluated by using it to 
partitio 9 several random-logic polycell 
designs. Four samples are listed below. 
The average chip has 267 cells, 245 nets, 
and 2650 pins. On these chips, the algo- 
rithm typically makes about 900 moves per 
cpu-second. This will of course depend on 
the average number of pins per cell and 
the sizes of the nets. The factor by 
which the algorithm will outperform the 
naive algorithm depends on network size 
and especially on the size of the largest 
nets. The new algorithm is superior espe- 
cially when the network contains even one 
large net. 

CELLS NETS PINS PASSES TIME 
Chip 1 306 300 857 3 1.63 
Chip 2 296 238 672 2 .98 
Chip 3 214 222 550 5 1.91 
Chip 4 255 221 571 5 2.09 

As a cell placement tool, in a polycell 
environment, the algorithm is being 
evaluated in two quite distinct ways. The 
first is a straight-forward application to 
partition the cells into channels. We 
call this inter-channel placement. Its 
objective is to reduce the number of 
inter-channel connections needed. The 
second application is as an intra-channel 
placement tool. Here the objective is to 
reduce channel density and wire length. 
This is done recursively to determine 
first, in which half of the channel the 
cell should be placed, then in which 

quarter, and so on. We feel that this is 
a novel approach to intra channel place- 
ment. 
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