
A Linear-Time Heuristic for Improving Network Partitions

C.M. Fiduccia and R.M. Mattheyses

General Electric
Research and Development Center

Schenectady, NY 12301

An iterative mincut heuristic for parti-
tioning networks is presented whose worst
case computation time, per pass, grows
linearly with the size of the network. In
practice, only a very small number of
passes are typically needed, leading to a
fast approximation algorithm for mincut
partitioning. To deal with cells of vari-
ous sizes, the algorithm progresses by
moving one cell at a time between the
blocks of the partition while maintaining
a desired balance based on the size of the
blocks rather than the number of cells per
block. Efficient data structures are used
to avoid unnecessary searching for the
best cell to move and to minimize unneces-
sary updating of cells affected by each
move.

Introduction

Given a network consisting of a set of
cells (modules) connected by a set of nets
(signals), the mincut partitioning problem
consists of finding a partition of the set
of cells into two blocks A and B such that
the number of nets which have cells in
both blocks in minimal. In general, this
process is subject to a balancing condi-
tion which admits only those partitions
whose blocks satisfy a user specified cri-
terion based on size or cardinality con-
straints.

An exact solution to this problem is
currently intractable in the sense that no
polynomial-time algorithm for it is known
to exist. Since in practice the network
may be very large, a practical algorithm
must of necessity employ heuristics which
exhibit nearly linear running times. This
problem has been treated by a number of

researchers I-5 over the last decade. We
present an iterative algorithm whose worst
case running time, per pass, grows
linearly with the size of the network, and
which in practice typically converges in
several passes. This linear-time behavior
is achieved by a process of moving one
cell at a time, from one block of the par-

tition to the other, in a attempt to
reduce the number of nets which have cells
in both blocks. This idea has been
independently applied by Shiraishi and

Hirose 5. A technique due to Kernighan and

Lin 3 is used to reduce the chance that the
minimization process becomes trapped at
local minima. Our main contribution con-
sists of an analysis of the effects a cell
move has on its neighboring cells and a
subsequent efficient implementation of
these results.

After specifying the network parti-
tioning problem, we discuss the Kernighan

and Lin 3 heuristic and introduce the basic
concept of cell gain which is used to
select the cell to be moved from one block
of the partition to the other. The pro-
perties of gain are then exploited to con-
struct a data structure that allows effi-
cient management of changing cell gains.
We then address the problem of achieving a
desired balance between the sizes of the
two blocks of the partition in an environ-
ment which allows for differing cell
sizes. The problem of determining which
cells have their gains affected by each
move is then addressed. In both cases,
the total amount of work required, per
pass, is shown to grow linearly with the
size of the network. We close with a dis-
cussion of the behavior of a VAX-based
implementation of the algorithm by giving
the results and the execution times
encountered when the program was run on
several examples.

The Problem

Following Schweikert and Kernighan 4 we
view a network as a set of C cells
(modules) cell(1),...,cell(C) connected by
a set of N nets (signals)
net(1),...,net(N). As far as partitioning
is concerned, we may without loss of gen-
erality make the assumptions listed below
about what comprises a network. We assume
that a net is defined as a set consisting
of at least two cells, and that each cell
is contained in at least in one net. The
number of cells in net(i) will be denoted

19th Design Automation Conference

0420-0098/82/0000/0175500.75 © 1982 IEEE
Paper 13.1

175

by n(i). Any two cells which share at
least one net are said to be neighbors.
Each ceil is assumed to have a size s(i)
and a number of pins p(i), indicating that
it belongs to exactly that many nets.
These assumptions are easily established
by the input routine. For input, we assume
that the nets are presented one at a time,
in any order; each net being completely
given before another net is started.
Since each pin is on one and only one net,
the total number of pins p(1) + ... +
p(C), call it P, may be taken as the
"length" of the input and, hence, as the
"size" of the network. It is clear that
neither C nor N will serve this purpose,
since neither the number of pins per cell
p(i) nor the number of cells per net n(i)
is bounded. In any event, both C and N
are O(P).

The following input routine will deal
with real networks, whose nets are often
given as lists of (cell, pin) pairs, which
violate some of the above assumptions con-
cerning what constitutes a net. Nets are
sequentially numbered 1,2,...N as they are
encountered in the input stream. Cells
are assumed to be identified by integers
in the range 1,2,...C. The principal
function performed by the routine is to
construct two data structures from the
sequence of nets given as input. The
first structure is a CELL array, which for
each cell contains a linked list of the
nets that contain the cell. The second
structure is a NET array, which for each
net contains a linked list of the cells on
the net. In both cases, each linked list
created is regarded as a set, with no
duplicates and no implicit order. Each
record in each of the arrays also contains
several additional fields which the algo-
rithm uses to perform its function.

/* net-list input routine */
FOR each net n = 1 ... N DO

FOR each (cell, pin) pair
(i,j) on net n DO
/* maintain set property */
IF net n is not at the front of

the net-list for cell i
THEN insert cell i into the

cell-list of net n and
insert net n into the
net-list of cell i

END FOR
END FOR

One should also delete nets with only one
cell and a cells that may no longer be on
any of the resulting nets. It is clear
that O(P) time will suffice to do all of
the above work, provided that the number
of (cell, pin) pairs in the input stream
is O(P).

Given any partition of the cells into
two blocks A and B, a net is said to be

cut if it has at least one cell in each
block and / ~ otherwise. Call this the
cutstate of the net. This state may be
deduced from the net's ~ , this
being the number of cells it has in blocks
A and B respectively. Define the cutset
of the partition to be the set of all nets
which are cut. Finally, define the size
IXl of a block of cells X to be the sum of
the sizes s(i) of its constituent cells.

Given a fraction (ratio) 0<r<l, we
wish to partition the network into two
blocks A and B such that IAI/(IAI+IBI)Sr,
and such that the size (cardinality) of
the resulting cutset is minimized. The
ratio r is only intended to capture the
balance criterion of the final partition
produced by the algorithm. This should
not be taken to mean that each move must
maintain balance (although this is cer-
tainly not ruled out) nor that, in partic-
ular, the initial partition need be
balanced. We will discuss this point in
more detail later. In addition to speci-
fying the ratio r and an initial partition
(with one of A or B possibly empty), the
user is allowed to designate certain cells
as being "fixed" in either block A or
block B of the partition. This allows the
algorithm to be used to further refine
blocks created by previous partitions.

The Basic Idea

Given a partition (A,B) of the cells, the
main idea of the algorithm is to move a
cell at a time from one block of the par-
tition to the other in an attempt to
minimize the cutset of the final parti-
tion. The cell to be moved, call it the
base G@II, is chosen both on the basis of
the balance criterion and its effect on
the size of the current cutset. Define
the ~ain g(i) of cell(i) as the number of
nets by which the cutset would decrease
were cell(i) to be moved from its current
block to its complimentary block. Note
that a cell's gain may be negative.
Indeed, g(i) must be an integer in the
range -p(i) to +p(i). It is also clear
that during each move we must keep in mind
the balance criterion to prevent all cells
from migrating to one block of the parti-
tion. For surely that would be the best
partition were balance to be ignored.
Thus the balance criterion is used to
select the block from which a cell of
highest gain is to be moved. It will
often be the case that this cell has a
non-positive gain. In that case, we still
move the cell with the expectation that
the move will allow the algorithm to
"climb out of local minima". After all
moves have been made, the best partition
encountered during the pass is taken as
the output of the pass. This minimization

technique is due to Kernighan and Lin 3.

Paper 13.1
176

To prevent the cell-moving process
from "thrashing" or going into an infinite
loop, each base cell is immediately
"locked" in its new block for the
remainder of the pass. Thus only "free"
cells are actually allowed to make one
move during a pass, until either all cells
become locked or the balancing criterion
prevents further moves. The best parti-
tion encountered during the pass is then
returned. Additional passes may then be
performed until no further improvements
are obtained. In practice this typically
occurs quickly, in several passes, result-
ing in a nearly linear algorithm; however,
we make no claims about the number of
passes required in the worst case, except
to point out the obvious fact that, only
O(N) passes are possible since the cutset
is bounded by the number of nets.

The bulk of the work needed to make a
move consists of selecting the base cell,
moving it, and then adjusting the gains of
its free neighbors. Unless this is care-
fully done, each cell will have its gain
recomputed each time one of its neighbors
moves. This is definitely not necessary.
The naive approach will lead to an algo-

rithm which performs (n(i))2+...+(n(i)) 2 =

O(P 2) gain computations per pass. This
stems from the fact that the neighborhood
relation induced by a net containing n

cells is a complete graph with O(n 2)
edges. Since a single gain computation
for a cell with p(i) pins takes O(p(i))
work, this approach to maintaining cell

gains will require more than O(P 2) work.
This is particularly expensive even when
one large net exists.

We solve the first problem, that of
selecting a base cell having the largest
gain in its block, by the use of a data
structure which quickly returns a cell of
highest gain and allows recomputed cell
gains to be reentered into the structure
in constant time. We consider the solu-
tion to this problem in the next section
where we discuss the notion of cell gain.

The second problem, that of updating
the gains of the neighbors of the base
cell, is much more interesting. The naive
algorithm consists of recomputing the gain
of every free cell on every net of the
base cell. We avoid these time consuming
pitfalls by showing that a net(i) never
accounts for more than 2n(i) gain recompu-
tations during one entire pass. Moreover,
we show that each gain recomputation can
be replaced by an appropriate sequence of
simple gain increment/decrements which can
be done in constant time. These solutions
to the two problems reduce the total work
required to perform one pass to O(P) in
the worst case.

For any partition (A,B) we have defined
the gain g(i) of cell(i) as the number of
nets by which the cutset would decrease,
were cell(i) to be moved from its current
block to its complimentary block.

I

Figure i. Example of cell gains

Clearly, g(i) is an integer in the range
-p(i) to + p(i), so that each cell has its
gain in the range -pmax to +pmax, where
pmax=max{p(i) Icell(i) is initially free}.
In view of the restricted set of values
which cell gains may take on, we can use
"bucket" sorting to maintain a sorted list
of cell gains. This is done using an

array BUCKET[-pmax ... pmax], whose k th
entry contains a doubly-linked list of
free cells with gains currently equal to
k. Two such arrays are needed, one for
block A and one for block B. Each array
is maintained by quickly moving a cell to
the appropriate bucket whenever its gain
changes due to the movement of one of its
neighbors. Direct access to each cell,
from a separate field in the CELL array,
allows us to yank a cell from its current
list and move it to the head of its new
bucket list in constant time. Because
only free cells are allowed to move, only
they need to have their gains updated.
Whenever a base cell is moved, it is
"locked", removed from its bucket list,
and placed on a "FREE CELL LIST" which is
later used to reinitialize the BUCKET
array for the next pass. This "FREE CELL
LIST" saves a great deal of work when a
large number of cells have permanent block
assignments and are thus not free to move.

+ pmax

> loe 4 Ice 4d "
GAIN

- pmax

1 2 ... C

Figure 2. Bucket list structure

Paper 13.1
177

For each BUCKET array, a MAXGAIN index is
maintained which is used to keep track of
the bucket having a cell of highest gain.
This index is updated by decrementing it
whenever its bucket is found to be empty
and resetting it to a higher bucket when-
ever a cell moves to a bucket above MAX-
GAIN. Experience with integrated circuit
networks shows that gains tend to cluster
sharply around the origin and that MAXGAIN
moves very little indeed, making the above
implementation exceptionally fast and sim-
ple. We now establish that, despite its
simplicity, this scheme actually does only
linear work per pass.

• The total amount of work
required to maintain each BUCKET array is
O(P) per pass.

Proof. Let f = O(P) be the number of
cells in the network which are initially
free. Initialization requires O(pmax) +
O(f) = O(P) time. If g is the total
number of gain adjustments performed dur-
ing one pass, then O(g) work is sufficient
to move all free cells to their appropri-
ate bucket lists, since each cell can be
moved in constant time. In the section on
maintaining cell gains, we establish that
g = O(P). We must finally account for the
work required to return a cell of highest
gain when one is requested. Let R be the
sum of all the amounts by which MAXGAIN is
reset by all the various reset actions.
Although we cannot in general search and
return a cell in constant time, the total
time, per pass, used to search down for a
non-empty bucket and to return and remove
a cell of highest gain is O(R + pmax) +
O(f) = O(R) + O(P). In the next section
we show that R = O(g); so that O(P) total
work, per pass, is sufficient to initial-
ize and maintain the bucket lists. QED

Establishina Balance

The concept of mincut partitioning is
meaningless unless a restriction is placed
on the sizes of the two blocks; otherwise,
we could achieve an empty cutset by moving
all of the cells to one block of the par-
tition. The approach we have taken is to
specify a fraction (ratio), 0 < r < i, to
suggest that only final partitions satis-
fying IAI/(JAJ + IBJ) ~ r are acceptable.
Since in general equality cannot be
achieved, some notion of an acceptable
tolerance must be incorporated into the
balancing scheme. We have considered
several approaches, including the use of
cost functions based on the size of the
cutset and the amount by which the parti-
tion deviates from the desired ratio r.
We are currently using a scheme which is
both fast and seems to work well when the
variance in cell sizes is not too large.

Call a partition (A,B) balanced pro-
vided that

rW - smax i IAI i rW + smax

where W = IAI + IBi is the sum of the
s(i), and smax = max{s(i)} is the size of
the largest cell which is initially free.
A special initial pass is used to estab-
lish the balance by moving cells to or
from block A depending on the sizes of
blocks A and B and the desired ratio r.
During this pass, as in all other passes,
the base cell is selected according to the
highest gain criterion. Once balance is
achieved, it is possible to maintain it
with every move because the tolerance
always allows at least one free cell from
either A or B to be moved. If desired, a
tolerance of ~k*smax may be used, where
k = k(s) Z 1 is some slowly growing func-
tion of the number of free cells in the
network.

Having established balance, the basic
idea of repeatedly choosing a base cell to
be moved is described as follows:

i. Consider the first cell (if any) of
highest gain from each BUCKET array,
rejecting it if moving it would cause
imbalance. If neither block has a
qualifying cell, no more moves will
be attempted.

2. Among those cells returned in step
one, choose a cell of highest gain,
breaking ties by choosing the one
which gives the best balance. Break
remaining ties as desired.

3. Return this as the base cell; remove
it from its bucket list; and place it
on the FREE CELL LIST.

Having chosen a base cell, we now move it
to its complimentary block; lock it; and
determine the effects it produces on the
distributions of its nets and on the gains
of its neighboring cells. Unless this is
done carefully, the resulting time, per

pass, will be worse than O(p2). We next
show how to do this in linear time per
pass.

~omputating and Maintainina Cell Gains

We have yet to describe how to compute and
maintain cell gains. To do this, we must
introduce the notion of a critical net.
Consider an arbitrary net n. Given a par-
tition (A,B), define the distribution of
net n, relative to this partition, as an
ordered pair of integers (A(n),B(n)) which
represents the number of cells the net n
has in blocks A and B respectively. These
are clearly computable in O(P) time for
all nets. Recalling the definition of the

Paper 13.1
178

cutstate of a net, we say that a net is
9ritical if there exists a cell on it
which if moved would change the net's cut-
state. It is easy to see that n is criti-
cal iff: either A(n) or B(n) is equal to 0
or I.

I I

A(n) = 1 I A(n) = 0

i I

B(n) = 1 B(n) = 0 I

Figure 3. Critical nets

It is now clear that the gain of a cell,
previously defined in terms of its effect
on the cutset, depends only on its criti-
cal nets. This means that if the net is
not critical, its cutstate cannot be
affected by a move. What is more impor-
tant, a net which is not critical either
before or after a move cannot possibly
influence the gains of any of its cells.
This observation, coupled with the fact

that base cells are "locked" after being
moved, will form the basis of our linear-
time claim.

Let F ("From") be the current block
of cell(i) and T ("To") be its complimen-
tary block; so that F=A and T=B or vice-
versa. The gain of cell(i) is then given
by

g(i) = FS(i) - TE(i),

where FS(i) is the number on nets which
have cell(i) as their only F cell, and
TE(i) is the number of nets which contain
cell(i) and have an empty T side. Thus a
critical net on cell(i) contributes +i or
-i to g(i). The following algorithm com-
putes the initial gains of all free cells.

/* compute cell gains */
FOR each free cell i DO

g(i) <-- 0
F <-- the "from block" of cell(i)
T <-- the "to block" of cell(i)
FOR each net n on cell i DO

IF F(n) = 1 THEN increment g(i)
IF T(n) = 0 THEN then decrement g(i)

END FOR
END FOR

~ i i . ~ . Initialization of all cell
gains requires O(P) work.

Proof. Making use of the FREE CELL LIST,
the outer loop scans through the free
cells in the network. For each free cell,

the inner loop scans through each of the
cell's nets and performs a simple incre-
ment or decrement operation. Thus the
total work involved is O(rp) = O(P), where
rp is the number of pins reachable from
all the free cells. QED

Next we prove that a linear amount of
time is sufficient to maintain the gains
of all free cells during a single pass of
the algorithm. Since a net is critical if
and only if it contains a cell which if
moved would alter the cutstate of the net,
we need look at only those nets, connected
to the base cell, that are critical before
or after the move. Only nets consisting
of either two or three cells can be criti-
cal both before and after a move. For
such nets, two gain adjustment actions
might be required: two-cell nets will have
one cell incremenetd or decremented twice,
whereas three-cell nets will have one cell
incremented and another cell decremented.

I I
I t

I

I
I

I

Figure 4. Nets requiring 2 adjustments

If a net is critical, either before or
after a move, the contributions it makes
to the gains of its cells need to be
adjusted. Of course, this should only be
done if the net's distribution is changed
by the move; that is, only for nets on the
base cell. Using the "from-to" terminol-
ogy of the gain computation algorithm, we
see that a net is critical before the move
iff

F(n) = 1 or T(n) = 0 or T(n) = i.

The case F(n) = 0 can not occur because
the base cell is on the F side before the
move. Similarly, a net is critical after
a move iff

T(n) = 1 or F(n) = 0 or F(n) = i.

TO simplify the situation, we further note
that F(n) = 1 before the move iff F(n) = 0
after the move, and that T(n) = 1 after
the move iff T(n) = 0 before the move.
The following code checks for each of
these four cases to see if gain updates
are required. A careful analysis of the
four cases, which are not independent,
will assure the reader that the correct
updates are applied.

Paper 13.1
179

/* move base cell and update
neighbors' gains */

F <-- the "from block" of base cell
T <-- the "to block" of base cell
Lock the base cell and
Compliment its block
FOR each net n on the base cell DO

/* check critical nets
before the move */

IF T(n) = 0 THEN increment gains of
all free cells on
net(n)

ELSE IF T(n) = 1 THEN decrement gain
of the only T cell on
net(n), if it is free

/* change the net distribution
to reflect the move */

decrement F(n)
increment T(n)
/* check critical nets

after the move */
IF F(n) = 0 THEN decrement gains of

all free cells on
net(n)

ELSE IF F(n) = 1 THEN increment gain
of the only F cell on
net(n), if it is free

END FOR

The action of incrementing or decrementing
the gains of a specific subset of the
cells, on a net consisting of n cells,
requires at most O(n) work because, in one
scan of the net, each cell can be reached
from the net's cell list and can be moved
from one bucket to another in constant
time. We shall refer to one scan of a
net's cell list as an update operation.

Proposition 3. No more than four update
operations per net are performed during
one pass of the algorithm.

Proof. We first transform the inner loop
of the gain update algorithm to simplify
the discussion. To do this, we need to
distinguish between the free and locked
cells of net(n) in each block of the par-
tition. Let LF(n) and FF(n) respectively
refer to the number of locked and free
cells net(n) has on the F side of the par-
tition. A similar notation is used for
the T side. Concentrating on the first
conditional in the loop body, notice that
T(n) = 0 requires that LT(n) = FT(n) = 0.
The condition T(n) = 1 requires that
either LT(n) = 1 and FT(n) = 0, or that
LT(n) = 0 and FT(n) = I; however, the
update is performed only if the cell on
the T side is free; that is, only if LT(n)
= 0. Using this observation, and a similar
observation for the conditional updates
after the distribution shift, the code for
the inner loop of the gain adjustment
algorithm can be restated as:

/* check for critical nets
before the move */

IF LT(n) = 0
THEN IF FT(n) = 0 THEN "update gains"
ELSE IF FT(n) = 1 THEN "update gains"

/* change the net distribution
to reflect the move */

decrement FF(n)
increment LT(n)
/* check for critical nets

after the move */
IF LF(n) = 0

THEN IF FF(n) = 0 THEN "update gains"
ELSE IF FF(n) = 1 THEN "update gains"

Observe that once both blocks A and B have
served in the capacity of the T side for a
given net n, no further update operations
will occur for that net. This is because
the code which updates the net's distribu-
tion will have incremented the locked cell
count on both sides. Once this occurs,
the net is essentially "dead", meaning
that its cutstate can no longer change,
thus ruling out the possibility of future
updates.

This observation allows us to concen-
trate on only that portion of the move
sequence, for an individual net n, which
includes the first change in direction of
cell movement. We will consider a
sequence of moves (with respect to the net
n) of cells from the A side (A-move) fol-
lowed by a single move of a cell from the
B side. During the first A-move T=B, thus
for all subsequent moves LB(n) will be
positive. Therefore, the B side, having
only 0 or 1 cells, can only cause an
update on the first A-move of the
sequence. During the sequence of A-moves,
each move causes the FA(n) component of
the net distribution to be decremented by
one. Updates can occur only for values of
FA(n) = 1 and FA(n) = 0, and only once for
each value with F=A. The final move with
B=F could also cause an update if the A
side has 1 or 0 cells. Since no further
updates can be required, we get a total of
at most four updates per net. A more
careful analysis reveals that three
updates will be sufficient for any net,
and that three updates are necessary for
certain nets. During these three updates,
the gain g(i) of a given cell(i) is
adjusted at most twice. QED

Using facts from the previous proof,
we can now complete the proof of Proposi-
tion i. We see that g, the total number
of gain adjustments per pass is O(f),
where f is the number of initially free
cells. Thus g = O(f) = O(P) in Proposi-
tion i. Each time a net is updated, the
gain of any cell on that net can be incre-
mented at most twice, by Proposition 3;
thus, during one update, the value of MAX-
GAIN can be reset to at most MAXGAIN + 2.

Paper 13.1
180

This shows that R, in Proposition i, is
O(N) = O(P). This establishing that the
bucket lists can be maintained with O(P)
work per pass. QED

We are now in a position to establish
the behavior of the our algorithm for
maintaining cell gains.

proposition 4. The total work required to
initialize and maintain cell gains is O(P)
per pass.

Proof. The total amount of work required
for gain maintenance during one pass of
the algorithm is the sum of the work
required for each individual net. Each
update of net(i) uses O(n(i)) work. Pro-
position 3 shows that only a constant
number of updates are required, per net
per pass; Since n(1) +...+n(N) = O(P), the
linear behavior is obtained. QED

Combining Propositions 1 and 4, we
may now state our main result.

Theorem. The minimization algorithm
requires O(P) time to complete one pass.

Performance and Application~

The algorithm has been implemented in the
language C, and runs on a VAX 11/780. Its
performance was evaluated by using it to
partitio 9 several random-logic polycell
designs. Four samples are listed below.
The average chip has 267 cells, 245 nets,
and 2650 pins. On these chips, the algo-
rithm typically makes about 900 moves per
cpu-second. This will of course depend on
the average number of pins per cell and
the sizes of the nets. The factor by
which the algorithm will outperform the
naive algorithm depends on network size
and especially on the size of the largest
nets. The new algorithm is superior espe-
cially when the network contains even one
large net.

CELLS NETS PINS PASSES TIME
Chip 1 306 300 857 3 1.63
Chip 2 296 238 672 2 .98
Chip 3 214 222 550 5 1.91
Chip 4 255 221 571 5 2.09

As a cell placement tool, in a polycell
environment, the algorithm is being
evaluated in two quite distinct ways. The
first is a straight-forward application to
partition the cells into channels. We
call this inter-channel placement. Its
objective is to reduce the number of
inter-channel connections needed. The
second application is as an intra-channel
placement tool. Here the objective is to
reduce channel density and wire length.
This is done recursively to determine
first, in which half of the channel the
cell should be placed, then in which

quarter, and so on. We feel that this is
a novel approach to intra channel place-
ment.

Acknowledgements

The authors wish to thank Bob Darrow, who
implemented the algorithms on the VAX.
Without the feedback one gets from such
implementations, it is difficult to evalu-
ate a heuristic solution. Thanks are also
due to Phil Lewis and Ron Rivest for their
suggestions.

[i]

[2]

[3]

[4]

[5]

References

M.A. Breuer, "Min-Cut Placement," J.
of Design and Fault- Tolerant Com-
puting, Vol. I, number 4, Oct. 1977,
pp. 343-362.

M.A. Breuer, "A Class of Min-Cut

Placement Algorithms," Proc. 14 th
Design Automation Conference, New
Orleans, 1977, pp. 284-290.

B.W. Kernighan and S. Lin, "An Effi-
cient Heuristic Procedure for Parti-
tioning Graphs," Bell System Techni-
cal Journal, Vol. 49, Feb. 1970, pp.
291-307.

D.G. Schweikert and B.W. Kernighan,
"A Proper Model for the Partitioning

of Electrical Circuits," Proc. 9 th
Design Automation Workshop, Dallas,
June 1979, pp. 57-62.

H. Shiraishi and F. Hirose, "Effi-
cient Placement and Routing for

Masterslice LSI," Proc. 17 th Design
Automation Conference, Minneapolis,
June 1980, pp. 458-464.

Paper 13.1
181

