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Abstract

This paper addresses the problem of cell placement

which is considered crucial for layout quality. Based

on the combined analytical and partitioning strategy

successfully applied in the GORDIAN placement tool, we

discuss the consequences of using linear or quadratic ob-

jective functions. By joining the linear objective with

an efficient quadratic programming approach, and by

applying a refined iterative partitioning scheme, we ob-

tain placements of excellent quality. The effect of a

quadratic and a linear objective function on the chip

area after final routing is demonstrated for benchmark

circuits and other circuits with up to 21000 cells.

1 Introduction

One of the most challenging problems during VLSI lay-

out synthesis is the placement of the components on the

chip. They must be placed in such a way that the chip

can be routed efficiently and all timing requirements

can be satisfied. This should be accomplished in rea-

sonable computation time even for circuits with tens of

thousands of modules. The toughest problem, however,

is that all of these tasks must be achieved with wiring

models that only partially reflect the actual wiring de-

mands. The choice of the appropriate model and a

suitable objective function is therefore crucial for every

placement algorithm.

Some algorithms model the circuit as a hypergraph,

others replace the hyperedges by cliques. The effect of

this modeling on the layout quality depends on the ob-

jective function. Objective functions are usually based

on wiring length or on wiring density.

Mincut algorithms provide good heuristics for min-

imizing wiring density and have therefore been fre-

quently used for placement [1, 2, 3]. Another class of

placement algorithms minimizes wiring length, some-

times as a linear function of the module coordinates,

sometimes as a quadratic function. To minimize a linear

objective function, linear programming methods [4, 5]
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and stochastic optimization techniques [6] have been

used. Both methods suffer from excessive computation

times. A quadratic objective function, however, allows

efficient quadratic programming techniques to be ap-

plied [7, 8, 9, 10]. Combined with sparse matrix tech-

niques, they provide very fast and memory efficient al-

gorithms to solve the global placement problem.

Recently, algorithms joining quadratic programming

with partitioning [11, 12] have been developed for cir-

cuits with tens of thousands of modules. The special

advantage of the global optimization and partitioning

method GORDIAN [12, 13] is the simultaneous treat-

ment of all modules during all levels of partitioning.

The efficiency of that approach has been shown with

many industrial examples. Therefore we retain the basic

strategy of the original GORDIAN algorithm, i.e. alter-

nating global placement and partitioning steps, in our

improved placement algorithm GORDIANL.

The modifications concern the objective function for

global placement and the partitioning strategy. The

differences between linear and quadratic objective func-

tions and their influence on the wiring are discussed

in section 2. In section 3 we show how to optimize a

linear objective function with quadratic programming

techniques. Using efficient algorithms, which are avail-

able for quadratic programming, to minimize the lin-

ear objective function yields high quality placements in

reasonable computation times. A new iterative parti-

tioning method that avoids partitioning decisions based

on insufficient data is introduced in section 4. The two

methods GORDIAN and GORDIANL are compared in sec-

tion 5 by benchmark and other standard cell examples

with more than 20000 modules.

As far as we know, this is the first time that a

quadratic and a linear objective function for placement

are compared in terms of area after final routing. Thus,

this paper will help to answer the question of how the

objective function influences routability ([14] p. 109).

2 Comparison of linear and

quadratic objective functions

This section will discuss the influence of a quadratic and

a linear objective function on the placement. It seems

to be impossible to derive theoretical statements which

show the superiority of one of these objective functions.

Therefore we will demonstrate the difference by exam-
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Figure 1: Optimal placements for different objectives

pies. The observations made here will be confirmed in

section 5 experimentally.

Figure 1 shows two fixed modules A,C and a movable

module B. They are connected by the nets a, /3, -y with

lengths i~, 16,17, respectively. Minimizing the quadratic

objective function @q = 1: + l; + 1: yields the placement

in fig. la with la = lp = $17. The minimization of the

linear function @I = la+ 1P+ 17 results in the placement

in fig. lb with la = lP = O.

It is generally observed that the quadratic objective

function tends to make very long nets (net -y in fig. 1)

shorter than the linear objective function does, at the

expense of the short nets, which become slightly longer.

In other words, the standard deviation of the net lengths

is smaller for a quadratic objective function than for a

linear objective function [14]. How does this influence

the wiring?
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Figure 2: Influence of the objective function

The standard cell circuit in fig. 2 with four rows gives

a first answer. Module A (B) is connected with two

fixed cells on the top (left) boundary and only one fixed

cell on the bottom (right) boundary. The left picture

shows the placement obtained with the linear objective

function. Module A is placed in row 1 and module B ad-

j scent to the left boundary. The number of feedthroughs

generated by the nets connected to module A is three.

The routing of the channel between rows 2 and 3 re-

quires at least two tracks. The use of a quadratic objec-

tive function leads to the placement in the right picture

of fig. 2 with four feedthroughs. At least three tracks

are needed to route the channel between row 2 and 3.

More tracks as well as more feedthrougbs are needed in

this placement.

These observations motivated us to take a closer look

at the influence of the quadratic and the linear objective

function during placement.

3 Global placement with linear

objective function

To formulate the objective function for global placement

some basic definitions are necessary. The circuit is de-

scribed by the index sets M and N of the modules and

the nets, respectively. All modules connected by net v

are in the set M“. Modules and nets are represented

by nodes in the graph model of the circuit. The coordi-

nates of the nodes are (ZP, yP) and (zv, y.), respectively.

Fig. 3 illustrates this model.

circuit: model:
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Figure 3: Circuit topology and net model

With these definitions the quadratic objective func-

tion @~ and the linear objective function 01 can be for-

mulated:

vEAfp EM.

@l = ~ ~ l~pu–~ul
ve~PEM.

‘The pin coordinates XPV = XP + <P” can be expressed

by the module center coordinates XP and the relative

pin coordinates <WV. The coordinates of the net nodes

are always in the center of their connected pins, that

is xv = ~ &Mv ‘IJJ which is the optimal value

for @g. In the two-dimensional case the same objective

functions must be formulated for the y-coordinates, but

for reasons of brevity they are omitted in this discussion.

The quadratic objective function is used in many an-

alytical placement methods [7, 8, 9, 10, 11, 12]. These

methods are also referred to as force-directed placement

methods because of the physical analogy with a system

of mass points connected by springs. The springs (nets)

force the points (modules) to move into positions such

that the system has minimum energy.

The main reason for using the quadratic objective

function has been that it is continuously differentiable.

This means that it can be minimized by solving a lin-

ear equation system. Unfortunately, this is not true for

the linear objective function @l or other linear objec-

tive functions like the half perimeter of the bounding

box. Linear objective functions, i.e. the half perime-

ter, have been minimized by linear programming with

a large number of constraints [4, 5]. The experiments,

however, show that only medium-sized circuits can be
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handled in reasonable time. Therefore we prefer meth-

ods of quadratic programming to minimize the linear

objective function [15].

The linear objective function 0[ can be rewritten as

with gPv = IZPU – z“I. For constant gPv the function

@l would be quadratic. The only difference between @~

and @l is the factor +, which can be interpreted as a

variable spring constant, which increases with decreas-

ing length of the spring.

There is a certain degree of freedom in the choice of

the factor. It can be used to fit the placement model

(graph model & objective function) better for the actual

objective, the area after final routing. Our experiments

showed that this can be achieved, if the factor gvu is

replaced by a net specific factor

9. = ~ Izpv –2.1.

pGM.

This choice has two advantages. First, the summation

reduces the influence of nets with many connected mo-

dules and emphasizes the majority of nets connecting

only two or three modules. Second, the force on mod-

ules close to the net node is reduced. This means for

net a in fig. 3 that the force on module A is reduced

since ~ << ~. This lower force in the direction to

the net node corresponds with the fact that the place-

ment of module A has no influence on the length of the

Steiner tree as long as it remains inside the bounding

box spanned by the modules B and C.

Nets becoming very short may cause numerical prob-

lems during the solution of the global placement. There-

fore a lower bound on g. has to ensure that g. will never

be zero. Currently the average module width to. is used.

An upper bound is not necessary, since the net lengths

are bounded by the chip dimension.

procedure global placement

k=O;

for each v G J/
(k) = 1;

g.

endfor

do

Q\k) + rein;

k=k+l;

for(;tc~ u E N

g. – IIMLX(U@; ~P”EMti IZW — ‘u l);
endfor

(k)while ~ve~ gV _ Jt-1)
> e;

endprocedure

Figure 4: Global placement with linear objective

An iterative solution method with iteration count k

for the modified objective

w=x x -+@v-b)2
VENVEM. 9V

is shown in fig. 4. This method alternates quadratic

programming for constant g.‘k) and updating the fac-

‘k) The iteration is terminated when the factorstors gv .
g~k)

no longer change significantly. The quadratic pro-

gramming problem is solved by a conjugate gradient

method with preconditioning by incomplete Cholesky

factorization. This method is very well suited for sparse

quadratic programming problems.

4 Iterative partitioning

During global placement the objective function is min-

imized while neglecting geometrical constraints, i.e.

overlap of modules. Therefore in [12] global placement

is alternated with partitioning steps that generate con-

straints for the next global placement step. These con-

straints aim at a better distribution of the modules over

the placement area. The set of modules is recursively

partitioned into smaller subsets and the placement area

is dissected into subregions. The module set M@ of a

region p of the current dissection is bipartitioned into

the subsets &fP/ and MPII according to the global place-

ment coordinates Xfl such that

Xfli ~ X@tt for p’ c MPI, p“ E MPII.

The sum of the module areas ~P in both subsets has to

be approximately the same, i.e.

~f p)= ~ f.
P’EMPI P“EMP)I

To distribute the modules better over the whole place-

ment area, positioning constraints fix the center of grav-

ity of modules in set MO, (MP~l ) on the center coordi-

nate zfl~ (xP,,) of the region p’ (p”), i.e.

~ X,,f., = x, ~ f..
PiEMpI JJ’EMPI

The next global placement step minimizes the objec-

tive function @$k) considering these linear equality con-

straints.

In general, there exist module sets 7? < MP consist-

ing of modules with equal or nearly equal coordinates.

If one of these sets, e.g. 7?,*, has to be partitioned into

sets ‘R’ ~ MP, and 7?” ~ MPtt in order to satisfy the

area constraint, the assignment of the modules to the

subsets will be arbitrary. With increasing number of
modules in the set ~* the quality of the partitioning

decreases, since many assignments are made arbitrarily.

Thus, the way the global placement distributes the mo-

dules over the placement area has a significant influence

on the partitioning step.
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The placement with the linear objective function in

fig. 7a is obviously much more clustered than the place-

ment with the quadratic objective function. The reason

for this clustering of the modules, especially in the cen-

ter of the chip, is the reduced influence of the few long

nets connected to pad cells (cf. sec. 2). These nets, how-

ever, are the only nets that force the modules to move

away from the center. Therefore we apply a modified

partitioning strategy, which forces the modules more

and more away from the center of the region.

I I

Figure 5: Iterative partitioning

Instead of bipartitioning a region in one step as in

[12], it is partitioned itera~vely & shown in fig. -5. The

left picture shows a typical global placement for a region

p with the module set Mp = {A, 1?,C, D, E, F, G, H}.
Some modules are placed far away from the center, i.e.

A, B on the left side and G, H on the right side. The

other modules are clustered in the center of the region p.

The first iteration partitions the set M ~ into three sub-

sets J4~ = {A, B}, M~ = {C,~,~,F},Ml = {G, ~}
according to the module coordinates XP. Thus the par-

titioning decision is delayed for the modules in M;,

which are clustered in the center. Positioning con-

straints force the modules in M; to move more to-

wards the left and modules in A4~ towards the right

in the following global placement step. As a direct con-

sequence the modules in the center region Mb which

are connected to the modules in M} and M: will also

move away from the center. In a second iterative parti-

tioning step the set M: will be divided into the sets

M? = {C}, M~ = {E, D}, M~ = {F}. The itera-

tive process will be finished when the set M) becomes

empty. The number of modules assigned to the sets M;
and M: is determined by the area constraint

Finally, the bipartitioning of the set Mp is obtained by

MPI = uMj and MPH = uM~.

The partitioning process generates a placement with

small module overlaps which are eliminated by local

moves [3, 16].

wire lengthlmm
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circuit primary2
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rip-m
II I I

2468 10 12 14 16 18

number of pins of a net

Figure 6: Sum of wire lengths versus #pins

5 Results

Results for benchmark circuits [17, 18] and other stan-

dard cell circuits are presented in table 1. The given

areas after final routing have been obtained with the

VPNR routing package [19]. The areas do not include

the left and right boundary channels, since these chan-

nels are not routed automatically by the VPNR system.

The linear objective function used in GORDIANL yields

results with up to 20’70 less area than the quadratic

objective function of the original GORDIAN procedure.

Even with the moderate increase in cpu-time from the

use of the linear objective function, a circuit with as

many as 21000 modules has been placed in 6 hours (on

a VAX 8650). For circuit AVQ, the very time consum-

ing global and final routing steps have been completed

only for the placement produced by GO RDIANL.

The results of the placement algorithms have also

been compared with the VPNR cplrt (combined place

and route) algorithm [3]. The bold numbers indicate

better results for GORDIAN L in almost all cases. These

results have been computed about 3 times faster than

with VPNR cplrt. VPNR cplrt failed for the large cir-

cuit AVQ due to excessive memory requirements.

The reason for the substantial improvements with

GORDIANL is the reduction of the net length for nets

connecting only 2 and 3 modules. The graph in fig. 6

shows the sum of the net lengths (estimated by the half

perimeter of the enclosing rectangle) versus the number

of pins of the nets. The contribution of nets with 2 and

3 pins to the total net length is reduced using the linear

obiective function. The increase of the net lemzths of.
the few nets with more than 3 pins has only a

effect.

Fig. 7 demonstrates the differences between

minor

GOR-
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circuit

primaryl

struct

primary2

biomed

C1355

C5313

s9234

20X20

AVCI

#modules

752

1888

2907

6417

554

2330

5597

6419

21046

#nets

904
1920
3028
5742

595
2508
5844
6464

21316

GORDIAN

area

23.4

9.2

97.3

62.2

2.8

18.1

46.6

16.5

Cpu

40
113
260
804

20

162
250
839

5067

GoF
area

22.7

6.7

85.5

50.5

2.2

15.4

38.0

15.1

86.9

IANL

Cpu

203

435

1180

5814

98

764

1918

3276

22989

VPNR (cplrt)

area

21.8

7.1

90.1

52.7

2.3

17.2

37.7

16.5

-
Cpu

767

788

2559

13825

120

1440

5575

12791

Table 1: Results (area in mmz, cpu-time in seconds on VAX 8650)

DIAN and GORDIANL, showing the stepwise ~lacement P. R. Suaris and G. Kedem, “An algorithm for quadri-

refinement for the circuit c1355 with the linear and the

quadratic objective functions. Wiring length and den-

sity can be estimated from the Manhattan minimum

spanning trees, The use of the linear objective function

results in a ‘rat’s nest’ of lower density and about 30?Z0

reduced minimum spanning tree length. The area af-

ter final routing could be reduced by 2090 as shown in

table 1.

6 Conclusions

The choice of the objective function is crucial to an an-

alytical placement method. A linear objective function

seems to reflect the actual wiring demands more ac-

curately than the quadratic objective function. This is

confirmed by several benchmark circuits and other stan-

dard cell circuits. We observe a significant synergetic ef-

fect when the linear objective function for global place-

ment is combined with a refined partitioning strategy.

The new method GORDIANL yields area improvements

of up to 20% after final routing. The main reason for

these distinct improvements was the length reduction

of nets connecting only two and three pins. Quadratic

programming techniques, minimizing the linear objec-

tive function, solve the placement problem efficiently,

even for circuits with more than 20000 modules.
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Figure 7: Placement refinement with quadratic and linear objective function
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