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Simulated Annealing Without Rejected Moves

JONATHAN W. GREENE anp KENNETH J. SUPOWIT

Abstract—The customary need for rejection of candidate moves in
simulated annealing is eliminated by biasing the selection of moves ac-
cording to their effect on the cost function. An efficient implementation
can offer a significant speed-up, though with increased memory. The
logic partitioning problem is used as an illustration; both simple moves
and pairwise interchanges are considered.

I. INTRODUCTION

IMULATED annealing is a technique for finding a
minimum or near-minimum in a function of many var-
iables. It has proved useful for a wide range of optimiza-
tion problems in computer design and other fields [3], [5],
[73, [9], [12], [14]. This is true despite the long run times
required. For example, many hours or even a day of CPU
time are routinely devoted to the use of simulated anneal-
ing for integrated circuit placement [12].
This paper gives a general method of improving the
speed of simulated annealing. We begin with a short re-
view [9].

1.1. Simulated Annealing

Optimization problems are often tackled by the iterative
improvement method. Iterative improvement starts at
some initial state, or set of values for the variables. Then
successive small changes in the state are made in such a
way that the cost function is decreased at each step. The
moves from one state to another are effected by some sim-
ple procedure, for instance, modifying one of the variables
while leaving all others unchanged. This process contin-
ues until there are no moves which reduce the cost func-
tion. At this point we have found a minimum. Often, how-
ever, it 1s a local rather than a global minimum. Doing
iterative improvement from several initial states and se-
lecting the best of the resulting local minima is one re-
sponse to this problem. A more effective method is sug-
gested by an analogy between the search for a minimum
in a cost function, and the physical process by which a
material changes state while minimizing its energy.

When a material is crystallized from the liquid phase,
it must be cooled slowly if it is to assume its highly or-
dered, lowest energy state. At each temperature during
this annealing process, the material is in equilibrium: the
likelihood of its being in a given state is governed by the
Boltzmann distribution for that temperature. As the tem-
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perature decreases, the distribution becomes concentrated
on the lower energy states until, when the temperature
finally reaches zero, only the minimum energy state(s)
have nonzero probability. However, if the cooling is too
rapid, the material does not have time to reach equilib-
rium. Instead, various defects become frozen into the
structure.

Because iterative improvement forbids changes of state
which increase the cost function, it is much like rapidly
quenching a physical system to zero temperature. The lo-
cal minima encountered in iterative improvement are
analogous to the metastable states obtained after rapid
cooling. Simulated annealing is a variation of the iterative
improvement approach in which, as in physical annealing,
moves that increase the cost function are permitted under
the control of a temperature parameter.

1.2, The Metropolis Method

Although simulated annealing is motivated by an anal-
ogy to a physical process, its implementation can be de-
scribed precisely in terms of Markov chains [13]). This we
now proceed to do.

A simulated annealing scheme to minimize cost func-
tion F(x) over states x in a finite set § is defined by (1) a
procedure for selecting a next state x’ from the current
state x, and (2) an annealing schedule.

The customary procedure for selecting the next state is
the Metropolis method [11], described as follows. Let S,
be the set of states y € S reachable in exactly one move
from x. Each move must be reversible, i.e., ye S, = x €
S,. The number of possible moves, N = | S, |, must be the
same from any state x. Furthermore, it must be possible
to reach any state in S from any other in some number of
moves. For each temperature T, define a function

ar(A) = min {1, exp (—A/T)}.

Choose a candidate move at random; each move has prob-
ability 1/N of being selected. Let y be the state that would
result from making this move, and evaluate A = F(y) —
F(x). With probability ar(A) accept the move, setting x’
= y. Otherwise, reject the move and set x' = x. The re-
sulting sequence of states is a Markov process with tran-
sition function

%aT(F(x’) - F), x'€s,
prix’|x) = 1 - 2 —l—aT(F(y) - F(x)), x'=x
VESy N

0, otherwise.
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If T > 0 this process is irreducible; that is, for any two
states x, y € S, there is a nonzero probability of eventually
entering state y given that the process is in state x. Defin-
ing 77 as the stationary (or equilibrium) distribution of this
process, we find that

exp (—Fx)/T)
2 exp (—F()/T)

Tr(x) =

since this distribution satisfies the derailed balance
equation’

() pr(x’|x) = 7 () pr(x|x), Vx x' €S

Note that 7 has the form of a Boltzmann distribution.

The annealing schedule [Ty, ngl, - - -, [T}, 1] lists the
sequence of decreasing temperatures and the desired num-
ber of accepted moves at each temperature. The proce-
dure begins with some arbitrary initial state. Then for each
temperature 7; in the schedule, Markov transitions are ex-
ecuted according to py,(x’|.x) until n; moves are accepted.
The selection of a good annealing schedule is an area of
active research (see [4] and [3, theorem B]). However, cer-
tain empirically determined guidelines have been pro-
posed [15], [7]. One can choose the initial state randomly,
and begin annealing at a sufficiently high temperature that
most moves are accepted. Alternatively, a fast problem-
specific heuristic is used to find an initial state with a
moderately small cost function value, and annealing be-
gins at a lower temperature.

We offer the following explanation for the use of az(F(y)
— F(x)), rather than some other functjon b(x, y), as the
acceptance probability for a move from x to y. Given any
function b for which the detailed balance equation is sat-
isfied with the above xy, it is easily shown that

ar(F(x) — F(y)).

Thus of all such functions, the use of ar(F(x) — F(y))
results in the highest rate of acceptance of moves. Never-
theless, it is possible to use any number of other functions
to determine the acceptance probability. The new method
described in Section 1.3 can exploit this fully. Also, in
Section 3.1 we find it helpful to use an acceptance proba-
bility function composed of two factors.

VxeS vyelsS, brx,y <

1.3. The Rejectionless Method

Although the Metropolis method is simple, effective and
easily programmed, it has one major drawback: at low
temperatures, the running time is quite high because many
candidates are rejected before each move to a different
state. For example, when partitioning sparse graphs with
about 1000 vertices Johnson [7] has found it useful to lower
the temperature until only about one move per hundred is
accepted. Furthermore, if heuristic methods are used to
construct a good initial state, annealing begins at a low

'Detailed balance, also known as reversibility, is a sufficient but not nec-
essary condition for stationarity when the Markov process is irreducible
({13, theorem 4.7.2]). Intuitively, detailed balance means that the likelihood
of any transition equals that of the opposite transition.
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temperature and so there is a low acceptance rate all along.
This low acceptance rate is necessary because the Me-
tropolis method maintains no information about the effect
of the possible moves on the cost function. It must choose
uniformly from the N possible moves, and then reject most
choices.

The alternative we suggest is to keep a list of the effects
of each possible move on the cost function and use this
information to bias the selection of moves. The procedure,
which we call the rejectionless method, is described as
follows.

For each possible move i, | < i < N, store a value w;
= ar(A;), where A; is the change in the cost function that
would result from the move and a; is as defined above.
Choose move i with probability

w:

1

M =

.
Ml

i=1

Then make the move, and update the w; values accord-
ingly.

The sequence of states generated by the rejectionless
method is probabilistically equivalent to the sequence of
states generated by the Metropolis method, if the repeti-
tion of the current state is omitted each time a move is
rejected. This is shown as follows. Let ¢ be the proba-
bility that the Metropolis method accepts the chosen can-
didate move when in state x at temperature 7:

1 N
=~ 2. ar(4)).
Cr ijl aT( j)

Then the probability that the Metropolis method makes
move { from current state x to some different state after
some number of rejections is

ad 1 (1/N) ar(4,; W,

50— af = ar(s) = f8) _

k=0 N o N
2w

which is exactly the probability of choosing move i under
the rejectionless method.

As an aside, note that the stationary distribution 7, of
the Markov process defined by the rejectionless method is
not of the form of a Boltzmann distribution. However if
we weight m,(x) by the expected number R, of repetitions
of state x at temperature T due to rejections under the Me-
tropolis method, we do obtain a Boltzmann distribution.
That is:

T - Ry _ _exp (=FIT)
2 mr() Ry 24 exp (—F()/T)

where

R =2 k(1 = o)™ ey = oy,
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The rejectionless method, implemented as described in
Section II, has two advantages over the Metropolis
method:

1) It has a running time per move independent of the
acceptance ratio «. By comparison, the Metropolis method
runs in time proportional to 1/«, the number of candidates
generated. Hence when the temperature is sufficiently low
that « is below a certain value (which we call the crossover
point and which is problem dependent), the new method
runs faster than the Metropolis. We experimentally deter-
mined the crossover point for a specific problem, namely
logic partitioning (see Section 3.2).

2) Another possible advantage of the rejectionless
method is that it permits the use of acceptance probability
functions other than ay, without regard to the resulting
lower acceptance rate. Furthermore, it is not even neces-
sary that the function be less than or equal to one, since it
is not used as a probability, but only to determine the
weights w;. For example, the function a7(4) = exp (—A/
2T) can be used without the need for normalization. The
use of az or other novel functions might increase the rate
of convergence to the Boltzmann distribution and thus per-
mit more rapid annealing schedules. Our experiments of-
fer some support for this hypothesis (see Section 3.3).

Biased selection of moves has been suggested previ-
ously as a replacement for the Metropolis method in the
latter’s original application: simulation of physical sys-
tems [1]. However, the algorithm presented there is inef-
ficient when there are more than a few possible values for
the w;, as there are in many optimization problems.

At each temperature, the rejectionless method involves
solving a special case of what we call the dynamic
weighted selection problem. In Section II, this problem is
defined and an algorithm to solve it is presented and ana-
lyzed. In Section III, we discuss the application of the re-
jectionless method (using the algorithm of Section II) to
logic partitioning, and present experimental results. Sec-
tion IV shows how to cut the memory required by the re-
jectionless method for a certain type of move known as
interchanges. Conclusions and open problems are pre-
sented in Section V.

II. THE DyNaMIC WEIGHTED SELECTION PROBLEM

In the dynamic weighted selection problem, an initial
vector W = (wy, wy, * * -, wy) of real numbers is given.
Then, repeatedly, the following two steps occur:

1) A number X € [0, 1) is input. The least integer &
such that EJ’»‘:, w; > X - EJ'L] w; is output.

2) A list of z pairs (i, wj), (i, wj), = = -, (i, w)), is
input, where i; is an integer in [1, N] and w,i_ is a
real number. The data structure is updated by re-
placing w; by w;, foreachj, 1 = j < z.

The rejectionless method for simulated annealing in-
volves solving a dynamic weighted selection problem,
where at each iteration X is chosen at random, uniformly
from [0, 1).
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We present an algorithm to solve the dynamic weighted
selection problem and analyze its worst-case time com-
plexity; that is, we put an upper bound on the number of
steps it requires per iteration.

We note in passing that for the szatic weighted selection
problem in which z is always O, if X is chosen uniformly
over [0, 1) then the fastest expected-time algorithm uses
Huffman coding (see [2, pp. 52-55]).

2.1. The Tree Algorithm and Its Analysis

Our algorithm, which we call the tree algorithm, main-
tains a complete t-ary tree, (that is, a rooted tree in which
all nodes have O or r ordered sons and all leaves are on one
of two consecutive levels). We say how to choose ¢ later.
N of the leaves correspond to the integers 1, 2, - - - | N.
Stored at each node v is a value u (v): if v is the leaf cor-
responding to / then u(v) = w;. Other leaves v have u (v)
= 0 and are dummies, present only to make the tree com-
plete. Each internal node v has u(v) = Lj_, u(son;(v)),
where son; (v) denotes the jth son of v. In other words,
u (v) is the sum of the values of all leaves descendant from
v.

At each iteration, the algorithm starts at the root node
of the tree. It examines the current node’s sons to find the
one whose subtree contains the leaf corresponding to the
integer k defined in (1) above. It does this by comparing
the sons’ u values to a cutoff value Y. This is repeated at
the selected son until the proper leaf is reached. The u
values are then updated for the next iteration. The detailed
algorithm is as follows:

[[Select an element and output it]]
v « the root of the tree;
Y< X u);
WHILE v is not a leaf DO
BEGIN
J L
WHILE u (son;(v)) = Y DO
BEGIN
Y < Y — u(son;(v));
jej+1
END;
v < son;(v);
END;
Output the number k corresponding to v;
[[Update the tree for the next iteration]]
FORj < 1 TO z DO
BEGIN
[[Record the effect of the change (i., w,-’j)]]
v < the leaf corresponding to i;;
FOR each ancestor v’ of v DO
u@) < u@) + (w —u@®);
u(v) « w,-’j
END;

Clearly the tree algorithm is correct in the sense that it
outputs the value of & specified in the problem definition.
To analyze the time complexity of the tree algorithm,
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note that there are [log, N1 + 1 levels in the tree. There-
fore the time required is O(t log, N) to select an element
and O(z log, N) to update the tree. Thus, setting t = z,
the total time per iteration is O((z/log z) log N).

2.2. Implementation Details

We note the following ways to significantly speed up the
tree algorithm (although its running time is still O({z/log
7) log N)):

1) the r-ary tree should be stored in an array (see [10,
p. 401]);

2) instead of choosing r as precisely z, it may be better
to choose some other value for z by means of (say)
binary search.

Both of the above points were incorporated into a pro-
gram that we used to generate the data described in the
next section. We note three more possible improvements
that we did not implement, but that may indeed improve
the rate of growth of the expected time of the algorithm:

1) The updating of the tree can be done level-by-level,
using a FIFO queue. That is, the leaves whose values are
to be changed are first put in the queue. Then nodes are
iteratively dequeued, their u values are updated, and their
fathers enqueued if not already in the queue. Thus each
node to be updated is visited only once, resulting in a
substantial savings if the z changes tend to cluster among
neighboring leaves.

2) The selection of an element is expedited when the
sons of each node are examined in decreasing order of
their u values. Therefore it might be helpful to periodi-
cally reorder the leaves according to their time-averaged
u values and then to reinitialize the tree.

3) Instead of updating the tree completely after each
iteration, it may be faster to update only some nodes, and
then do local updating as necessary during selection.

III. AN APPLICATION: LoGic PARTITIONING

In the logic partitioning problem, one is given a circuit
of cells and nets. Each net connects two or more cells.
The cells must be partitioned into two subsets L and R of
approximately equal size so as to minimize the number of
nets connected to at least one cell in each subset. (This is
the special case of the hypergraph partitioning problem in
which the hypergraph represents a logic circuit). Empiri-
cal studies [7] have found that simulated annealing com-
pares favorably with other known heuristics for this prob-
lem.

3.1. Adapting the Method to Logic Partitioning

A scheme for partitioning by simulated annealing is as
follows. A state consists of an assignment of each cell to
L or R. Moves are made by changing the assignment of a
single cell. Let N denote the number of cells, which is also
the number of possible moves. We use a cost function that
is the sum of two terms

F(x) = FS(x) + Fl(x)
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The connectivity term FS(x) is the number of nets con-
nected to at least one cell in each subset. The imbalance
term F'(x) = ¢(|L|* + |R|") penalizes excessive imbal-
ance between subsets L and R; ¢ is a problem-dependent
constant. Let reassignment of cell i correspond to move i
from state x to x’. Then A; = F(x') — F(x) is the change
in the cost function that the move would cause. It is con-
venient to express A; as the sum of two terms:

A = FSxy — FS)
and
Al = Flixy - Flx)

If we use the tree algorithm directly, then for each move
[ it is necessary to store and maintain the value w; =
ar(A)). Note that when move { occurs, for each cell j shar-
ing a net with cell i the corresponding value w; may re-
quire updating because of a change in A,C There are gen-
erally only a small number of such cells. However, every
move also changes |L| and |R|. This in turn changes
every A;, 1 < j = N, making it prohibitively time con-
suming to update all affected w; values. More precisely,
the parameter z (introduced in Section II) could be as large
as N; hence the time per move would be O(N).

To avoid this difficulty, observe that A/ takes one value
A7 for all reassignments from L to R, and another value
A% for all reassignments from R to L. This suggests the
following solution to the updating problem. Rather than
use ar(A;) for the acceptance probability, as in the origi-
nal Metropolis method, it is possible to use an acceptance
probability composed of two factors: ap(AS) ar(AY).

(When this acceptance probability is used in the Me-
tropolis method, the resulting Markov process has tran-
sition function:

prix'|x)
%ar(FC(X’) - F() - ap(Fix') — Fl(xy),

x'€e S,

1
- 2 X/ar(FC(y) = F(0) + ar(F'(y) — Fl(xy),

vesy
x'=x
0, otherwise.

It is easily seen that the detailed equation is still satisfied
by taking w7 to be a Boltzmann distribution.)

We extend the tree algorithm as follows to take advan-
tage of this factorization of the acceptance probability. We
use two trees, a left and a right, each with N leaves. The
ith leaf in the left tree is assigned w; = a,(A¢) if cell i is
in L, and zero otherwise. The ith leaf in the right tree is
assigned w; = ar(AS) if cell i is in R, and zero otherwise.
The two trees are each maintained as described in Section
H. Let us also maintain two additional values: w;, =
ar(A}) and wp = ar(A%). Let u; and ui be, respectively,
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Fig. 1. Decline in cost during simulated annealing: from a random parti-

tion (solid line) and from a constructive initial partition (dashed line).

the u values of the roots of the left and right tree. To select
a move we start at the root of the left tree with probability
u,wp/(u,wy + upwg) and the root of the right tree oth-
erwise. Then we descend the chosen tree in the manner
described in Section II. If the ith leaf is selected, move i
is taken by reassigning cell i. The likelihood of selecting
move i is ar(A ,-)/Ejy:, ar(A)) as desired, and the updating
has been greatly simplified. In particular, the number of
leaves that require updating is

z < |{j # i: i and j share a net}| + 2.

3.2. Experimental Results: Crossover Point

In order to determine its utility, the above algorithm was
used to partition a microprocessor design with 7596 cells,
7023 nets, and a total of 21 920 net-cell connections. Two
experiments were done: annealing from a randomly cho-
sen initial partition, and annealing from a partition gen-
erated by a constructive heuristic. The latter partition was
found by applying a linear placement heuristic (see Ap-
pendix for details) and bisecting the resulting placement.

At high temperatures, the Metropolis method was used.
When the acceptance ratio reached the crossover point,
the rejectionless method was employed. The factored ac-
ceptance probability function was used throughout. Sim-
ilar efficient programming techniques, such as tabulation
of the exponential function, were used for each method.
The annealing parameters” were determined empirically.

Results typical of those obtained are shown in Figs. 1
and 2. Fig. 1 is a log-log plot of F€, the connectivity term
of the cost function, as a function of temperature. The
Crossover point was an acceptance ratio of roughly 11 per-
cent, which occurred at a temperature of about 0.48. With
the initial configuration generated by the constructive
heuristic, it was possible to begin annealing well below the
crossover point, and obtain results as good as or better
than annealing from a random initial partition. Fig. 2

Cost function constant: ¢ = 107%,
Final imbalance: [[L| — | Rl < (0.01)N.
Annealing Schedule: 7,,, = (0.98)T;, n; = (10)N.
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shows the relationship between temperature and accep-
tance ratio. (This was determined empirically when the
Metropolis method was in use, and estimated by comput-
ing o,y when the rejectionless method was in use.) The
final acceptance ratio was 2.2 percent, for which the re-
jectionless method runs at five times the speed of the Me-
tropolis method.

Identical experiments were also carried out on two
smaller circuits (801 and 1196 cells, respectively). For each
of these, the crossover point was about 13 percent. When
using the rejectionless method, we also observed that z,
the number of leaf nodes per move that required updating,
averaged between 5 and 7 at different temperatures.

3.3. Experimental Results: Alternate Acceptance
Probability Function

The functions ay(A) = min {1, exp (—A/T)} and
ar(A) = exp (—A/2T) were compared as follows. A start-
ing state x, was obtained by slowly annealing to temper-
ature T = 0.30. From state x, we ran many iterations at
temperature 7 = 0.28 using ay, and observed the decline
in the cost function F€. We repeated this procedure by
resetting the state to xg, but this time using af.

Fig. 3 shows the decline of F€ averaged over 800 trials
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using ar (dashed line) and af (solid line). Note that the
approach to equilibrium is initially more rapid when a7 is
used.

IV. INTERCHANGES

For certain problems, annealing seems to be accelerated
by the use of moves more complex than those mentioned
above. In logic partitioning, for instance, a move between
states can be made by interchanging two cells from dif-
ferent subsets, instead of simply reassigning a single cell.
Interchanges have been used in iterative improvement
heuristics for'the logic partitioning problem (e.g., [6]), and
in application of simulated annealing to placement prob-
lems [9], [12].

As before, we illustrate with the logic partitioning prob-
lem. Suppose there are N cells and |L] = |R| = N/2.
Interchanges preserve this exact balance. Thus there are
always N*/4 possible interchanges from which to choose.
The Metropolis method is employed in the usual way by
selecting one of these interchanges as a candidate move
and accepting it with probability a;(A), where A is the
change in the cost function due to the interchange. The
rejectionless method can also be used in a straightforward
way. However, since a value must be stored for each pos-
sible move, it would appear that treating interchanges
rather than simple reassignment increases the memory re-
quirement from O(N) to O(N?). We present a modification
of the rejectionless method described in Section 3.1 that
accommodates interchanges with only ©(N) memory.

Before presenting the modified method, some notation
is required. The set of accessible states S is restricted to
only those partitions with |L| = | R|. Because the imbal-
ance cost F/(x) is constant for all x € S, we neglect Fland
let F(x) = FCx). Let x’ be the state obtained from state
x € § by reassigning cell i to the opposite subset. (Note
that x’ € S; some other cell must be reassigned in the op-
posite direction to obtain another state in S.) Let A, (x) =
F(x") — F(x), the change in (connectivity) cost that would
be caused by reassigning cell i when in state x.

The modified rejectionless method uses two trees, each
with N leaves, as in Section 3.1. If x is the current state,
the ith leaf in the left (right) tree is assigned w;, =
ar(A;(x)) if cell i is in L (R) and 0 otherwise. We first
select a cell i from the left tree with probability w,/
L, w, and then select a cell j from the right tree with
probability wj/E/,V= ; w,. The chosen cells are interchanged
and then both trees are updated. Thus the move consisting
of an interchange of cells i € L and j € R is chosen with
probability

af(A)  apd)  aj(d, + A)
2l ap(A) 2 ap(A) 2 2 aiA + A
lel reR lel reR

(The dependence of the A’s on x is omitted for clarity.)
The paradoxical thing about this method is that the two
cells are selected independently, even though the change
in F due to their interchange cannot be expressed as the
sum of the changes that would result if either cell alone
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were reassigned. In fact, the modified method does make
some interchanges with a different probability than the
straightforward method would. However, the reverse in-
terchanges are made with a probability differing by ex-
actly the same amount, so that the proper stationary dis-
tribution is obtained. We prove this by exhibiting the
equivalent Metropolis implementation and showing that it
satisfies the detailed balance equation.

Following the argument of Section 1.3, it is easily seen
that the equivalent Metropolis implementation accepts an
interchange of cells i and j with probability

ar(A;(x) + A;(x)
Yr

where x is the current state and

yr = max max ap(A;(x) + A, (x)).
xe§S lel
rekR
(In practice, this implementation would not be used be-
cause the large normalization constant y; results in a low
acceptance ratio.) We show as follows that the detailed
balance equation is satisfied with the usual Boltzmann dis-
tribution. Since the value of the cost function at a certain
state is independent of how we got there, we have this
Proposition: Let states x, v € S differ only by an inter-
change of cells i and j. Then F(x) + A;(x) = F(y) +
Aj(y)and F() + Ay(x) = F(y) + A(y).
Detailed balance is satisfied because

ar{A;(x) + A;(x)

exp (=Fx)/T) -
Yr
1

— exp <l (=F(x) — A,(x)/2 — A,-(x)/2)>
YT T '

1!

= Lexp <1T<—F<_,v> - A2 - A,~(,v>/2)>

Y1
a/T(A_,'(}') + Ay
Yr

I

exp (—F(wT) -

The second equality follows from the proposition. Thus
this Metropolis implementation, and hence the equivalent
modified rejectionless implementation, both have the
proper stationary distribution.

Considering interchanges instead of reassignments dou-
bles the computation time per iteration of the Metropolis
method (using acceptance function a7(A)). With the above
modifications, the rejectionless method likewise takes
about twice as long to do an interchange as a reassign-
ment. Thus the ratio between the times for the two meth-
ods is nearly unchanged, and one expects a crossover point
about the same as that found in Section 3.2. This is indeed
true experimentally. However, because the acceptance ra-
tio for interchanges is approximately the square of the ac-
ceptance ratio for reassignments, the relative speed-up for
interchanges is the square of that found in Section 3.2, or
about 25-30 times at the final temperature.
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CONCLUSIONS

We have presented a new algorithm for simulated an-
nealing, whose speed does not depend on the acceptance
ratio (and, therefore, does not depend on the tempera-
ture). On the other hand, the Metropolis method requires
time proportional to the inverse of the acceptance ratio.
Therefore, we recommend using the Metropolis method
until the acceptance ratio reaches the crossover point and
then switching to the rejectionless method. When a con-
structive heuristic is used to generate an initial configu-
ration, it is often possible to start annealing below the
crossover point and therefore one should use only the re-
jectionless method. The rejectionless method achieves its
speed-up (at the lower temperatures) over the Metropolis
method at the cost of a greater memory requirement.

For the logic partitioning problem, we found that a con-
structive heuristic indeed allowed annealing to start below
the crossover point, while attaining results as good or bet-
ter than with a random (high-temperature) start. A speed
improvement of five times for simple moves and 25-30
times for interchanges was obtained at the final tempera-
ture. The memory requirement of the rejectionless method
has the same rate of growth as that of the Metropolis
method—Ilinear in the number of cells; this is true for both
simple moves and interchanges.
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result? If so, then only intermittent or partial updating of
the tree data structure may be necessary, thus permitting
a further increase in speed.

3) What is the lowest acceptance ratio o, at which it
is useful to do simulated annealing, for various problems?
How does «,;, shrink with the problem size?

APPENDIX
A LINEAR PLACEMENT HEURISTIC

The linear placement problem is to place the cells of a
logic circuit on a line so as to minimize the maximum
density. More precisely, let C be the set of cells and let n
= | C|. The task is to find an ordering ¢, ¢;, - * * , ¢, of
the cells that minimizes max {cut(i): 1 < i < n}, where
cut (i) denotes the number of nets having at least one ter-
minal on a cell in {c,, ¢;, - - * , ¢;} and at least one on a
cellin {c; 41, Civa, " ° ° » Cu}.

The linear placement heuristic used to construct an ini-
tial partition in the experiments described in Section 3.2
is as follows. At all times, C is partitioned into three sets:
IN, FRONTIER, and oUT. IN is the set of cells already given
numbers. FRONTIER is the set of cells not in /¥ connected
by at least one net to at least one cell in /N. OUT is the set
C — (IN U FRONTIER). We say that a net is incident on a
cell ¢ if it has at least one terminal on ¢. We say that a net
is split if it is incident on some cell in /¥ and on some cell
in FRONTIER U ouT. The algorithm is:

ouT + C; IN <« ¢; FRONTIER < ¢; [[thus, initially no nets are split]]

FORj < 1 TO n DO
BEGIN
IF FRONTIER # ¢
THEN BEGIN

¢; < a least cost element of FRONTIER;
FRONTIER < FRONTIER — {c¢;}

END
ELSE BEGIN

¢; < a least cost element of oUT;

oUT < oUT — {¢;}
END;
v = INU {¢};

FOR each ¢ € ouT such that there is a net incident on both ¢ and ¢; DO

BEGIN

FRONTIER < FRONTIER U {¢;};

out < out — {c¢;}
END
END

The rejectionless method also makes possible the use of
new acceptance probability functions. In the case of logic
partitioning, at least one such new function seems to give
more rapid convergence to the Boltzmann distribution.

Among the open questions arising here are the follow-
ing.

1) What is the complexity of the dynamic weighted se-
lection problem? Can the 6((z/log z) log N) bound be im-
proved on?

2) Is it possible to select moves according to slightly
inaccurate probabilities without significantly affecting the

In this algorithm, by the cost of a cell ¢ in FRONTIER U

OUT we mean
(the number of nonsplit signals incident on ¢)

_ﬂ . Z f(C,_])

izv ]

where (8 is a constant, and f(c, j) is the number of split
signals incident on exactly j cells of FRONTIER U oUT in-
cluding c. Intuitively, the cost represents the damage
caused by moving c to the /v set, and consists of two com-
ponents:
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1) a penalty for splitting currently nonsplit nets;

2) a reward for bringing another cell of a split net into
the v set. The reward is weighted so that the smaller
the number j of its cells remaining to be brought
“in,”” the greater the reward.

The parameter 8 is simply a way to adjust the relative
importance of the two components. We chose the value 8
= 5 when constructing the initial partition.

This heuristic is a modification of that presented in [8].

ACKNOWLEDGMENT

The authors thank N. Campbell for his many helpful
comments.

REFERENCES

[1] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, ““A new algorithm for
Monte Carlo simulation of ising spin systems,” J. Comput. Phys., vol.
17, pp. 10-18, 1975.

[2] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[3] S. Geman and D. Geman, ‘Stochastic relaxation, Gibbs distribution,
and the Bayesian restoration of images,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721-741, Nov.
1984.

[4] B. Hajek, *“Cooling schedules for optimal annealing,” Jan. 1985, un-
published.

[5] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, *‘Boltzmann ma-
chines: Constraint satisfaction networks that learn,”” Carnegie-Mellon
Univ., Tech. Rep. CMU-CS-84-119, May 1984.

[6] T. Ishiga, T. Kozawa, and S. Sato, ““A logic partitioning procedure by
interchanging clusters,” in Proc. 12th Design Automation Conf., 1975,
pp. 369-377.

[7] D. S. Johnson, L. McGeoch, C. Aragon, and C. Schevon, “Optimi-
zation by simulated annealing: An experimental evaluation,”” unpub-
lished.

[8] S. Kang, ‘“Linear ordering and application to placement,” in Proc.
20th Design Automation Conf., 1983, pp. 457-464.

[9]1 S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization
by simulated annealing,”” Science, vol. 220, pp. 671-680, May 1983.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-5, NO. 1, JANUARY 1986

[10] D. E. Knuth, The Art of Computer Programming, vol. 1, Fundamental
Algorithms. Reading, MA: Addison-Wesley, 1968.

[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,

and E. Teller, *“Equation of state calculations by fast computing ma-

chines,” J. Chem. Phys., vol. 21, no. 6, pp. 1087-1092, June 1953.

F. Romeo, C. Sechen, and A. Sangiovanni-Vincentelli, *‘Simulated

annealing research at Berkeley, in Proc. Int. Conf. Computer Design,

(Port Chester, NY), Oct. 1984, pp. 652-657.

S. M. Ross, Stochastic Processes. New York: Wiley 1983.

M. P. Vecchi and S. Kirkpatrick, “Global wiring by simulated an-

nealing,” IEEE Trans. Computer-Aided Des., vol. CAD-2, no. 4, pp.

215-222, Oct. 1983.

[15] S. White, “*Concepts of scale in simulated annealing,” in Proc. Ini.
Conf. Computer Design (Port Chester, NY), Oct. 1984, pp. 646-6541.

(12]

[13]
[14]

Jonathan W. Greene was born in Long Island,
NY, in 1957. He received the Sc.B. degree in bi-
ology from Brown University, Providence, RI, in
1979, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, Stanford,
CA, in 1980 and 1983.

From 1983 to 1984 he was a member of the De-
sign Automation Department at Hewlett-Packard
Laboratories, and since then has been with the LSI
Logic Corporation Systems Research Laboratory,
both in Palo Alto, CA.

Kenneth J. Supowit received the A.B. degree in
linguistics from Cornell University, Ithaca, NY, in
1978, and the Ph.D. in computer science from the
University of Illinois at Urbana-Champaign in
1981, in the area of computational geometry.
From 1981 to 1984 he was a member of the De-
sign Automation Department at Hewlett-Packard
Laboratories in Palo Alto, CA. He is currently an
Assistant Professor of computer science at Prince-
ton University, Princeton, NJ. His research inter-
ests include design automation and analysis of al-

gorithms.






