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Efficient and Effective Placement
for Very Large Circuits

Wern-Jieh Sun and Carl Sechen

Abstract—We present a new approach to simulated annealing
and a new hierarchical algorithm for row-based placement which
has obtained the best results ever reported for a large set of
MCNC benchmark circuits. Our results indicate that chip area
reductions up to 15% are achieved compared with Timber-
WolfSC v6.0 [13], [14], [17]. Our new hierarchical annealing-
based placement algorithm (TimberWolfSC v7.0) yields chip area
reductions up to 21% while consuming up to 7.5 times less
CPU time in comparison to TimberWolfSC v6.0. Furthermore,
TimberWolfSC v7.0 produces lower total wire length by an
average of 8% than Gerdian/Domino [2], [3], [8], [12], 11% lower
wire length than Ritual/Tiger [15], while using comparable run
time. TimberWolfSC v7.0 also supports precise timing driven
placement [16].

[. INTRODUCTION

HIP area and performance are the two critical require-

ments for circuit placement today. Algorithms which are
timing driven but yield relatively poor chip areas are of little
interest, even if they are efficient in terms of computation time.
Algorithms which yield near minimum chip areas but which
are not precisely timing driven are similarly of little interest.
A state-of-the-art placement method must not only yield min-
imum chip areas but it also must be precisely timing driven.
Furthermore, it must be efficient. Current industrial row-based
placement problems, and even an MCNC benchmark circuit,
contain as many as 100 000 standard cells.

Up to now, based on benchmark results reported to MCNC,
results presented at the 1992 International Workshop on Layout
Synthesis, and as reported in [2], there are two effective
placement methods. One of these is Gordian/Domino [2],
[3], [8], [12], based on recursive partitioning and quadratic
programming. While this method may be efficient enough
to handle a 100 000 cell circuit, no timing driven results
were presented. The other effective placement method is
based on simulated annealing. This implementation, called
TimberWolfSC v6.0 [13], [14], [17], yielded placement results
close in quality to those reported in [2]. On the negative
side, it is around 5 times slower than Gordian/Domino. But,
on the positive side, precise timing driven placement is effi-
ciently provided [16]. Hence this method would be a good
candidate for the state-of-the-art placement approach if its
overall efficiency could be significantly improved. Another
placement method, called Ritual/Tiger, also based on quadratic

Manuscript received January 27, 1994; revised June 8, 1994 and October
19, 1994. This paper was recommended by Associate Editor T. Yoshimura

The authors are with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA.

IEEE Log Number 9408617.

programming, claims to be applicable to large placement
problems [15]. However, no benchmark results have ever been
submitted by its developers. Furthermore, while it is timing
driven, when in the timing driven mode, its time complexity
is O(n?), where n is the number of cells, which makes it
impractical for very large circuits. This method also can not
handle cells of varying widths.

In this paper we show that an improved approach to simu-
lated annealing [7] is not only faster than Gordian/Domino but
also yields better placement results, in addition to supporting
three different modes of timing driven placement [16]. In
the first part of the paper we present a simplified objective
function which is based on the concept that every generated
placement configuration is a valid placement, that is, the cells
are not permitted to overlap during the annealing process.
Consequently, wire length and timing calculations are more
accurate, uniform row lengths are achieved, and the annealing
schedule can be shortened. Generating new configurations
without overlapping usually requires that the net lengths must
be updated for up to half the cells in each row involved in the
cell exchange. This problem was addressed in [5]. However,
in [5], the changes in the wire lengths of the nets connected to
the cells which were shifted to accommodate the cell exchange
were not evaluated. This results in unacceptable error when
evaluating the quality of the proposed cell exchange. When
evaluating an exchange, the method computes precisely the
new lengths of the nets connected to the two cells involved
in the exchange. However, when computing the total change
in wire length, they take the difference between the precise
new value and the previously stored value for these nets.
Since the previously stored values are arbitrarily incorrect
due to unaccounted for shifting of cells caused by previous
cell exchanges, the net change in wire length presented to
the acceptance criterion in simulated annealing is generally
substantially incorrect. Consequently, the quality of the results
yielded by this approach were inferior to those reported in [14].
Furthermore, it is not possible to perform precise timing driven
placement with this method, since net lengths may increase
arbitrarily when they are not monitored (e.g., when these nets
are connected to cells being shifted).

We have developed a fast technique which precisely updates
the net lengths for the two cells involved in an exchange
and which estimates effectively the net lengths for the other
cells in each affected row. We present two estimation models
and compare the placement results achieved by using our
new models versus using a very slow, exact updating scheme
(which updates precisely all the nets connected to the cells
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involved in an exchange including any shifted cells). Exper-
iments show our models yield comparable or better results.
Our results indicate that chip area reductions up to 15% are
achieved compared with TimberWolfSC v6.0.

In the second part of the paper we present a hierarchi-
cal placement algorithm. There are two stages, clustering
and placement. In the clustering stage, the input network is
condensed and hierarchically clustered into various levels of
netlists. The run time of our new clustering algorithm is less
than 5% of the hierarchical placement time. After we have
generated hierarchical netlists, the placement stage then uses
the new approach to simulated annealing presented in the first
part of the paper to place the condensed, clustered network. In
the current implementation, the original circuit is clustered
into three levels of hierarchy. We first place the top level
netlist in the high temperature regime. After the placement
for the top level netlist is done, placement for the second level
netlist then takes place in the middle temperature regime. The
constituent cells belonging to a cluster are randomly placed
within the confines of the location of the bounding rectangle
of the cluster as determined in the previous placement level.
Finally, placement for the bottom level netlist takes place in
the low temperature regime. Since the number of clusters and
inter-cluster nets are both substantially reduced in the higher
levels of hierarchy, the computation time for the hierarchical
placement approach is about an order of magnitude less than
what it would be for the original flat network.

There is another advantage of combining a clustering tech-
nique with simulated annealing. Namely, the simulated an-
nealing algorithm is known to behave in a pseudo top-down
manner. In the high temperature regime, it behaves more
like a random method and cells move freely around the core
region. In the low temperature regime, it behaves more like a
greedy algorithm and only local moves are accepted. Therefore
the combination of clustering and simulated annealing effec-
tively can be viewed as a combined bottom-up and top-down
approach. Our new hierarchical annealing-based placement
program yields chip areas up to 21% less while consuming up
to 7.5 times less CPU time in comparison to TimberWolfSC
v6.0.

Clustering usually serves as a bottom-up preprocessing
stage in a hierarchical placement environment. Clustering cells
together greatly reduces the complexity of the circuits. A
good clustering method should identify groups of cells which
will eventually end up together in the final placement. This
can be difficult because clustering decisions are made prior
to the start of the hierarchical placement process, and hence
these decisions are made without a global view of the circuit
structure, timing information, or floorplan. Because of this
difficulty, a top-down global netlist partitioning methodol-
ogy has usually been preferred to a bottom-up clustering
methodology. But the sizes of today’s circuits are so large
that a top-down partitioning scheme is infeasible. Therefore,
an effective bottom-up clustering approach is a necessity as
a pre-processing stage in a hierarchical placement approach.
However, for clustering to be used as a practical bottom-up
approach, there are two important concerns. 1) The computa-
tion time used to generated the clusters must be negligible in

comparison to the time needed to place the condensed network.
2) The sizes of the generated clusters should vary over as small
a range as possible. Our new objective function, described
in the first part of the paper, is precisely accurate when the
clusters have exactly the same size. The accuracy, while still
good for variances on the order of those for flat standard cell
netlists, degrades as the variance in cluster sizes increases.
In general, experience has shown that the effectiveness of
interchange algorithms degrades significantly if the sizes of
the objects vary by orders of magnitude. Furthermore, in our
new approach, moves are prevented which would create an
unacceptable amount of unevenness in the rows. If clusters
had widely varying widths, it would be very difficult to find
feasible moves for the very wide clusters and this would
prevent the annealing algorithm from finding a good local
optimum.

Several clustering algorithms have been reported. These
approaches are based on prioritized attributes [11], circuit
partitioning [19], random walk [1], [6], and graph connectivity
[4]. In the prioritized method [11], the modules are merged
according to an attribute list. The attributes include terminal
count, common net count, the number of nets localized,
common net fan-out, and the cluster size. A disadvantage of
the prioritized list is that it differs from circuit to circuit. In
the ratio cut method [19], the number of clusters generated
is unknown until the algorithm finishes. Moreover, there are
generally few resulting clusters, and these clusters vary widely
in size. Its time complexity is more than quadratic which
makes it impractical for today’s large circuits. In the random
walk method [6], the length of the random sequence used to
find cycles is O(n?), where n is the number of cells in the
input. The total time complexity is O(n®). This long run time
makes it inappropriate to serve as a bottom-up preprocessing
stage in a hierarchical placement environment. In the (k,!)-
connectivity method [4], the use of [ > 1 often leads to
unnatural results. Cells which are farther away from each other
(in terms of the number of intervening nets) are more likely
to be placed in the same cluster than cells which are closer
together. Also, the selection of k and [ is not an easy task.
They are usually selected based on experiments [4].

The remainder of this paper is organized as follows. Section
IT presents our new approach to simulated annealing for
row-based placement. In Section III, we present our new
hierarchical placement and clustering technique. The results
are presented in Section IV. Finally, the conclusion is the
subject of Section V.

II. NEW APPROACH TO SIMULATED ANNEALING

A. The Drawbacks of Allowing Cell Overlapping

Allowing cell overlapping enables the simplest implemen-
tation of simulated annealing for row-based placement. It also
yields the fastest implementation in terms of computation
time. When cell overlapping is permitted, the only nets whose
lengths change are those belonging to the two cells involved in
an interchange. In contrast, if overlapping is not permitted, not
only must one update the net lengths for the nets on the two
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cells being interchanged, but also the nets for up to half the
cells in each row involved in the cell exchange (see Fig. 2).

The cost function for the simulated annealing based Tim-
berWolfSC v6.0 [13], [14], [17] is shown in (1). W is the
total wire length, P, is the overlap penalty, and Pg is the row
length control penalty.

C=W+uP,+ \Pg M

The role of the two penalty functions is to ensure that when
the cost C' has been minimized, the total amount of cell
overlapping has been nearly reduced to zero and the row
lengths are fairly uniform. When two cells with different
size are exchanged, an overlap and an unused space will
be created at their original positions. Permitting overlapping
causes inaccurate cell positions, inaccurate net length computa-
tions, and inaccurate timing computations. The two controlling
parameters 4 and X in (1) are crucial. If 4 is too small, the
cells will tend to collapse to the centers of the rows. However,
if p is too large, for the most part only cells with equal size
will be exchanged. This will greatly impede the algorithm’s
search for a good local optimum. Similarly, if A is too small,
the final row lengths will be very uneven. If X is too large,
the algorithm’s search will again be impeded.

To combat this problem, the method in [14] uses a so-
phisticated negative feedback control scheme to determine the
optimum values of y and A. Nonetheless, at the end of the
annealing process, there is a significant amount of residual
cell overlaps and gaps. As a final step, the cells are shifted
and compacted to eliminate the overlaps and gaps. This final
shifting can greatly disturb wire lengths and often results in
timing paths failing to meet their specifications. For large
circuits, on average, our experiments have shown that the
longest row is about 12% above the average row length.
This increases the chip area, since the width of the core is
determined by the longest row.

B. New State Generator

Fig. 1 shows our algorithm for generating new placement
configurations. First, we randomly select cell a. A single cell
move is attempted if the target row’s length limit is not
exceeded. Otherwise, a cell b which covers the target location
is noted and an interchange of a and b is attempted if no
row length limits are violated. The length limit is set to be
the smaller of one percent of the average row length or one
average standard cell width. If a limit was violated, the new
state generator begins anew. If a single cell or interchange
move is feasible, then the change in cost is computed in
the manner presented in the next section. The probability of
accepting the new configuration is one if AC < 0; otherwise,
it is equal to e(=AC/T) where T is the temperature [7].

If the new configuration is accepted, the cells in the affected
rows are shifted to avoid any cell overlapping. Every new
configuration thus generated is legal and physically feasible.
Therefore, at the end of run, there is no need for shifting and
compacting cells. In Fig. 2, when cell A and B are exchanged,
the cells to the left of B (cells in the shaded region) will
be shifted to the left to ensure no overlapping. Cells on the

Randomly select cell a
Randomly select row r and location x in r
/* x in r is within the range limiter window span for a [14] */
If (adding a to r doesn’t exceed length limit for r) then
Compute AC for moving a to location x in r
Else
/* now consider an exchange of a and b */
Note cell b covering location x in r
If (length limit of neither row is exceeded) then
10. Compute AC for exchanging a and b
11.  Else
12. Go to line 1
13. If( accep(AC) ) then’
14.  Eliminate overlaps for the row(s) of a and b
15. Update estimation model for a and b

R B S o o

Fig. 1. New state generator.

Fig. 2. Shifting operation.

short side of an inserted cell (B in Fig. 2) are shifted. No
compaction is done in the row receiving the narrower cell.
There are several reasons for this: 1) The fewest number of
cells will have to be shifted. Therefore computation time is
minimized. 2) As will be explained in Section II.4, when cells
are shifted, one of the two models has to be employed to
estimate the changes in the net lengths connecting to the cells
being shifted. If fewer cells are shifted, then fewer nets will
have to be estimated. Less estimation leads to less estimation
inaccuracy and therefore a better solution can be obtained.
3) No compaction will leave some small gaps in the rows.
This phenomenon will generally help to reduce the impact
of subsequent shifting operations by “absorbing” the shifting
amount that is needed to accommodate a new cell. 4) We
control the row lengths to be no more than one average cell
width over their ideal length and therefore the total width of
the gaps in a row is at most a few average cell widths, a rather
small amount. Overall, experiments verified that appreciably
less computation time was used and yet a small improvement
in the quality of the results was obtained compared with
actually performing the compaction. The estimation model
mentioned in line 15 will be explained in Section IL.4.

C. New Cost Function

We now introduce the new incremental cost function.
AC = AW + AWg )

AW is the change in the net lengths for those nets connected
to the cell (or two cells) participating in the single cell (or
exchange) move. In Fig. 2, this means those nets connected to
A and B. AWg represents the change in the net lengths for
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those nets connected to the cells in the affected rows which
must be shifted to avoid the creation of cell overlapping. In
Fig. 2, this means those nets connected to the cells in the
shaded region.

When a new cell is inserted into a row, other cells in this
row generally need to be shifted to accommodate the new cell.
As will be described in the next section, we have developed
effective methods for estimating AWg, the change in the net
lengths for those nets connected to the shifted cells. That is,
these shiffed nets are not updated precisely. Consequently,
when a cell is selected as a or b in Fig. 1, the net lengths stored
for its nets are potentially inaccurate. To ensure calculation of
the precise value of AW, before moving cell a (or exchanging
cells a and b), we first recompute the current net lengths for
all nets connected to cell a (or cells ¢ and b). Then the move
is made and the new net lengths are computed. Hence we
obtain the precise value of AW. Precisely updating AWgs
is prohibitively expensive. We therefore developed effective
methods for estimating its value, as described next.

D. Wire Length Estimation Model

The prohibitively high computation cost for AW in (2) is
the apparent drawback of this simplified cost function. A row
usually consists of hundreds or thousands of standard cells and
therefore a shifting operation on a row may disturb thousands
of nets. We therefore proposed two models to effectively
estimate AWjs.

Model A: When the standard cells in the core area are
shifted in the rows, the shifting will change the wire length
of those nets connected to the shifted cells. Under a half-
perimeter net bounding box model, the shifting will only
change the z-component of the bounding box and the size
of the bounding box may increase, decrease, or stay the same.

Fig. 3 shows the changes in the z-span of a net’s bounding
box when one of the cells on the net is shifted. Here we
show an example of a three-pin net n and three different
conditions where the shifted cell j is at the left boundary of
its bounding box in Fig. 3(a), at the right boundary of the
bounding box in Fig. 3(b), and in the middle of the bounding
box in Fig. 3(c). The top part of Fig. 3(a) depicts the position
of shifted cell j in the bounding box. The graph of W, versus
x is generated by moving cell j while fixing all other cells.
It shows the value of W,, as a function of the position of
cell j in the z-direction, where W, is wire length of net n
in the z direction. W,, will decrease as cell j is shifted to
the right until it reaches the second leftmost cell k. Then W,
stays the same until cell j is shifted to the right boundary
of bounding box. Afterwards, W,, will begin to increase. The
bottom graph show D, the derivative of W,,, versus z. Note
that D, is always a combination of two step functions and
it has two break points. It can be computed efficiently by
recording the two break points and then increasing D, by 1
whenever passing a break point from left to right. Fig. 3(b) and
(c) show the conditions where the shifted cell j is at the right
boundary and the middle of its bounding box, respectively.
Although we only show an example of a three-pin net, it is
easy to extend the model to handle nets with more than three

-
-
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Fig. 3. Cell shifting for a net with three pins. The shifted cell j is (a) at
the left boundary of the net’s bounding box, (b) at the right boundary of the
bounding box, (c) in the middle of the bounding box.

Ej
y
w, y W,
X
D, a

pas—— 1

>

-y X

T T

(@) (b)

Fig. 4. Effect of cell shifting for a two-pin net. The shifted cell j is (a) at
the left boundary of the net’s bounding box, (b) at the right boundary of the
bounding box.

pins. In this case D, still has two break points. The only
modification is that when cell j sits at a boundary of its net
bounding box, similar to the situation of Fig. 3(a) and (b), the
position of the first break point is set to the position of the
closest cell to j in the z direction.

Fig. 4 shows the cases when a net has only two pins. This
is a degenerate case in which the two break points in D,, are
coincident.

The estimation model referred to in line 15 of Fig. 1 can
then be implemented as shown in Fig. 5. We call this model A:

If we assume the number of nets connected to any cell in
a circuit is bounded and is not related to circuit size, then the
estimation model in Fig. 5 can be updated in constant time.
The assumption is reasonable; although the number of cells
on a net is unbounded, the number of nets connected to one
cell is always limited due to the limited area of a cell and the
limited number of pins on a cell. Then AW can be estimated
effectively using the following equation.

AWs = Z W (Shift Amount(z))
i€ {shifted cells}

3

Model B: In this section we describe a simpler model based
on the more elaborate model presented in the previous section.
Fig. 6 shows the similar scenario as presented in Fig. 3, but
instead of calculating the full range of W, and Dy, we are
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1. For each net N, connected to cell
2. Record the two break points according to the position of a in N,
3. Superimpose all of the break points to get the complete W), versus x

Fig. 5. Model A.
j
Tl |
j
W, b W, ‘
X x X
D, & D, & D,
—p X » X —» X
0T 17 -1*’

(a) (b) ©

Fig. 6. Simplified cell shifting model. The shifted cell j is (a) at the left
boundary of the net’s bounding box, (b) at the right boundary of the bounding
box, (c) in the middle of the bounding box.

For each cell a
gradient(a) =0
For each of the nets connected to a:
If (a is at the maximum of its bounding box in the x-direction) then
gradient(a) ++
/* shifting a in the positive x-direction will increase the net’s length */
Else if (a is at the minimum of its bounding box in the x-direction) then
gradient(a) --
/* shifting a in the negative x-direction will increase the net’s length */

e A o

Fig. 7. Gradient computation.

now only interested in the derivative of W, at the origin, i.e.,
D,(0).

Now we define the gradient value for a cell j as
2 ic{nets on celt 5} Di(0), which is simply the sum of D, (0)
for all the nets connected to cell j. Fig. 7 shows the details.

After we calculate the gradient value for each cell, AWg
is then estimated by multiplying the gradient value of the cell
being shifted by the distance it is being shifted.

AWg = Z

Jj€{shifted cells}

gradient(y) - ShiftAmount(;) (4)

This simplified model B is actually the first order linear
approximation of the more detailed model A. It correctly
predicts the effect of cell shifting if the amount of shifting
is small relative to the net bounding boxes. Note that our new
models correctly predict the local effect of a shifting operation.
This distinguishes our method from that in [5] which presumes
that all shifts increase the lengths of the affected nets.

E. Acceptance Rate Calculation

In Fig. 8, when cell A moves to another row, the change in
cost, AC, will consist of two components, the z displacement
and the y displacement. However, when cell A moves within

N R
1ACY,,;, I /
———E,EI:
Fig. 8. Moves between the rows.
TABLE 1

WIRE LENGTH IMPROVEMENT

Circuit # cells W Improvement
cl 1K 3%
c2 6K 5%
c3 15K 6%

the same row, AC will only have an z displacement. The value
of the y displacement will be at least the distance between the
rows. On the other hand, the = displacement can be as small
as one grid size. In a typical circuit, the distance between
the rows is usually tens or hundreds grid sizes. Hence the
y displacement is generally several times larger than the x
displacement. This phenomenon causes |AC)| for an inter-row
move, which has both  and y components, to generally be
several times larger than for an intra-row move, which has
only an z component.

When the simulated annealing acceptance criterion is used
to evaluate moves, those moves that generate higher cost
changes will generally have a much higher chance of be-
ing rejected. Thus, inter-row moves, which generate higher
changes in cost, are much more likely to be rejected than
intra-row moves at a given temperature. We found this to be
especially severe when the temperature is low; we discovered
that only intra-row moves were being accepted. This greatly
hampered the search ability of simulated annealing since inter-
row moves were not adequately exploited. We included only
inter-row moves in calculating the acceptance rate. That is,
when determining the actual acceptance rate we divide the
number of inter-row moves accepted by the number of inter-
row moves attempted and ignore all other moves. Using the
annealing schedule described in [17], we obtained much better
results as shown in Table I. Notice that the total wire length
was 6% lower for the 15 000-cell circuit if the new acceptance
rate calculation procedure is used.

III. HIERARCHICAL PLACEMENT

Fig. 9 shows our new hierarchical placement methodology
which combines a new clustering technique with the new
approach to simulated annealing. The original netlist is hi-
erarchically clustered into various levels of netlists. Then the
new approach to simulated annealing is used to place those
various levels of netlists.

In the clustering stages, the clustering technique described in
the next section is used to condense the original netlist into the
first and then the second level netlists. The produced clusters
in the higher level netlists have similar size, which greatly
aids the annealing placement stages. In the placement stages,
the condensed second level netlist is placed using the new
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Height = 2 row heights

Second Level Netlist Roughtly 40 cells/cluste;

Placement

i Decompose
C]ustermg? * po 1st level clusters

Height = 1 row height

First Level Netlist Roughly 6 cells/cluster

Placement
Clusteri
u nng? ‘ Decompose cells

Original Netlist Placement

Fig. 9. Hierarchical placement.

approach to simulated annealing at the higher temperatures.
Then we decompose the second level netlist back to the first
level netlist. Cells of the lower level netlist will be randomly
placed within the range of the cluster to which they belong in
the higher level netlist. At the new lower level, these cells may
then move outside the bounds of the higher level cluster. We
then place the first level netlist at the middle temperatures,
decompose the first level netlist back to the original netlist,
and place the original netlist in the lower temperatures. In
the current implementation, there are two clustering stages
and three placement stages. For circuits much larger than
100 000 cells, we anticipate that it would be appropriate to
add additional levels of clustering. Our combined clustering
and simulated annealing methodology can be viewed as a
combined bottom-up and top-down approach, where the two
clustering stages provide bottom-up perspectives and the three
placement stages provides a top-down view, from the course
grain of the higher levels to the fine grain of the lower levels.
Timing requirements are satisfied in all stages [16]. The right
hand side of Fig. 9 shows some typical values in the current
implementation.

A. The New Clustering Technique

We now present a new clustering technique based on graph
connectivity. It produces clusters with about the same size, and
emphasizes nets with small fan-out. Our new technique yields
good results using a linear (in terms of the number of cells)
time implementation. In our approach, each net 7 is given a
weight w; according to (5), where Fj is the set of pins for net ¢.

1

ST

(5)

Assume for the moment that N, U and L have been
specified, where N is the number of clusters desired, U and
L are the upper and lower bounds, respectively, for the total
length (size) of the standard cells permitted in a cluster. The
situation is depicted in Fig. 10. Our objective is to find a
partitioning of the cells over the By bins such that no bin
contains less than L total cell length nor more than U total
cell length and that the total weight of the intra-cluster edges is
maximized. Note that this is equivalent to minimizing the total
weight of the inter-cluster edges. That is, we want to collapse,
or eliminate, as many nets as possible. If we cannot collapse a

AR

Byt

Fig. 10. Clusters.

net, then we want a net to occupy as few clusters as possible.
The key point is that we want our clustering procedure to focus
its attention on low fan-out nets since these are precisely the
nets whose spans can be reduced by a placement algorithm.
Fig. 10 shows a five-pin net which spans three clusters.

Instead of using a clique model for multipin nets, we have
obtained better results by using a tree model. In this model,
given an n-pin net which has cells in m different bins, then
there are m — 1 edges for the inter-cluster connections, and
if there are k pins in a given bin, then there are k — 1 edges
contained within the bin. Obviously we must have that the
sum of the k — 1 values for each of the m bins plus m — 1
is equal to n — 1. For example, consider the five-pin net in
Fig. 10. Here m = 3 and the sum of the three £ — 1 values
are 0+0+2 = 2, and 2 added to m — 1 equals 4. The weight
assigned to each of these 4 edges is that given by (5). For
this example we find that w; is 0.25. The weight value Wy
for cluster k is defined in (6), where By is the set of all pins
currently in cluster k. The weight W, for cluster k is the sum
of all edge weights in cluster k.

>

(Vi|(FiNBy )#0)

Wi = (‘FiﬂBkl—l)-wi (6)

The net in Fig. 10 contributes 0.50 to the weight W, for
cluster k. Note that when all of the pins F;; for net ¢ are merged
into just one cluster, the total weight contributed to this cluster
(or bin) is always 1.0. This model naturally places a higher
emphasis on low fan-out nets than on high fan-out nets since it
is much easier to collapse a low fan-out net into a single bin.

We found that the effectiveness of the placement algorithm
deteriorated as the aspect ratio of the clusters approached 100.
We therefore set the target cluster length to be 10 - H where
H is the average cell height. We then set U equal to 30 - H
and L equal to 3- H. In this way, the variation of cluster sizes
is within one order of magnitude, comparable to the normal
variation in cell sizes for a flat standard cell netlist. Now the
objective is to maximize (7) subject to the cluster capacity
constraints.

N
C=> W ©)

k=1

Simulated annealing has proven to be the best approach for
maximizing (7). Fig. 11 shows the inner loop of our annealing
procedure. First, cell a is randomly selected and we note the
bin [ where it resides. We obtained much better results when
we restricted the move generation process to generating moves
which necessarily have the potential to increase the value of
(6). This can be accomplished readily by restricting the move
of cell a to those bins which contain fan-out cells of cell a.
Along these lines, a net ¢ connected to a is randomly selected
and a pin 7 on this net is randomly selected. Next, we note
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Randomly pick a cell a

Locate the bin ! where a resides

Define the set of nets connected toa as N,

Randomly pick a net i from N,

Define the set of pins for net i as F;

Randomly pick a pinj in F;

Locate the bin k where j resides

If (moving a to bin k violates capacity constraints) then

o NS R W

Go to line 1

. Compute AW, =- Y min(L,|F;nB|-1)-w,
VieN,

11. Compute AW, = Z min(1,|F,NBy) -w;
Vie N,

12. AC = AW,+AW,
13. If(accept(-AC) ) then
14. moveatobink

—
[=]

Fig. 11. Generating clusters.

the bin k where pin j resides. If cell a can be moved to bin
k without violating the capacity constraints for bins [ and k,
we then propose a move for cell a to bin k. Such a move will
only affect the total weights in bins [ and k, that is, W, and
Wi. Line 10 and 11 compute the differences in these weights
AW, and AW}, derived from (6). Then in line 12 we compute
AC, the change in cost for this move.

We implemented a hash table for each bin & to store all
the nets connected to cells in & and therefore the intersection
operation in line 10 and 11 can be done in constant time,
as long as the number of nets in % is bounded. This can be
inferred as follows. Since we have an upper bound U for
the total cell width in a bin, the number of cells in a bin is
bounded. For industrial circuits, the number of nets on a cell
is also bounded (usually under 10), therefore, the total nets in
bin k is also bounded. Therefore the time complexity for the
inner loop shown in Fig. 11 is a constant. Qur experiments
have shown that to generate a good clustering, it is sufficient
to set the number of outer loop iterations (that is, the number
of calls to the procedure in Fig. 11) to be 100n, where n is
the number of cells. Therefore, our total time complexity is
linear. We use the annealing schedule described in [17].

B. The Placement Stages

In the placement stages, the annealing method described
in Section II is used to place the different levels of netlist
produced by the clustering technique. The first level netlist
is placed in the higher temperature regime. This first stage
comprises the first 50% of the total annealing schedule as
shown in Fig. 12. The second placement stage starts at 50%
and ends at 70% of the total annealing schedule as shown
in Fig. 12. The constituent cells belonging to a cluster are
randomly placed within the confines of the location of the
bounding rectangle of the cluster as determined in the previous
stage. The third stage starts at 70% of the total annealing
schedule. The restarting temperature 7' of the second (and
third) placement stage is given by (8), where AW is the

acceptance rate o

1.0

0.44

% of total moves

15 50 70 ](i)()

«—— stage] ——» lestage 25 «— stage3 —» i

Fig. 12. Annealing schedule in hierarchical mode.

TABLE 11
TesT CIRCUITS

Circuit # modules # nets # pins # rows
Primary 1 752 904 5526 16
Primary 2 2907 3029 18407 28

Biomed 6417 5742 26947 46
Industry 2 12142 13419 125555 72
Industry 3 15059 21940 176584 54
Avgsmall 21854 22124 82601 80
Avqlarge 25114 25384 82751 86

Golem3 99932 143379 336299 192

average net length and « is the target acceptance rate.

AW
T=-———"7— ®)
log(a)
In all placement stages, timing requirements are satisfied
using the precise timing driven method in [16].

IV. RESULTS

Table II shows the circuit parameters of our test circuits.
All seven circuits are from the 1993 MCNC layout benchmark
sets [9]. All reported computation times are CPU seconds for
a DEC station 5000/200.

A. The Wire Estimation Model

Our new implementation of simulated annealing constitutes
TimberWolfSC v7.0. In an effort to test the effectiveness of
the two wire length estimation models, we also developed
a several orders of magnitude slower routine which exactly
updates AWg, the change in the net lengths for all the nets
connected to the cells being shifted. We then compared the
final total wire lengths achieved from TimberWolfSC v7.0 with
the exact updating routine (the Exact column in Table III) with
the two models which estimate AWs (column model A and
model B in Table III). That is, in Table III, the wire length
shown under Exact means that AWg in (2) was computed
exactly by updating all the nets involved during the shifting
operation. The columns under model A and model B imply that
AWsg is estimated using model A and model B, respectively,
described in Section IL.4. In the Exact column, we were only
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TABLE Il

WIRE LENGTH COMPARISON, EXACT VERSUS ESTIMATED

Circuit W (Exact) SD W (model A) SD W (model B) SD
Primary 1 0.84 0.38 0.83 0.50 0.83 0.69
Primary 2 3.67 0.36 3.66 046 353 0.58

Biomed 3.61 0.35 343 0.55 3.55 0.65
Avglarge - - 6.36 0.59 6.50 0.69

TABLE IV
RuN TiME ComparisoN, Exact, MODEL A AND MODEL B
Circuit Time (Exact) Time (model A) || Time (model B)
Primary 1 2265 1307 822
Primary 2 33647 13320 7301
Biomed 110735 36915 20513
Avqlarge - 305624 164322

able to obtain the results for the first three circuits due to
the slowness of the exact routine. The SD columns are the
average shift distances in terms of the average standard cell
width. Table IV shows the run time comparison.

The results show that both of our estimation models yield
comparable or better results compared with exactly updating
AWsg. The computation time for model A is about two times
that for model B because of the complexity of model A
(Fig. 5). In comparing model A and model B, we also find
SD, the average shift distance, is about half the average width
of standard cells in the circuit. That SD is small is crucial for
the success of model B, since it is based on the assumption
that the shift distance is small. The results show that model B
performs comparably to model A while using about half of the
computation time. Therefore we use model B in TimberWolfSC
v7.0.

B. TimberWolfSC v7.0 Flat Mode

Tables V-IX show the average results of TimberWolfSC v7.0
in flat mode compared with TimberWolfSC v6.0 [13], [14]. Ta-
ble V shows the reduction in total wire length. TimberWolfSC
v7.0 outperforms v6.0 for all benchmark circuits. The average
wire length reduction is 8%. Table VI shows the reduction in
the length of the longest row. This is important because the
chip width is determined by the size of the longest row. For
all of the benchmarks, we see tremendous reductions both in
total wire length and chip width. Because our algorithm is
based on simulated-annealing, a different seed for the random
number generator will produce slightly different results. The
results usually vary in a small range, within a few percentage
points. Therefore the results we have shown are not produced
by a single run, but are rather the average of three runs. Other
than the random seed, there are no user-tunable parameters in
our implementation.

Tables VII and VIII show the results after global routing.
The global router we used is described in [18]. Table VII
shows the number of tracks after global routing. The average
track reduction is 5%. Table VIII shows the final chip area
comparison and the average reduction is 7%. The computation

TABLE V
WIRE LENGTH COMPARISON, TimberWolf v6 VERSUS v7 FLAT
Wire Wire Wire
Circuit length TW || length TW length
v6.0 v7.0 Reduction
Primary 1 0.90 0.82 9%
Primary 2 3 3.50 6%
Biomed 3.94 3.49 11%
Industry 2 14.69 13.69 7%
Industry 3 48.38 44.02 9%
Avgsmall 6.72 6.15 8%
Avglarge 6.93 6.50 6%
average - - 8%
TABLE VI

CHIP WiDTH CoMPARISON, TimberWolf v6 VERSUS v7 FLAT

Circuit Chip width || Chip width | Chip wi.dth

TW v6.0 TWv7.0 Reduction
[ Primary1 | 5260 | 5100 3%
Primary 2 8420 8210 3%
Biomed 10328 9856 5%
Industry 2 14896 13976 6%

Industry 3 29784 26224 12%
Avgsmall 9560 9072 5%
Avqlarge 9824 9344 5%
average - - 6%
TABLE VII

TrRACKS COMPARISON, TimberWolf v6 VERSUS v7 FLAT

Circuit # Tracks # Tracks 'I\'aclf
TW v6.0 TW 7.0 Reduction

Primary 1 164 155 6%
Primary 2 434 430 1%
Biomed 850 825 3%
Industry 2 1133 1080 5%
Industry 3 1909 1747 9%
Avgsmall 1009 985 2%
Avqlarge 1035 988 5%
average - - 5%

time spent in flat mode is longer than that of TimberWolfSC
v6.0 due to the overhead of the shifting operation (Section
11.2) and due to the recomputation of the old net lengths for
the cells involved in an exchange (Section I1.3). The increases
in CPU time ranged from 5% to 80% for the test circuits. Note
that these kinds of reductions in chip area can not be achieved
in TimberWolfSC v6.0, even if it is run much longer.

C. TimberWolfSC v7.0 Hierarchical Mode

Tables X—XIII summarize the results of our new hierarchical
placement approach in TimberWolfSC v7.0, compared with
TimberWolfSC v6.0. Table X shows the reduction in wire
length, which is 12% on average. Tables XI and XII show the
track counts and chip area after global routing. Up to a 21%
area reduction is achieved, with the average arca reduction
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TABLE VIII
AREA COMPARISON, TimberWolf v6 VERSus v7 FLAT

Circuit Area Area Area
TW v6.0 TWv7.0 Reduction
[~ Primary 1 204 19.4 5%
Primary 2 68.3 66.3 3%
Biomed 115 109 5%
Industry 2 212 195 8%
Industry 3 753 637 15%
Avgsmall 108 104 4%
Avglarge 119 111 7%
average - - 7%
TABLE IX
RUN TIME COMPARISON, TimberWolf v6 VERSUS v7 FLAT
Circuit Run time Run time
TW v6.0 TW v7.0
[ Prmaryl | 794 || 830 |
Primary 2 5316 7322
Biomed 14631 20782
Industry 2 37521 69725
Industry 3 65652 120485
Avgsmall 92959 133023
Avqlarge 96564 165941
TABLE X
WIRE LENGTH COMPARISON, TimberWolf v6 VERSUS v7 HIERARCHICAL
Circuit Wire Wire Wim Wire Wire
TWv6.0 TWv7.0 Reduction TWv7.0* | Reduction
Primary 1 0.90 0.84 7% 0.83 8%
Primary 2 37 3.57 % 353 5%
Biomed 394 324 18% 322 18%
Industry 2 14.69 13.53 8% 13.30 10%
Industry 3 48.38 42.84 12% 41.53 14%
Avgsmall 6.72 541 19% 5.08 24%
Avglarge 6.93 5.86 16% 5.65 19%
Golem3 107.69 93.10 14% 88.98 17%
average - - 12% - 14%

being 11%. These MCNC benchmark results are the best
results ever reported. In Tables X—XII, the column labeled TW
v7.0* are the results of doubling the total number of moves in
our annealing schedule. Therefore the run time is twice that
of the regular TW v7.0 as shown in Table XIII. This trade-
off yields a 2% lower wire length on average in exchange
for a doubling of the run time. Table XIII shows the speed-
up achieved with our new hierarchical placement algorithm.
The hierarchical algorithm yields much better results compared
with TimberWolfSC v6.0 and runs up to 7.5 times faster.

D. Gordian/Domino versus TimberWolfSC v7.0

In Tables XIV-XVII, we compare the Gordian/Domino
placement package [2], [3], [8] with TimberWolfSC v7.0 in
hierarchical placement mode. Table XIV compares the total
wire lengths (in meters) for the seven MCNC benchmark
circuits. On average, TimberWolfSC v7.0 produced placements
having 8% less total wire length. We use the same router

TABLE XI
TRACKS COMPARISON, TimberWolf v6 VERSUS v7 HIERARCHICAL
Circuit # Tracks # Tracks Tracl_c # Tracks Traclf
TW v6.0 TWv7.0 Reduction TW v7.0* Reduction
Primary 1 164 161 2% 152 T%
Primary 2 434 ‘425 2% 412 5%
Biomed 850 773 9% 773 9%
Industry 2 1133 1030 9% 1004 11%
Industry 3 1909 1478 23% 1436 25%
Avgsmall 1009 873 13% 858 15%
Avglarge 1035 882 15% 882 15%
Golem3 4049 3141 22% 2928 28%
average - - 12% - 14%
TABLE XII

AREA COMPARISON, TimberWolf v6 VERSUS v7 HIERARCHICAL

Cirenit Area Area Area Arca Area
TW v6.0 TWv7.0 Reduction || TWv7.0* | Reduction
Primary 1 204 19.6 4% 19.2 6%
Primary 2 68.3 66.0 3% 65.0 5%
Biomed 115 104 10% 104 10%
Industry 2 212 191 10% 189 11%
Industry 3 753 595 21% 588 22%
Avqgsmall 106 96.1 9% 94.7 11%
Avglarge 119 101 15% 101 15%
Golem3 851 689 19% 672 21%
average - - 11% - 13%
TABLE XIII

RuN TIME CoMPARISON, TimberWolf v6 VERSUS v7 HIERARCHICAL

Circuit | Sontime || R tm® | speed Up
Primary 1 794 221 3.59
Primary 2 5316 1252 425

Biomed 14631 2164 6.76
Industry 2 37521 9252 4.06
Industry 3 65652 8766 7.48
Avgsmall 92959 13018 7.14
Avglarge 96564 15597 6.19

Golem3 896487 141954 6.32

[18] to produce the routing results in Tables XV and XVI.
Table XV shows that up to a 16% track reduction is obtained,
with the average being 9%. Table XVI shows the chip area
comparison. In Tables XIV-XVII the column labeled TW
v7.0* are again the results due to a doubling of the computation
time. This produced an additional 2% reduction in wire length,
on average. This shows the trade-off between run time and the
quality of the final result.

Table XVII compares the TimberWolfSC v7.0 run time with
Gordian/Domino (CPU times are in seconds). For circuits with
more than 5 000 cells (our circuit size range of interest),
TimberWolfSC v7.0 uses up to 26% less computation time.

E. Ritual/Tiger versus TimberWolfSC v7.0

In this section, we compare the results of Ritual/Tiger [15]
and TimberWolfSC v7.0 in hierarchical mode. Table XVIII
shows the characteristics of the three test circuits.
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TABLE XIV
WIRE LENGTH COMPARISON, GORDIAN/DOMINO
VERsUS TimberWolf v7 HIERARCHICAL

TABLE XVIII
RiTuaL TEST CIRCUITS

Circuit # Cells # Nets # Pins # Pads # Rows
- Wire Wire Wire Wire Wire ) 3% 83| 2060 373 5
Cirewit | Cordian/ | 7%170 | Reduction | TW»7.0% | Reduction ] 2150 2357 5380 315 18
Primary 1 0.88”0 064 3% 0.83 5% 513207 4267 4967 13175 1490 24
Primary 2 3.68 3.57 3% 3.53 4%
Biomed 391 3.24 17% 322 18%
Industry 2 15.80 13.53 14% 13.30 16% TABLE XIX
Industry 3 44.97 4284 5% 41.53 8% WIRE LENGTH COMPARISON, RITUAL VERSUS TimberWolf v7 HIERARCHICAL
Avqgsmall 5.68 541 5% 5.08 11%
Avglarge 621 5.86 6% 5.65 9% e W . Wi
average - B 8% - 0% Circuit | Wire Rirual | 1y 70 | Reduction | TWv7.0* | Reduction
c2 0.31 0.29 6% 0.28 10%
c7 1.27 1.07 16% 1.02 20%
TABLE XV 513207 5.5 5.17 10% 5.07 12%
TRACKS COMPARISON, GORDIAN/DOMINO average - - 11% - 14%
VERsUS TimberWolf v7 HIERARCHICAL
Circuit # Tracks # Tracks Track TABLE XX
TW v6.0 TW 7.0 Reduction .
= TRACKS COMPARISON, RITUAL VERSUS TimberWolf v7 HIERARCHICAL
Primary 1 164 155 6%
Primary 2 434 430 1% . # Tracks # Tracks Tracks # Tracks Tracks
Biomed 850 825 3% Circuit Ritual TWv7.0 Reduction || TWv7.0* | Reduction
Industry 2 1133 1080 5% c2 134 127 5% 122 9%
c7 298 242 19% 234 21%
Industry 3 1909 1747 9% $13207 811 738 9% 717 12%
Avgsmall 1009 985 2% averags = = % = 12%
Avglarge 1035 988 5%
average - - 5%
TABLE XXI
AREA COMPARISON, RITUAL VERSUS TimberWolf v7 HIERARCHICAL
TABLE XVI
AREA COMPARISON, GORDIAN/DOMINO VERsUS TimberWolf v7 HIERARCHICAL Circuit Area Arca Area Area Area
Ritual TWv7.0 Reduction TW v7.0* Reduction
Area Area N Arca Area c2 3.96 3.83 3% 3.74 6%
ircuit Gordian/ 2 , 7 14.8 129 13% 126 15%
cre mine | TWV70 | Reduction || TW7.0% | Reduction S13207 0.1 %59 8% 453 10%
Primary 1 19.6 19.6 0% 19.2 2% average - - 8% - 0% |
Primary 2 69.2 66.0 5% 65.0 6%
Biomed 112 104 7% 104 7%
Industry 2 205 191 7% 189 8%
Tndustry 3 609 595 2% 588 3% TABLE XXII
Avqsmall 993 96.1 % 947 5% PERFORMANCE COMPARISON, TimberWolf v7.0 VERSUS OTHERS
Avglarge 110 101 8% 101 8%
avemge - - 3% - % TWvI0 | TWv60 Ritual Gordian/
Domino
Wire length 12% 11% 8%
RUN Tive C. TABLE X\éH Tracks 12% 11% 9%
UN TIME COMPARISON, GORDIAN/DOMINO
VERsUS TimberWolf v7.0 HIERARCHICAL Area 1% 8% %

Run Time
Circuit | Gordian/ || S 7™ | Reduction
Domino

Primary 1 168 221 -
Primary 2 922 1252 -

Biomed 2640 2164 18%
Industry 2 9587 9252 3%
Industry 3 10349 8766 15%
Avgsmall 17444 13018 25%
Avqlarge 21086 15597 26%

Table XIX shows the wire length comparison. Timber-
WolfSC v7.0 produces on average 11% lower wire length than
that of RITUAL. Tables XX and XXI show the resuits after
global routing. In Table XX, up to a 19% reduction in the track
count is obtained, and the average track reduction is 11%. In

Table XXI, up to a 13% chip area reduction is obtained, and
the average area reduction is 8%. In Tables XIX-XXI, the
column labeled TW v7.0* are the results due to a doubling of
the computation time. On average, this produces an additional
2% reduction in chip area.

Tables XXII and XXIII shows the average performance
improvement of TimberWolfSC v7.0 over TimberWolfSC v6.0,
Ritual, and Gordian/Domino in three categories: wire length,
number of tracks after global routing, and final chip area.

V. CONCLUSION

We presented a new approach to simulated annealing for
row-based placement, and a hierarchical placement algorithm.
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TABLE XXIII
PERFORMANCE COMPARISON, TimberWolf v7.0* VERSUS OTHERS

TWVI0* | TWv60 | Rimal | OGoMdian/
Domino
—_——
Wire length 14% 14% 10%
Tracks 14% 14% 11%
Area 13% 10% 6%

We have obtained the best results ever reported for a large set
of MCNC benchmark circuits. Our new hierarchical annealing-
based placement algorithm yields chip area reductions of up to
21% while consuming up to 7.5 times less CPU time in com-
parison to TimberWolfSC v6.0. Furthermore, TimberWolfSC
v7.0 produces lower total wire length by an average of 8%
than Gordian/Domino, 11% lower wire length than Ritual,
while using comparable run time. TimberWolfSC v7.0 supports
precise timing driven placement [16].
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