
CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo

Spring 2012

Outline
• Data Representation
• Binary Codes
• Why 6-3-1-1 and Excess-3?

Data Representation (1/2)

• Each numbering format, or system, has a base,
or maximum number of symbols that can be
assigned to a single digit.

Data Representation (2/2)

• Binary: 1 1 1 1 0 1 0 1
• Octal: 365
• Decimal: 245
• Hexadecimal: F5

Binary Numbers (1/7)

• A computer stores instructions and data in
memory as collections of electronic
charges.
– 1 = “on”  voltage at output of electronic

device is high (saturated).
– 0 = “off”  voltage at output of electronic

device is zero.

Binary Numbers (2/7)

• Each digit (strictly, position of a digit) in a
binary number is called a bit.

• In a binary number, bits are usually
numbered starting at zero on the right
side, and increasing toward the left.

• The bit on the left is called the most
significant bit (MSB), and the bit on the
right is the least significant bit (LSB).

Binary Numbers (3/7)

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSB

Binary Numbers (4/7)

• Unsigned binary integers
– Can only be positive or zero

• Translating unsigned binary integers to decimal
– dec=(Dn-1*2n-1)+(Dn-2*2n-2)+…..+(D1*21)+(D0*20)
– 1 1 1 1 0 1 0 1 (n=8)
– D7=1, D6=1, D5=1, D4=1, D3=0, D2=1, D1=0, D0=1
– dec=27+26+25+24+22+20=128+64+32+16+4+1=245

Binary Numbers (5/7)

• Translating unsigned decimal integers to binary
– Example: translating 37 to binary

Division Quotient Remainder
37/2 18 1
18/2 9 0
9/2 4 1
4/2 2 0
2/2 1 0
1/2 0 1

The result is 100101.

Binary Numbers (6/7)

• Binary Addition
– Beginning with the lowest (rightmost)

order pair of bits.
– Proceed bit by bit
– For each bit pair.

0+0=0 0+1=1

1+0=1 1+1=10

Binary Numbers (7/7)

• Binary addition (cont)

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 1

+

Carry: 1

7 6 5 4 3 2 1 0

(4)

(7)

(11)

Bit position:

Value Range

• For an n-bit unsigned binary number, the
range is 0~2n-1: 2n different values.
– 2 bits: 4 values (0 – 3)
– 3 bits: 8 values (0 – 7)
– 4 bits: 16 values (0 – 15)
– ...
– 8 bits (a byte): 256 values (0 –255)
– …
– 10 bits: 1024 values (0 – 1023)

Hexadecimal Integers (1/6)

• hexadecimal numbers are often used to
represent computer memory address and
instructions.

• A hexadecimal digit ranges from 0 to 15
(total of sixteen).

• The letters of the alphabet are used to
represent 10 through 15.
– where A=10, B=11, C=12, D=13, E=14, and

F=15

Hexadecimal Integers (2/6)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Decimal Hexadecimal Binary

•Each hexadecimal digit means a four
binary bit string.
•Every four binary bit string can be mapped
to a hexadecimal digit.

Hexadecimal Integers (3/6)
• If we can break up a byte (8 bits) into halves,

the upper and lower halves, each half can be
represented by a hexadecimal digit.

• A byte could then be represented by two
hexadecimal digits, rather than 8 bits.

• In general, any binary number can be split
into four-bit groups, starting from right. Each
such a group can be translated into
hexadecimal digit.

• The result hexadecimal is much shorter than
the binary equivalent.

Hexadecimal Integers (4/6)

•101101010011110010100

•16A794

0001 0110 1010 0111 1001 0100

101101010011110010100

1 6 A 7 9 4

Note when you are finding four bit groups,
begin from the right.

Hexadecimal Integers (5/6)

• Converting unsigned hexadecimal to decimal.
– dec=(Dn-1*16n-1)+(Dn-2*16n-2)+…..+(D1*161)+(D0*160)
– F5245
– D1=F, D0=5
– dec=F*161+5*160

=15*16+5*1
=240+5
=245

Hexadecimal Integers (6/6)

• Converting unsigned decimal to hexadecimal

Division Quotient Remainder
422/16 26 6
26/16 1 A

1/16 0 1

The result is 1A6.

Signed Integers (1/9)

• Signed integers can negative, zero and
positive.

• The most significant bit in binary numbers
indicates the number’s sign.
– 0 means positive or zero
– 1 means negative

• When you are using signed binary
numbers, the number of bits must be
specified.

Signed Integers (2/9)

• When a signed binary is positive, it can be
used as if it was an unsigned binary.

• When it is negative, two’s complement is used
the most often.
– Two’s complement (TC) notation works like the

negating operation
• TC(TC(number)) = number, [-(-number)=number]
• TC(number)+number=0, [-number+number=0]

Signed Integers (3/9)

• Given an eight-bit number 0000 0001, its
two’s complement is 1111 1111

Starting value 0000 0001
Step1: reverse the bits: 1111 1110
Step 2: add 1 1111 1111

The two’s complement representation of -1.

Signed Integers (4/9)

• Two’s complement of hexadecimal
– Reversing a hexadecimal digit is subtracting

the digit from 15
– 6A3D95C2+195C3
– 95C36A3C+16A3D

Signed Integers (5/9)

• For a signed hexadecimal number, it is
negative if its most significant digit is
greater than 7. Otherwise it is zero or
positive.

Signed Integers (5/9)

• Converting signed binary to decimal
– MSB=1, this binary is in two’s complement

notation.
• Get its two’s complement (positive equivalent).
• Convert to decimal.
• Make the decimal negative.

– MSB=0, this binary can be treated as an
unsigned binary.

Signed Integers (6/9)

Starting value: 1111 0000
Step1: reverse the bits: 0000 1111
Step2: add 1 0000 1111+1
Step3: its two’s complement: 0001 0000
Step4: convert to decimal 16
Step5: make the decimal neg: -16

Signed Integers (8/9)

• How to
– Convert signed decimal to binary?
– Convert signed decimal to hexadecimal?
– Convert signed hexadecimal to decimal?

Signed Integers (9/9)

• Maximum and Minimum Values:
– For an n-bit signed binary number, the range

is -2n-1 – 2n-1-1

Addition of Signed Binary Numbers
(1/3)

• 13-12 (use five bits)
– =13+(-12)
– =01101+TC(01100)
– =01101+(10011+1)
– =01101+10100
– =1 00001
– =00001

The carry from the MSB is discarded.
in signed binary number addition.

Addition of Signed Binary Numbers
(2/3)

• 13+12 (We still use 5 bits)
– =01101+01100
– =11001 The result is negative!! It is an overflow.

Addition of Signed Binary Numbers
(3/3)

• -12-13 (Still 5 bits)
– =TC(12)+TC(13)
– =TC(01100)+TC(01101)
– =(10011+1)+(10010+1)
– =10100+10011
– =1 00111
– =00111

The carry from the MSB is discarded.
The result is positive!! It is an overflow.

Binary Codes (1/2)

• Binary codes: how to represent decimal
digits.

• Weighted codes
– BCD codes (8-4-2-1): each decimal digit is

represented by its four-bit binary equivalent.
• 937: 1001 0011 0111

– 6-3-1-1 codes: weights are 6, 3, 1, 1
• 937: 1100 0100 1001

Binary Codes (2/2)

• Non-weighted codes
– Excess 3: obtained from the 8-4-2-1 code by

adding 3 (0011) to each the codes.
• 937: 1100 0110 1010

– 2-out-of-5: exactly 2 out of 5 bits are 1, has
error-checking properties.

• 937: 11000 01001 10010
– Gray code: the codes for successive decimal

digits differ in exactly one bit
• 456: 0110 1110 1010

Why Excess-3?
• Excess-3 codes

– 0 0011
– 1 0100
– 2 0101
– 3 0110
– 4 0111
– 5 1000
– 6 1001
– 7 1010
– 8 1011
– 9 1100

For a decimal digit D,
complement its code results

in the code of 9-D.

Why 6-3-1-1? (1/3)
• 8-4-2-1 codes

– 0 0000
– 1 0001
– 2 0010
– 3 0011
– 4 0100
– 5 0101
– 6 0110
– 7 0111
– 8 1000
– 9 1001

• 6-3-1-1 codes
– 0 0000
– 1 0001
– 2 0011
– 3 0100
– 4 0101
– 5 0111
– 6 1000
– 7 1001
– 8 1011
– 9 1100

Why 6-3-1-1? (2/3)

• Lets consider the situations of 1 bit
corrupted.

0000

0001

0010

0100

1000

In 8-4-2-1 coding
method, all 0001, 0010,
0100, and 1000 are valid
codes.
In 6-3-1-1 coding
method, only 0001,
0100, and 1000 are valid
codes.

Why 6-3-1-1? (3/3)

• Lets define the concept of error rate at 1
bit corrupted to be the number of possible
valid codes after being corrupted divided
by 4.

• For example, for 0000, the error rate at 1
bit corrupted is 100% when using 8-4-2-1
codes and 75% when using 6-3-1-1 codes.

