CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Outline

- Data Representation
- Binary Codes
- Why 6-3-1-1 and Excess-3?

Data Representation (1/2)

 Each numbering format, or system, has a base, or maximum number of symbols that can be assigned to a single digit.

System	Base	Possible Digits
Binary	2	0, 1
Octal	8	0, 1, 2, 3, 4, 5, 6, 7
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Data Representation (2/2)

- Binary: 11110101
- Octal: 365
- Decimal: 245
- Hexadecimal: F5

Binary Numbers (1/7)

- A computer stores instructions and data in memory as collections of electronic charges.
 - -1 = "on" → voltage at output of electronic device is high (saturated).
 - 0 = "off" → voltage at output of electronic device is zero.

Binary Numbers (2/7)

- Each digit (strictly, position of a digit) in a binary number is called a bit.
- In a binary number, bits are <u>usually</u> numbered starting at zero on the right side, and increasing toward the left.
- The bit on the left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).

Binary Numbers (3/7) 1011 0010 1001 1100 **MSB** LSB

Binary Numbers (4/7)

Unsigned binary integers

Can only be positive or zero

Translating unsigned binary integers to decimal

dec=(D_{n-1}*2ⁿ⁻¹)+(D_{n-2}*2ⁿ⁻²)+....+(D₁*2¹)+(D₀*2⁰)
1 1 1 1 0 1 0 1 (n=8)
D₇=1, D₆=1, D₅=1, D₄=1, D₃=0, D₂=1, D₁=0, D₀=1
dec=2⁷+2⁶+2⁵+2⁴+2²+2⁰=128+64+32+16+4+1=245

Binary Numbers (5/7)

- Translating unsigned decimal integers to binary
 - Example: translating 37 to binary

Division	Quotient	Remainder	
37/2	18	1	
18/2	9	0	
9/2	4	1	
4/2	2	0	
2/2	1	0	
1/2	0	1	

The result is 100101.

Binary Numbers (6/7)

- Binary Addition
 - Beginning with the lowest (rightmost) order pair of bits.
 - -Proceed bit by bit
 - -For each bit pair.

0+0=0	0+1=1
1+0=1	1+1=10

Binary Numbers (7/7)

Binary addition (cont)

Carry: 1

Value Range

- For an n-bit unsigned binary number, the range is 0~2ⁿ-1: 2ⁿ different values.
 - -2 bits: 4 values (0 -3)
 - -3 bits: 8 values (0-7)

- - - -

- 4 bits: 16 values (0 15)
- 8 bits (a byte): 256 values (0 255)

-10 bits: 1024 values (0 -1023)

Hexadecimal Integers (1/6)

- hexadecimal numbers are often used to represent computer memory address and instructions.
- A hexadecimal digit ranges from 0 to 15 (total of sixteen).
- The letters of the alphabet are used to represent 10 through 15.

- where A=10, B=11, C=12, D=13, E=14, and F=15

Hexadecimal Integers (2/6)

		a share	12	29 24
0		0		0000
1	1	1 2 3		0001
1 2 3	7.	2	18	0010
3	R			0011
4	NR	4		0100
5		5 6 7		0101
6		6		0110
7				0111
8	2	8 9 A	NUS -	1000
9		9		1001
10	100	А		1010
11		B C D		1011
12	12	С		1100
13	2	D		1101
14		E	NAS	1110
15		F		1111

Decimal Hexadecimal Binary

Each hexadecimal digit means a four binary bit string.Every four binary bit string can be mapped

to a hexadecimal digit.

Hexadecimal Integers (3/6)

- If we can break up a byte (8 bits) into halves, the upper and lower halves, each half can be represented by a hexadecimal digit.
- A byte could then be represented by two hexadecimal digits, rather than 8 bits.
- In general, any binary number can be split into four-bit groups, starting from right. Each such a group can be translated into hexadecimal digit.
- The result hexadecimal is much shorter than the binary equivalent.

Hexadecimal Integers (4/6)

101101010011110010100

0001	0110	1010	0111	1001	0100
1	6	A	7	9	4

•101101010011110010100

•16A794

Note when you are finding four bit groups, begin from the right.

Hexadecimal Integers (5/6)

- Converting unsigned hexadecimal to decimal.
 - $\operatorname{dec} = (D_{n-1}^{*}16^{n-1}) + (D_{n-2}^{*}16^{n-2}) + \dots + (D_{1}^{*}16^{1}) + (D_{0}^{*}16^{0})$
 - F5→245
 - $D_1 = F, D_0 = 5$
 - dec=F*16¹+5*16⁰
 - =15*16+5*1
 - =240+5
 - =245

Hexadecimal Integers (6/6)

Converting unsigned decimal to hexadecimal

Division	Quotient	Remainder
422/16	26	6 ↑
<mark>26</mark> /16	1	A
1/16	0	1

The result is 1A6.

Signed Integers (1/9)

- Signed integers can negative, zero and positive.
- The most significant bit in binary numbers indicates the number's sign.
 - 0 means positive or zero
 - 1 means negative
- When you are using signed binary numbers, the number of bits must be specified.

Signed Integers (2/9)

- When a signed binary is positive, it can be used as if it was an unsigned binary.
- When it is negative, two's complement is used the most often.
 - Two's complement (TC) notation works like the negating operation
 - TC(TC(number)) = number, [-(-number)=number]
 - TC(number)+number=0, [-number+number=0]

Signed Integers (3/9)

 Given an <u>eight-bit</u> number 0000 0001, its two's complement is 1111 1111

 Starting value
 0000 0001

 Step1: reverse the bits:
 1111 1110

 Step 2: add 1
 1111 1111

The two's complement representation of -1.

Signed Integers (4/9)

- Two's complement of hexadecimal
 - Reversing a hexadecimal digit is subtracting the digit from 15
 - $-6A3D \rightarrow 95C2+1 \rightarrow 95C3$
 - -95C3→6A3C+1→6A3D

Signed Integers (5/9)

 For a signed hexadecimal number, it is negative if its most significant digit is greater than 7. Otherwise it is zero or positive.

Signed Integers (5/9)

- Converting signed binary to decimal
 - MSB=1, this binary is in two's complement notation.
 - Get its two's complement (positive equivalent).
 - Convert to decimal.
 - Make the decimal negative.
 - MSB=0, this binary can be treated as an unsigned binary.

Signed Integers (6/9)

Starting value:1111 0000Step1: reverse the bits:0000 1111Step2: add 10000 1111+1Step3: its two's complement:0001 0000Step4: convert to decimal16Step5: make the decimal neg: -16

Signed Integers (8/9)

How to

- Convert signed decimal to binary?
- Convert signed decimal to hexadecimal?
- Convert signed hexadecimal to decimal?

Signed Integers (9/9)

Maximum and Minimum Values:
 For an n-bit signed binary number, the range is -2ⁿ⁻¹ - 2ⁿ⁻¹-1

Addition of Signed Binary Numbers (1/3)

- 13-12 (use five bits)
 - -=13+(-12)
 - -=01101+TC(01100)
 - -=01101+(10011+1)
 - -=01101+10100
 - -=1 00001 <u>The carry from the MSB is discarded.</u>
 - -=00001 <u>in signed binary number addition.</u>

Addition of Signed Binary Numbers (2/3)

- 13+12 (We still use 5 bits)
 -=01101+01100
 - -=11001 The result is negative!! It is an overflow.

Addition of Signed Binary Numbers (3/3)

- -12-13 (Still 5 bits)
 - -=TC(12)+TC(13)
 - -=TC(01100)+TC(01101)
 - -=(10011+1)+(10010+1)
 - -=10100+10011
 - -=100111 The carry from the MSB is discarded.
 - -=00111 The result is positive!! It is an overflow.

Binary Codes (1/2)

- Binary codes: how to represent decimal digits.
- Weighted codes
 - BCD codes (8-4-2-1): each decimal digit is represented by its four-bit binary equivalent.
 - 937: <u>1001</u> <u>0011</u> <u>0111</u>
 - -6-3-1-1 codes: weights are 6, 3, 1, 1
 - 937: <u>1100</u> <u>0100</u> <u>1001</u>

Binary Codes (2/2)

Non-weighted codes

- Excess 3: obtained from the 8-4-2-1 code by adding 3 (0011) to each the codes.
 - 937: <u>1100</u> <u>0110</u> <u>1010</u>
- 2-out-of-5: exactly 2 out of 5 bits are 1, has error-checking properties.
 - 937: <u>11000</u> <u>01001</u> <u>10010</u>
- Gray code: the codes for successive decimal digits differ in exactly one bit
 - 456: <u>0110</u> <u>1110</u> <u>1010</u>

Why Excess-3?

• Excess-3 codes

- 0	0011
- 1	0100
- 2	0101
- 3	0110
- 4	0111
- 5	1000
- 6	1001
- 7	1010
- 8	1011
- 9	1100

For a decimal digit D, complement its code results in the code of 9-D.

Why 6-3-1-1? (1/3)

• 8-4-2-1	codes	• 6-3-1-1	codes
- 0	0000	- 0	0000
- 1	0001	- 1	0001
- 2	0010	- 2	0011
- 3	0011	- 3	0100
- 4	0100	- 4	0101
- 5	0101	- 5	0111
- 6	0110	- 6	1000
- 7	0111	- 7	1001
- 8	1000	- 8	1011
- 9	1001	- 9	1100

Why 6-3-1-1? (2/3)

 Lets consider the situations of 1 bit corrupted.

In 8-4-2-1 coding method, all 0001, 0010, 0100, and 1000 are valid codes. In 6-3-1-1 coding method, only 0001, 0100, and 1000 are valid codes.

Why 6-3-1-1? (3/3)

- Lets define the concept of error rate at 1 bit corrupted to be the number of possible valid codes after being corrupted divided by 4.
- For example, for 0000, the error rate at 1 bit corrupted is <u>100%</u> when using 8-4-2-1 codes and 7<u>5%</u> when using 6-3-1-1 codes.