## CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

## Outline

- SR Latch
- D Latch
- Edge-Triggered D Flip-Flop (FF)
- S-R Flip-Flop (FF)
- J-K Flip-Flop (FF)
- T Flip-Flop (FF)
- Flip-Flops (FFs) with Additional Inputs

## SR Latch (1/17)

- Combinational circuits

   Outputs depend on present inputs

   Sequential circuits

   Outputs depend on both present and the past
  - Sequence of inputs.
  - Have memory.



## SR Latch (3/17)



| Х | Y | N | IOR |
|---|---|---|-----|
| 0 | 0 | 1 |     |
| 0 | 1 | 0 |     |
| 1 | 0 | 0 |     |
| 1 | 1 | 0 |     |

The circuit can assume an initial and stable state: SR/PQ=00/10.

## SR Latch (4/17)



XYNOR001010100110

• SR/PQ=10/01 is also stable.

## SR Latch (5/17)



XYNOR001010100110

• SR/PQ=00/01 is also stable.

## SR Latch (6/17)



XYNOR001010100110

- SR/PQ=01/10 is also stable.
- SR/PQ=00/10 is also stable.

# SR Latch (7/17)



XYNOR001010100110

# SR Latch (8/17)



XYNOR001010100110

## SR Latch (9/17)



The change between any two of 00, 10, 01 will reach a stable state.

## SR Latch (10/17)



XYNOR001010100110

•What is PQ when the circuit is stable?

## SR Latch (11/17)

SR=11 is restricted in SR latch.
PQ cannot be both 1.

## SR Latch (12/17)

- When SR=10, PQ=01 is stable.
- When SR=01, PQ=10 is stable.
- When SR=00, both PQ=10 and PQ=01 are stable.
- Note
  - In the stable states, P=Q'
  - Any change to SR=00 will not change PQ.
  - SR=00 is used to keep states (remember what happened.)

# SR Latch (13/17)



## SR Latch (14/17)

- How to draw a truth table for an SR latch?
   Input?
  - Output?

## SR Latch (15/17)



## SR Latch (16/17)

 Alternatively, an SR latch can be realized using NAND gates.

R

(b)



## SR Latch (17/17)

 Alternatively, an SR latch can be realized using NAND gates.

| - S-bar | R-bar | Q  | Q+ |
|---------|-------|----|----|
| - 1     | 1     | 0  | 0  |
| - 1     | 1     | 1  | 1  |
| - 1     | 0     | 0  | 0  |
| - 1     | 0     | 1  | 0  |
| - 0     | 1     | 0  | 1  |
|         | 121   | 1. |    |

#### Gated D Latch (1/3)



- What are S and R when G=0?
- G=0 keeps states: Q<sup>+</sup>=D.
- Can SR=11 ever occur?
- Q<sup>+</sup>=D when G=1.



## Gated D Latch (3/3)

- if(G==1){
- Q<sup>+</sup> = D;
- }else{

• }

• Q<sup>+</sup> = Q;

## Edge-Triggered D Flip-Flop (FF) (1/3)

- If the G signal in the D latch is connected to a clock input, the output changes only in response to the clock, not to a change in D.
- And we call this latch a D Flip-Flop (FF).





## Edge-Triggered D Flip-Flop (FF) (3/3)

Note Q does not change during Ck=0.



•Timing for D Flip-Flops (FF) (Falling-Edge Trigger)

## S-R Flip-Flop (FF) (1/3)

#### Q<sup>+</sup> changes in response to the clock signal.





## S-R Flip-Flop (FF) (3/3)

- Why master-slave Flip-Flops (FFs)?
  - The master Flip-Flop (FF) holds the output for in the first half clock cycle.
  - When the slave Flip-Flop (FF) updates and outputs, the master is closed.
  - This mechanism guarantees that the final output changes only once in a clock cycle.

## JK Flip-Flop (FF) (1/2)

- An extended version of the SR Flip-Flop (FF)
  - J corresponds to S
  - K corresponds to R

| • J | K | Q | Q <sup>+</sup> |
|-----|---|---|----------------|
| • 0 | 0 | 0 | 0              |
| • 0 | 0 | 1 | 1              |
| • 0 | 1 | 0 | 0              |
| • 0 | 1 | 1 | 0              |
| • 1 | 0 | 0 | 1              |
| • 1 | 0 | 1 | 1              |
| • 1 | 1 | 0 | 1              |
| • 1 | 1 | 1 | 0              |

JK can be 11. This configuration changes the state of Q.

## JK Flip-Flop (FF) (2/2)



- S1=J \* Q' \* CLK'
- R1=K \* Q \* CLK'
- S1 and R1 cannot be 1 at the same time.

## T Flip-Flop (FF) (1/2)

T=0 → no state change
T=1 → state changes



## T Flip-Flop (FF) (2/2)



## Summary (1/8)

- All the Flip-Flops (FFs) and D latch are based on SR latch.
- SR latch can be described using
  - $-Q^+=S+R'Q$
  - S=1 sets Q
  - R=1 resets Q
  - SR=00 keeps states (Q does not change.)

## Summary (2/8) Q<sup>+</sup>=S+R'Q

- Gated D latch
  - -S=DG
  - -R=D'G
  - When G=0, SR==00  $\rightarrow$  state kept.
  - When G=1, Q=D
    - When  $\underline{D=0}$ , SR=01  $\rightarrow$  reset Q  $\rightarrow \underline{Q=0}$
    - When  $\underline{D=1}$ , SR=10  $\rightarrow$  set Q  $\rightarrow$   $\underline{Q=1}$

## Summary (3/8) Q<sup>+</sup>=S+R'Q

 When G is a clock signal, two gated D latches comprise an edge-triggered D Flip-Flop (FF)



## Summary (4/8) Q<sup>+</sup>=S+R'Q

#### SR Flip-Flop (FF)

- Master and slave
- When the master receives the input and updates, the slave is close.
- When the slave outputs, the master does not respond to any input change.



## Summary (5/8) Q<sup>+</sup>=S+R'Q

#### SR Flip-Flop (FF) (cont)

- When CLK is low,
  - $S_1R_1=SR \rightarrow P^+=S+R'P$ , master is updated
  - $S_2R_2=00 \rightarrow Q$  does not change



## Summary (6/8) Q<sup>+</sup>=S+R'Q

### SR Flip-Flop (FF) (cont)

- When CLK is high,

•

- $S_1R_1=00 \rightarrow P$  does not change
  - master does not respond to inputs
- $S_2R_2 = PP' \rightarrow Q^+ = P + (P')'Q = P$



## Summary (7/8) Q<sup>+</sup>=S+R'Q

#### • SR Flip-Flop (FF) (cont)



• The final output, Q, was not affected by 01

## Summary (8/8) Q<sup>+</sup>=S+R'Q

- JK Flip-Flop (FF)
  - Very similar to SR master-slave Flip-Flop (FF)
  - Except JK=11 inverts the output
- T Flip-Flop (FF)
  - $-T=1 \rightarrow$  inverts the output
  - $-T=0 \rightarrow$  keeps the same output

## Flip-Flops (FFs) with Additional Inputs (1/3)

 Clear and Preset signals are two asynchronous signals and do not depend on CLK.



## Flip-Flops (FFs) with Additional Inputs (2/3)



## Flip-Flops (FFs) with Additional Inputs (3/3)

#### Clock enable signal



(a) Gating the clock

(b) D-CE symbol

(c) Implementation