CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Outline

- Basic Operations of Boolean Algebra
- Examples
- Basic Theorems
- Commutative, Associative, and Distributive Laws
- Simplification Theorems
- Multiplying Out and Factoring
- DeMorgan's Laws

Basic Operations of Boolean Algebra (1/11)

- All the switching devices are two-state devices.
- Boolean algebra is useful in analyzing switching devices and circuits.

Basic Operations of Boolean Algebra (2/11)

- Basic elements:
 - Three tools in analyzing switching devices
 - Boolean expression: A+B, A-B
 - Truth table
 - Logic diagram

- Inputs and outputs can only be 0's or 1's.

Basic Operations of Boolean Algebra (3/11)

- Basic operations:
 - AND
 - Logic expression: C=A-B or C=AB
 - Truth table

• Logic diagram

Basic Operations of Boolean Algebra (4/11)

- Basic operations (cont)
 - -OR
 - Logic Expression: C=A+B
 - Truth Table

Logic diagram

Basic Operations of Boolean Algebra (5/11)

- Basic operations (cont)
 - complement
 - Logic Expression: C=A'
 - Truth Table

1281.00	Α	С
N. N	0	1
100000	1	0

Logic diagram A

Basic Operations of Boolean Algebra (6/11)

- Rules of precedence:
 - Brackets
 - NOT
 - AND
 - -OR

Basic Operations of Boolean Algebra (7/11)

- Example 1:
 - Logic expression
 - AB'+C
 - Order of execution: $B' \rightarrow AB' \rightarrow AB' + C$
 - Logic diagram

Basic Operations of Boolean Algebra (8/11)

- Example 1 (cont)
 - Truth Table
 - How many inputs: three
 - How many rows: 2³=8
 - How many outputs: one

Basic Operations of Boolean Algebra (9/11)

• Example 1 (cont)

ABC	В'	AB'	AB'+C
000	1	0	0
001	1	0	1
0 1 0	0	0	0
0 1 1	0	0	1
100	1	1	1
101	1	1	1
1 1 0	0	0	0
1 1 1	0	0	1

Basic Operations of Boolean Algebra (10/11)

- Example 2:
 - Boolean expression: [A(C+D)]'+BE
 - Logic diagram:

Basic Operations of Boolean Algebra (11/11)

- Example 2
 - Truth Table
 - How many inputs: five
 - How many rows: 2⁵=32
 - How many outputs: one

Basic Theorems

- Operations with 0 and 1

 X+0=X
 X·1=X
 X+1=1
 X·0=0

 Idempotent laws

 X+X=X
 X·X=X
- Involution law
 - -(X')'=X
- Laws of complementarity
 -X+X'=1 X·X'=0

Commutative, Associative, and Distributive Laws

- Commutative laws
 - -XY=YX
 - -X+Y=Y+X
- Associative laws
 - -(XY)Z=X(YZ)
 - (X+Y)+Z=X+(Y+Z)=X+Y+Z
 - XYZ=1 iff X=Y=Z=1
 - X+Y+Z=0 iff X=Y=Z=0
- Distributive laws
 - X(Y+Z)=XY+XZ
 - X+YZ=(X+Y)(X+Z)

Simplification Theorems (1/3)

- XY+XY'=X
- (X+Y)(X+Y')=X
- X+XY=X
- X(X+Y)=X
- (X+Y')Y=XY
 XY'+Y=X+Y

Simplification Theorems (2/3)

Simplification Theorems (3/3)

Z=[A+B'C+D+EF][A+B'C+(D+EF)']
 X=A+B'C and Y=D+EF
 Z=(X+Y)(X+Y')=X=A+B'C

Z=(AB+C)(B'D+C'E')+(AB+C)'
 X=B'D+C'E' and Y=(AB+C)'
 Z=Y'X+Y=Y+X=B'D+C'E'+(AB+C)'

Multiplying and Factoring (1/4)

- Sum-of-products
 - All products are the products of single variables or complements.
 - AB'+CD'E+AC'E'
 - -A+B'+C+D'E
 - (A+B)CD+EF X
- Product-of-sums
 - All sums are the sums of single variables or complements.
 - (A+B')(C+D'+E)(A+C'+E')
 - -(A+B)(C+D+E)F
 - (A+B)(B'C+D) X

Multiplying and Factoring (2/4)

- Multiplying
 - -(A+B)(B+C)(D'+B)(ACD'+E)
 - -=(ACD'+B)(ACD'+E)
 - -=ACD'+BE

Multiplying and Factoring (3/4)

- Factoring
 - -AB'+C'D
 - -=(AB'+C')(AB'+D)
 - -=(A+C')(B'+C')(A+D)(B'+D)

Multiplying and Factoring (4/4)

- A sum-of-products expression can always be realized directly by one or more AND gates feeding a single OR gate at the circuit output.
- A product-of-sums expression can always be realized by one or more OR gates feeding a single AND gate at the circuit output.

DeMorgan's Laws (1/2)

(X+Y)'=X'Y'
(XY)'=X'+Y'

• $(X_1 + X_2 + X_3 + ... + X_n)' = X_1' X_2' X_3' ... X_n'$ • $(X_1 X_2 X_3 ... X_n)' = X_1' + X_2' + X_3' + ... + X_n'$ • [(A+B')C']'(A+B)(C+A)'-=(A'B+C)(A+B)A'C' -=(A'B+C)(A'BC') -=A'BC'

• [(A'+B)C']'=(A'+B)'+(C')'=AB'+C

DeMorgan's Laws (2/2)