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Basic Operations of Boolean
Algebra (1/11)

 All the switching devices are two-state
devices.

 Boolean algebra is useful in analyzing
switching devices and circuits.



Basic Operations of Boolean
Algebra (2/11)

e Basic elements:

— Three tools in analyzing switching devices
e Boolean expression: A+B, A-B
e Truth table
e Logic diagram

— Inputs and outputs can only be O’s or 1’s.



Basic Operations of Boolean

Algebra (3/11)
e Basic operations:
— AND

» Logic expression: C=A-B or C=AB

e Truth table A B C=A.B
0 0 0
0 1 0
1 0 0
1 1 1

« Logic diagram g:}c




Basic Operations of Boolean
Algebra (4/11)

e Basic operations (cont)

— OR
* Logic Expression: C=A+B

e Truth Table A B C=A.B
0 0 0
0 1 1
1 0 1
1 1 1

e Logic diagram

-



Basic Operations of Boolean
Algebra (5/11)

e Basic operations (cont)

— complement
e Logic Expression: C=A’
e Truth Table

A C
0 1
1 0

e Logic diagram E_DQ_ C



Basic Operations of Boolean
Algebra (6/11)

* Rules of precedence:
— Brackets
— NOT
— AND
— OR



Basic Operations of Boolean
Algebra (7/11)

 Example 1:
— Logic expression
« AB+C
» Order of execution: BB>AB'2>AB'+C
— Logic diagram

L) T




Basic Operations of Boolean
Algebra (8/11)

 Example 1 (cont)

— Truth Table

« How many inputs: three
e« How many rows: 23=8
 How many outputs: one



Basic Operations of Boolean
Algebra (9/11)

e Example 1 (cont)

ABC B’ AB AB’+C
000 1 0 0
001 1 0 1
010 0 0 0
011 0 0 1
100 1 1 1
I 1 1 1
110 0 0 0
i sl 0 0 1




Basic Operations of Boolean
Algebra (10/11)

e Example 2:
— Boolean expression: [A(C+D)|'+BE
— Logic diagram:

D—D D>




Basic Operations of Boolean
Algebra (11/11)

 Example 2

— Truth Table

« How many inputs: five
e How many rows: 2°=32
 How many outputs: one



Basic Theorems

Operations with 0 and 1
— X+0=X X-1=X

— X+1=1 X-0=0
ldempotent laws

— X+ X=X X:- X=X
Involution law

LG =X

Laws of complementarity
— X+X'=1 X-X'=0



Commutative, Associative, and
Distributive Laws

« Commutative laws
SR =YX
— X+Y=Y+X
e Assoclative laws
— (XY)Z=X(YZ2)
— (X+Y)+Z=X+(Y+2)=X+Y+Z
= XY Z=TiffaX=Y=2=1
— X+Y+2Z=0 iff X=Y=2Z=0
 Distributive laws
— X(Y+2)=XY+XZ
— X+YZ=(X+Y)(X+2)




Simplification Theorems (1/3)

e XY+XY'=X

o (X+Y)(X+Y")=X

e X+XY=X

e X(X+Y)=X

e (X+Y)Y=XY

e XY'+Y=X+Y



Simplification Theorems (2/3)

m} )

(a) (b)



Simplification Theorems (3/3)

o /=[A+B’C+D+EF][A+B'C+(D+EF)’]
— X=A+B’'C and Y=D+EF
— Z=(X+Y)(X+Y")=X=A+B'C

« Z=(AB+C)(B'D+C’E’)+(AB+C)
— X=B’'D+C’E’ and Y=(AB+C)’
— Z=Y'X+Y=Y+X=B’'D+C’E'+(AB+C)’



Multiplying and Factoring (1/4)

e Sum-of-products

— All products are the products of single variables or
complements.

— AB'+CD’E+AC’E’

— A+B'+C+D’E

— (A+B)CD+EF X
 Product-of-sums

— All sums are the sums of single variables or
complements.

— (A+B’)(C+D’'+E)(A+C’+E")
— (A+B)(C+D+E)F
— (A+B)(B'C+D) X



Multiplying and Factoring (2/4)

e Multiplying
— (A+B)(B+C)(D'+B)(ACD'+E)
— =(ACD'+B)(ACD'+E)
— =ACD'+BE



Multiplying and Factoring (3/4)

e Factoring
— AB+C'D
— =(AB’'+C’)(AB'+D)
— =(A+C")(B’+C’)(A+D)(B'+D)



Multiplying and Factoring (4/4)

e A sum-of-products expression can always
be realized directly by one or more AND
gates feeding a single OR gate at the
circuit output.

e A product-of-sums expression can always
be realized by one or more OR gates
feeding a single AND gate at the circuit
output.



DeMorgan’s Laws (1/2)

e (X+Y)=XY’
o« (XY)=X'+Y’

o (Xg# Xt Xtk X )=X X Xy X

n

o (X XoXgero XY= X+ X+ g+, ot X



DeMorgan’s Laws (2/2)

e [(A'+B)C'T=(A'+B)+(C’)=AB+C

— =(A’'B+C)(A+B)A'C’
— =(A'B+C)(A'BC’)
A A B



