PRBS (according ITU-T 0.150) and Bit-Sequence Tester : VHDL-Modules

A PRBS (Pseudo Random Binary Sequence) is a binary PN (Pseudo-Noise) signal. The sequence of binary 1's and 0's exhibits certain randomness and autocorrelation properties.

Bit-sequences like PRBS are used for testing transmission lines and transmission equipment because of their randomness properties.

Simple bit-sequences are used to test the DC compatibility of transmission lines and transmission equipment.

The different types of PRBS and the suggested data-rates for the different PRBS types are described in the ITU-T standards O.150, O.151, O.152 and O.153.

PRBS type	Standard	Suggested Datarate [kbit/sec]	Feedback tap
2^{9} -1	ITU-T O.150 / O.153	up to 14.4	$5^{\text{th}} + 9^{\text{th}}$
2 11 -1	ITU-T O.150 / O.152 / O.153	64, n*64 (n=131), 48 to 168	$9^{th} + 11^{th}$
2^{15} -1	ITU-T O.150 / O.151	1544, 2048, 6312, 8448, 32064, 44736	
2^{20} -1	ITU-T O.150 / O.151	1544, 6312, 32064, 44736	$17^{th} + 20^{th}$
2^{20} -1	ITU-T O.150 / O.153	up to 72	$3^{rd} + 20^{th}$ (note 1)
2^{23} -1	ITU-T O.150 / O.151	34368, 44736, 139264	$18^{th} + 23^{rd}$
2 ²⁹ -1	ITU-T O.150		$27^{\text{th}} + 29^{\text{th}}$
2^{31} -1	ITU-T O.150		$28^{th} + 31^{st}$

Note 1 = an output bit is forced to be a ONE whenever the previous 14 bits are all ZERO.

PRBS bit-pattern are generated in a linear feed-back shift-register. This is a shift-register with a xored-feedback of the output-values of specific flip-flops to the input of the first flip-flop.

Example : PRBS-Generation of the sequence 2⁹ -1 :

At start time all flip-flops are set to '1'.

PRBS (according ITU-T 0.150) and Bit-Sequence Tester : VHDL-Modules

The PRBS and bit-sequence tester consists of two modules :

PRBS and bit-sequence generator PRBS and bit-sequence receiver

Both modules are plain VHDL based without any special units (e.g. RAM-blocks from a FPGA vendor).

The modules are synchronous designs with clock and clock-enable inputs. A control port enables the possibility to select different PRBS sequences or bit pattern (See page 4). The generator is able to transmit sequences with selectable error rates from 10^{-1} to 10^{-12} . It has a transmit single bit error input too.

The receiver has signaling outputs for synchronization state, synchronization loss, bit error and clock error.

Synchronization state :

The output goes to high when :

- in PRBS mode 2*X (X = PRBS shift register length [9..31]) error free bits are received

- in bit pattern mode 20 error free bits are received

The output goes to low if the error rate exceeds 0.2. To detect this level, the bit errors during the last 128 received bits are memorized. If there are more than 25 errors within these 128 bits, the output goes low.

Synchronization loss :

When the synchronization upon the received bit sequence is lost, the output goes high for one clock period (plus clock enable).

Bit error :

This output goes high, when the receiver is synchronized and a bit error in the received bit sequence is detected. This signaling output has a delay of 128 bit times, because massive bit errors who causes a synchronization loss must not be reported as bit errors.

Clock error :

This output goes high, when the receiver is synchronized and a clock error (bit slip : bit lost or bit inserted) in the received bit sequence is detected.

The clock error functionality is not implemented at the moment.

PRBS-Generator-Module

PRBS-Generator : VHDL-Entity

```
entity PRBS_TX_SER is
port (
    CLK : in std_logic; -- synchron clock
    RESET : in std_logic; -- asynchron reset
    CLK_EN : in std_logic; -- clock enable
    PRBS_SET : in std_logic; -- set new PRBS / bit pattern
    PRBS_TYPE : in std_logic; -- set new PRBS / bit pattern
    PRBS_INV : in std_logic; -- invert PRBS pattern
    ERR_INSERT : in std_logic; -- manual error insert
    ERR_SET : in std_logic; -- set new error type
    TX_BIT : out std_logic -- tx serial output
    );
end PRBS_TX_SER;
```

Date : 02.10.04

PRBS-Generator : Interface Description

CLK

Base clock for the PRBS generator. The whole PRBS logic of the generator works with this clock.

RESET

Asynchronous reset for the whole internal logic of the PRBS generator.

CLK_EN

Clock enable signal for the PRBS generator.

PRBS_SET (synchronous to CLK)

When PRBS_SET is high the generator reads the values on the inputs PRBS_TYPE and PRBY_INV.

PRBS_TYPE (synchronous to CLK)

Input vector for selection of the PRBS sequence or of the bit pattern. This vector is read by the generator when PRBS_SET is high.

PRBS_TYPE vector	PRBS sequence / bit pattern	Note
0 0 0 0	2 ^ 9 -1	DC free
0 0 0 1	2 ^ 11 -1	DC free
0 0 1 0	2 ^ 15 -1	DC free
0 0 1 1	2 ^ 20 -1	DC free
0 1 0 0	2 ^ 20 -1	DC free
0 1 0 1	2 ^ 23 -1	DC free
0 1 1 0	2 ^ 29 -1	DC free
0 1 1 1	2 ^ 31 -1	DC free
1 0 0 0	all '0' : "00000000"	DC only
1 0 0 1	all '1' : "11111111"	DC only
1 0 1 0	alternating '0' and '1' : "01010101"	DC free
1 0 1 1	alternating '00' and '11' : "00110011"	DC free
1 1 0 0	one '0' and seven '1' : "01111111"	With DC component
1 1 0 1	one '1' and seven '0' : "10000000"	With DC component
1 1 1 0	two '0' and six '1' : "01110111"	With DC component
1 1 1 1	two '1' and six '0' : "10001000"	With DC component

PRBS_INV (synchronous to CLK)

Input signal for selection of the polarity of the PRBS sequence. A high signal on this input inverts the PRBS bit sequence on TX_BIT. This signal is read by the generator when PRBS_SET is high. The polarity of the bit pattern is not affected by PRBS_INV.

ERR_INSERT (synchronous to CLK)

Input signal for inserting an error into the actual generated PRBS bit or pattern bit. A rising edge on this input signal (mentioned with CLK) generated exact one defective bit.

ERR_SET (synchronous to CLK)

When ERR_SET is high the generator reads the value on the input ERR_TYPE.

ERR_TYPE (synchronous to CLK)

Input vector for selection of transmitted error rate (if desired). This vector is read by the generator when ERR_SET is high.

ERR_TYPE vector	Transmitted error rate	Error distance at 100 Mbit/sec
0 0 0 0	0	-
0 0 0 1	10 ^ -1	100 ns
0 0 1 0	10 ^ -2	1 us
0 0 1 1	10 ^ -3	10 us
0 1 0 0	10 ^ -4	100 us
0 1 0 1	10 ^ -5	1 ms
0 1 1 0	10 ^ -6	10 ms
0 1 1 1	10 ^ -7	100 ms
1000	10 ^ -8	1 sec
1 0 0 1	10 ^ -9	10 sec
1 0 1 0	10 ^ -10	100 sec
1 0 1 1	10 ^ -11	17 min
1 1 0 0	10 ^ -12	167 min = 2,8 h
1 1 0 1	variable : 10^-3 to 10^- 6	(not implemented)
1 1 1 0	variable : 10^-3 to 10^-12	(not implemented)
1 1 1 1	variable : 10^-9 to 10^-12	(not implemented)

TX_BIT (synchronous to CLK)

Output of the PRBS generator for the PRBS sequence alternatively for the bit pattern.

PRBS-Receiver-Module

PRBS-Receiver : VHDL-Entity

entity PRBS_RX_SER is port (: in std_logic; CLK -- synchron clock : in std_logic; RESET -- asynchron reset CLK_EN : in std_logic; -- clock enable RX_BIT: in std_logic;-- rx serial inputPRBS_SET: in std_logic;-- set new PRBS / bit patternPRBS_TYPE: in std_logic_vector (3 downto 0);-- type of PRBS / bit pattern PRBS_INV : in std_logic; -- invert PRBS pattern SYN_STATE : out std_logic; -- synchronisation state output SYN_LOS : out std_logic; BIT_ERR : out std_logic; -- sync loss signaling output -- biterror signaling output CLK_ERR : out std_logic -- clockerror signaling output); end PRBS_RX_SER;

PRBS-Receiver : Interface Description

CLK

Base clock for the PRBS receiver. The whole PRBS logic of the receiver works with this clock.

RESET

Asynchronous reset for the whole internal logic of the PRBS receiver.

CLK_EN

Clock enable signal for the PRBS receiver.

RX_BIT (synchronous to CLK)

Input of the receiver for the received PRBS sequence or for the received bit pattern.

PRBS_SET (synchronous to CLK)

When PRBS_SET is high the receiver reads the values on the inputs PRBS_TYPE and PRBY_INV.

PRBS_TYPE (synchronous to CLK)

Input vector for selecting the PRBS sequence or of the bit pattern. This vector is read by the receiver when PRBS_SET is high.

PRBS_TYPE vector	PRBS sequence / bit pattern	Note
0 0 0 0	2 ^ 9 -1	DC free
0 0 0 1	2 ^ 11 -1	DC free
0 0 1 0	2 ^ 15 -1	DC free
0 0 1 1	2 ^ 20 -1	DC free
0 1 0 0	2 ^ 20 -1	DC free
0 1 0 1	2 ^ 23 -1	DC free
0 1 1 0	2 ^ 29 -1	DC free
0 1 1 1	2 ^ 31 -1	DC free
1 0 0 0	all '0' : "00000000"	DC only
1 0 0 1	all '1' : "1111111"	DC only
1 0 1 0	alternating '0' and '1' : "01010101"	DC free
1 0 1 1	alternating '00' and '11' : "00110011"	DC free
1 1 0 0	one '0' and seven '1' : "01111111"	With DC component
1 1 0 1	one '1' and seven '0' : "10000000"	With DC component
1 1 1 0	two '0' and six '1' : "01110111"	With DC component
1 1 1 1	two '1' and six '0' : "10001000"	With DC component

PRBS_INV (synchronous to CLK)

Input signal for selecting the polarity of the PRBS sequence. A high signal on this input inverts the PRBS bit sequence received on RX_BIT. This signal is read by the receiver when PRBS_SET is high. The polarity of the bit pattern is not affected by PRBS_INV.

SYN_STATE (synchronous to CLK)

Output signal of the module for the synchronization state of the PRBS or bit pattern receiver.

The output goes to high when :

- in PRBS mode 2*X (X = PRBS shift register length [9..31]) error free bits are received

- in bit pattern mode 20 error free bits are received

The output goes to low if the error rate exceeds 0.2. To detect this level, the bit errors during the last 128 received bits are memorized. If there are more than 25 errors within these 128 bits, the output goes low.

SYN_LOS (synchronous to CLK)

Output signal of the module for synchronization lost indication. When the synchronization upon the received bit sequence is lost, SYN_STATE goes low. At this time SYN_LOS goes high for one period of CLK (plus CLK_EN).

BIT_ERR (synchronous to CLK)

Output signal of the module for signaling a bit error in the received bit sequence when the receiver is synchronized (SYN_STATE is high). This signaling output has a delay of 128 bit times (see SYN_STATE description), because massive bit errors who causes a synchronization loss must not be reported as bit errors.

CLK_ERR (synchronous to CLK)

Output signal of the module for signaling a clock error (bit slip : bit lost or bit inserted) in the received bit sequence when the receiver is synchronized (SYN_STATE is high). *Not implemented at the moment.*