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Multipliers 
 

Introduction 
 

    Multipliers play an important role in today’s digital signal processing and various other 

applications. With advances in technology, many researchers have tried and are trying to design 

multipliers which offer either of the following design targets – high speed, low power 

consumption, regularity of layout and hence less area or even combination of them in one 

multiplier thus making them suitable for various high speed, low power and compact VLSI 

implementation. 

    The common multiplication method is “add and shift” algorithm. In parallel multipliers 

number of partial products to be added is the main parameter that determines the performance of 

the multiplier. To reduce the number of partial products to be added, Modified Booth algorithm 

is one of the most popular algorithms. To achieve speed improvements Wallace Tree algorithm 

can be used to reduce the number of sequential adding stages. Further by combining both 

Modified Booth algorithm and Wallace Tree technique we can see advantage of both algorithms 

in one multiplier. However with increasing parallelism, the amount of shifts between the partial 

products and intermediate sums to be added will increase which may result in reduced speed, 

increase in silicon area due to irregularity of structure and also increased power consumption due 

to increase in interconnect resulting from complex routing. On the other hand “serial-parallel” 

multipliers compromise speed to achieve better performance for area and power consumption.  

The selection of a parallel or serial multiplier actually depends on the nature of application. In 

this lecture we introduce the multiplication algorithms and architecture and compare them in 

terms of speed, area, power and combination of these metrics.  
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Multiplication Algorithm 

 
The multiplication algorithm for an N bit multiplicand by N bit multiplier is shown below: 

 

Y= Yn-1 Yn-2 ........................Y2 Y1 Y0     Multiplicand       

X= Xn-1 Xn-2   ..................... X2 X1 X0     Multiplier                                        

                                                                                                                                  

2

Yn-1X0 Yn-2X0 Yn-3X0     …… Y1X0  Y0X0

Yn-1X1 Yn-2X1 Yn-3X1     …… Y1X1  Y0X1

Yn-1X2 Yn-2X2 Yn-3X2     …… Y1X2  Y0X2  

… … … …

….       ….          ….        ….         ….

Yn-1Xn-2 Yn-2X0 n-2 Yn-3X n-2     …… Y1Xn-2  Y0Xn-2  

Yn-1Xn-1 Yn-2X0n-1 Yn-3Xn-1     …… Y1Xn-1  Y0Xn-1  

-----------------------------------------------------------------------------------------------------------------------------------------

P2n-1              P2n-2                P2n-3    P2          P1         P0

Y= Yn-1 Yn-2 ........................Y2 Y1 Y0

X= Xn-1 Xn-2 ..................... X2 X1 X0

=================================================

Generally

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example         1101     4-bits 

1101 4-bits 

                             

                            1101 

                           0000 

                         1101 

                       1101 

                     

                   10101001 
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AND gates are used to generate the Partial Products, PP, If the multiplicand is N-bits and the 

Multiplier is M-bits then there is N* M partial product. The way that the partial products are 

generated or summed up is the difference between the different architectures of various 

multipliers. 

Multiplication of binary numbers can be decomposed into additions. Consider the 

multiplication of two 8-bit numbers A and B to generate the 16 bit product P. 

 
           A7    A6    A5    A4    A3    A2    A1    A0   

          X   B7    B6    B5    B4    B3    B2    B1    B0   

                                        ------------------------------------------------- 

                         A7.B0 A6.B0 A5.B0 A4.B0 A3.B0 A2.B0 A1.B0 A0.B0 

                                +   A7.B1 A6.B1 A5.B1 A4.B1 A3.B1 A2.B1 A1.B1 A0.B1 

                          +   A7.B2 A6.B2 A5.B2 A4.B2 A3.B2 A2.B2 A1.B2 A0.B2 

                    +   A7.B3 A6.B3 A5.B3 A4.B3 A3.B3 A2.B3 A1.B3 A0.B3                     

              +   A7.B4 A6.B4 A5.B4 A4.B4 A3.B4 A2.B4 A1.B4 A0.B4                                                           

        +   A7.B5 A6.B5 A5.B5 A4.B5 A3.B5 A2.B5 A1.B5 A0.B5 

   +  A7.B6 A6.B6 A5.B6 A4.B6 A3.B6 A2.B6 A1.B6 A0.B6 

+A7.B7 A6.B7 A5.B7 A4.B7 A3.B7 A2.B7 A1.B7 A0.B7 

 

---------------------------------------------------------------------------------------- 

 

P15   P14   P13   P12   P11   P10   P9    P8   P7   P6    P5    P4    P3    P2    P1   P0                                         

 

                                                                                             

The equation for the addition is: 









1

0

1

0

2  A(m)B(n)  n)P(m
m

i

n

j

ji

jiba  . 

 

 

 

Multiplication Algorithm 

 If the LSB of Multiplier is ‘1’, then add the multiplicand into an accumulator. 

 Shift the multiplier one bit to the right and multiplicand one bit to the left. 

 Stop when all bits of the multiplier are zero. 

 

From above it is clear that the multiplication has been changed to addition of numbers. If 

the Partial Products are added serially then a serial adder is used with least hardware. It is 

possible to add all the partial products with one combinational circuit using a parallel 

multiplier. However it is possible also, to use compression technique then the number of 

partial products can be reduced before addition .is performed.  

 

 

Patial 

Products to 

be added 
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Serial Multiplier 
Where area and power is of utmost importance and delay can be tolerated the serial multiplier 

is used.  This circuit uses one adder to add the m * n
 
partial products. The circuit is shown in 

the fig. below for m=n=4. Multiplicand and Multiplier inputs have to be arranged in a special 

manner synchronized with circuit behavior as shown on the figure. The inputs could be 

presented at different rates depending on the length of the multiplicand and the multiplier. Two 

clocks are used, one to clock the data and one for the reset. A first order approximation of the 

delay is O (m,n). With this circuit arrangement the delay is given as D =[ (m+1)n + 1 ]  tfa.  
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X: x3 x2 x1 x0 Y:y3 y2 y1 y0

Input Sequence for G1: 

00x3 x2 x1 x00 x3 x2 x1 x0 0x3 x2 x1 x0 0x3 x2 x1 x0

00y3 y3 y3 y3  0y 2 y2 y2 y2 0y1 y1 y1 y1  0y 0 y0 y0 y0

Reset:010000100001000010000

X: x3 x2 x1 x0 Y:y3 y2 y1 y0

Input Sequence for G1: 

00x3 x2 x1 x00 x3 x2 x1 x0 0x3 x2 x1 x0 0x3 x2 x1 x0

00y3 y3 y3 y3  0y 2 y2 y2 y2 0y1 y1 y1 y1  0y 0 y0 y0 y0

Reset:010000100001000010000

 
As shown the individual PP is formed individually. The addition of the PPs are performed as 

the intermediate values of PPs addition are stored in the DFF, circulated and added together 

with the newly formed PP. This approach is not suitable for large values of M or N.  

For snapshots of data movements please see the course website/slides of lecture 3. 
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Serial/Parallel Multiplier 
 

The general architecture of the serial/parallel multiplier is shown in the figure below. One 

operand is fed to the circuit in parallel while the other is serial. N partial products are formed 

each cycle. On successive cycles, each cycle does the addition of one column of the 

multiplication table of M*N PPs. The final results are stored in the output register after N+M 

cycles. While the area required is N-1 for M=N. For snapshots of data transfer through this 

multiplier please see the course website/slides of lecture 

 
A pipelined version of an 8 bit multiplier is shown below. 
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Shift and Add Multiplier 
 

The general architecture of the shift and add multiplier is shown in the figure below for a 32 bit 

multiplication.  Depending on the value of multiplier LSB bit, a value of the multiplicand is 

added and accumulated. At each clock cycle the multiplier is shifted one bit to the right and its 

value is tested. If it is a 0, then only a shift operation is performed. If the value is a 1, then the 

multiplicand is added to the accumulator and is shifted by one bit to the right. After all the 

multiplier bits have been tested the product is in the accumulator. The accumulator is 2N 

(M+N) in size and initially the N, LSBs contains the Multiplier. The delay is N cycles 

maximum. This circuit has several advantages in asynchronous circuits. To view data 

movements please see course website/slides of lecture 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Array Multiplier 
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Array Multipliers 

 
 Array multiplier is well known due to its regular structure. Multiplier circuit is based on add and 

shift algorithm. Each partial product is generated by the multiplication of the multiplicand with 

one multiplier bit. The partial product are shifted according to their bit orders and then added.  

The addition can be performed with normal carry propagate adder. N-1 adders are required 

where N is the multiplier length.  

 

 

    
A3 A2 A1 A0 

Inputs 

   
x B3 B2 B1 B0 

   
C B0 x A3 B0 x A2 B0 x A1 B0 x A0 

Internal Signals 

  
+ B1 x A3 B1 x A2 B1 x A1 B1 x A0 

 

  
C sum sum sum sum 

 

 
+ B2 x A3 B2 x A2 B2 x A1 B2 x A0 

  

 
C sum sum sum sum 

  
+ B3 x A3 B3 x A2 B3 x A1 B3 x A0 

   
C sum sum sum sum 

   
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Outputs 
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An example of 4-bit multiplication method is shown below: 

 
 

Although the method is simple as it can be seen from this example, the addition is done serially 

as well as in parallel. To improve on the delay and area the CRAs are replaced with Carry Save 

Adders, in which every carry and sum signal is passed to the adders of the next stage. Final 

product is obtained in a final adder by any fast adder (usually carry ripple adder). In array 
multiplication we need to add, as many partial products as there are multiplier bits. This 
arrangements is shown in the figure below 
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Total Area = (N-1) *  M  * Area FA 

Delay= 2(M-1) FA 
 

Now as both multiplicand and multiplier may be positive or negative, 2’s complement number 

system is used to represent them. If the multiplier operand is positive then essentially the same 

technique can be used but care must be taken for sign bit extension.  
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The reason for dealing with signed number incorrectly is the absence of sign bit expansion in 

this multiplier. 

 

                         a1  a0                                    a1  a0 

                        X  b1  b0                              X   b1  b0 

        a1b0   a0b0            a1b0 a1b0 a1b0 a0b0                   

 a1b1 a0b1                     a1b1 a1b1 a0b1           

Wrong                         Correct 

 

There is a way to correct this fault, which do not need to expand all of the bits in the partial 

product addition. 

When 2’s complement partial products are added in carry save arithmetic all numbers to be 

added in one adder stage have to be of equal bit length. Therefore, the sign bits of the partial 

product(s) in the first row and the sum and carry signals of each adder row are extended up to 

the most significant sign bit of the number with the largest absolute value to be added in this 

stage. The sign bit extension results in a higher capacitive load (fan out) of the sign bit signals 

compared to the load of other signals and accordingly slows down the speed of the circuit.  

Algorithms exist when adding two partial products (A+B) which will eliminate the need of 

sign bit extension (Please see Appendix A when both numbers can be positive or negative): 

1. Extend sign bit of A by one bit and invert this extended bit. 

2.    Invert the sign bit of B. 

3.    Add A and B.   Add ‘1’ to one position left of MSB of B 

        Here    is an example of 6 bit sign addition: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In General we can invert all the sign bits and add a “1” to column n as shown in the diagram 

below: 

 

a’5  a5   a4…         a1 a0  

+        1   b’5 b4……   b1 b0   

   a5 a5 a5 a4…       a1  a0 

+        b5   b5 b4          b1 b0        
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It is possible however to simplify this further and use the following template. Extend the sign 

of the first partial product row by 1 bit and invert this bit. Invert all other sign bits of all partial 

products as shown below  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 9 8 7 6 5  4  3  2  1  0 

                 1 

 *  * * * * Ŝ1X X X X X 

 *  * * * Ŝ2 X X X X X  

 *  * * Ŝ3 X X X X X 

 *  * Ŝ4 X X X X X 

 *  Ŝ5 X X X X X 

 Ŝ6 X X X X X 
 

10 9  8 7 6 5 4  3 2  1 0 

                  

 *  * * * Ŝ1S1XX X X X 

 *  * * * Ŝ2 X X X X X  

 *  * * Ŝ3 X X X X X 

 *  * Ŝ4 X X X X X 

 *  Ŝ5 X X X X X 

 Ŝ6  X X X X X 

 

ADD ‘1” 

INVERT ALL 

SIGN  BITS 

Extend sign 

bit and invert 

Invert all 

other sign bits 
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Below are some examples of this method 

 

Example 1 
 

 

  -210 =  1102   

        *     310 =  0112       

              -6      = 11010  This is 2’s Complement of  6 

 

 

 

 

 

 

 

By sign extension method 

 

 -210 =  1102   110 

        *    310 =  0112             *  011 

 -6                       11110 

                               1110 

                                                 000 

            11010      This is 2’s Complement of  6 

 

Now, according to the algorithm, 

 

  110 

         *  011 

           0110 

                                  010 

                         100 

     

          11010    This is 2’s Complement of  6 

 

 

 

 

 

 

The Diagram below shows the architecture of a 32 bit array adder. (Please note that the design 

is modified to take care of 2”s complement numbers) 

     

 

Extended 

sign bit and 
inverted 

Inverted 

sign bits 

Sign 

bits 
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Array Multiplier for a 32 bit number (2”s complement numbers) 

 

 

Booth Multipliers 
 It is a powerful algorithm for signed-number multiplication, which treats both positive and 

negative numbers uniformly.  



Page 14 of 39 

 For the standard add-shift operation, each multiplier bit generates one multiple of the 

multiplicand to be added to the partial product. If the multiplier is very large, then a large 

number of multiplicands have to be added. In this case the delay of multiplier is determined 

mainly by the number of additions to be performed. If there is a way to reduce the number of 

the additions, the performance will get better.  

   Booth algorithm is a method that will reduce the number of multiplicand multiples. For a 

given range of numbers to be represented, a higher representation radix leads to fewer digits. 

Since a k-bit binary number can be interpreted as K/2-digit radix-4 number, a K/3-digit radix-8 

number, and so on, it can deal with more than one bit of the multiplier in each cycle by using 

high radix multiplication. This is shown for Radix-4 in the example below. 

 

Multiplicand  A =    ●  ● ● ● 

Multiplier  B =    (●●)(●●) 

Partial product bits    ●  ● ● ● (B1B0)2 A4
0 

           ●  ● ● ●  (B3B2)2 A4
1
 

Product   P =            ●  ● ● ● ●  ● ● ● 

 

 Radix-4 multiplication in dot notation. 

 

As shown in the figure above, if multiplication is done in radix 4, in each step, the partial 

product term (Bi+1Bi)2  A needs to be formed and added to the cumulative partial product. 

Whereas in radix-2 multiplication, each row of dots in the partial products matrix represents 0 

or a shifted version of A must be included and added. 

Table 1below is used to convert a binary number to radix-4 number . 

Initially, a  “0” is placed  to the right most bit of the multiplier. Then 3 bits of the multiplicand 

is recoded according to table below or according to the following equation: 

Zi = -2xi+1  + xi  + xi-1  

 

 

Example:  

Multiplier is equal to      0 1 0 1 1 10  
0 added 



Page 15 of 39 

then a 0 is placed to the right most bit which gives  0 1 0 1 1 10 0 

the 3 digits are selected at a time with overlapping left most bit as follows: 

 

                 -1 

                                            0 0  1  0 1  1  1 0  0                               -2 

  

                   -0         

            +1 

 

Table .1 Radix-4 Booth recoding 

Xi+1 X Xi-1 Zi/2 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 2 

1 0 0 -2 

1 0 1 -1 

1 1 0 -1 

1 1 1 0 

 

For example, an unsigned number can be converted  into a signed-digit number radix 4: 

 

(10 01 11 01 10 10 11 10)2   =  ( –2  2  –1  2  –1  –1  0  –2)4 

 

The Multiplier bit-pair recoding is shown in Table .2 

 

 

 

 

Table  Multiplier recoding 

0 0 0 +0*multiplicand 

0 0 1 +1*multiplicand 
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0 1 0 +1*multiplicand 

0 1 1 +2*multiplicand 

1 0 0 -2*multiplicand 

1 0 1 -1*multiplicand 

1 1 0 -1*multiplicand 

1 1 1 -0*multiplicand 

 

Here –2*multiplicand is actually the 2s complement of the multiplicand with an 

equivalent left shift of one bit position. Also, +2 *multiplicand is the multiplicand shifted left 

one bit position which is equivalent to multiplying by 2. 

To enter  2*multiplicand into the adder, an (n+1)-bit adder is required. In this case, the 

multiplicand is offset one bit to the left to enter into the adder while for the low-order 

multiplicand position a 0 is added. Each time the partial product is shifted two bit positions to 

the right and the sign is extended to the left. 

During each add-shift cycle, different versions of the multiplicand are added to the new partial 

product depends on the equation derived from the bit-pair recoding table above. 

 Let’s see some examples: 

 

 

Example 1: 

    011101         (+29)

 000011         (+3)

0

+2 -1 +1

000000000011
1111111101
00000110

0000010101111 (+87)  

 

 

Example 2: 
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    011101         (+29)

 111101         (-3)

0

+2 -1 +1

111111111101
0000000011
11111010

1111101010011

2s complement of

multiplicand

(-87)  

Example 3: 

    100011         (-29)

 111101         (-3)

0

-2 +1 -1

000000000011
1111111101
00000110

0000010101111

Shifted 2s

complement

(+87)  

 

 

 

 

Comparison of Booth and shift and add methods 

 

 

 
 

Hardware implementation of Booth  
 

                                   Once the partial products are generated then the addition process is very similar 
to the array multiplier. Usually carry save adders are used with the final sum added using a CRA. 
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Since the Booth Method applies to 2’s complement arithmetic, care must be taken to insure sign 
extensions are in place as shown in red dots in the following diagram.  
 
 
 
 

 
 
 
 
 
 Several techniques exist that reduces this task with ready made templates.  

Once the table of the partial products are drawn, all the rows of the partial products have to be 

arithmetically extended to 2*N, where N is the length of the multiplicand. This is necessary to 

obtain correct results but it increases the capacitive load, the area and the computational time. 

Instead the template above can be used (Copied from book: Advanced Computer Arithmetic 

Design, by M.J. Flynn, S F. Oberman, Wiley) to reduce the calculation. In the above template, 

there are 16 bit numbers. And the 17
th

 bit is the sign bit. Also, the partial products on each row  

are entered as 1’complement numbers.  If 2’complement numbers are used then the S entries 
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on the right side can be removed. Please note that the S bit is the sign bit of the booth encoding 

of that row) 
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Example of using the template: 
Let us multiply 25  *  -35.                                                          sign bit 

 

                                                                             A=  +25                00011001 

                                                                             B=   -35                11011101 

 

 

Now decode the multiplier                                                2           1     

 

                                                                                   1 1 0 1 1 1 0 1 0    

                                                                                      -1        -1         

   

 

 

 

 

 

Check these values 

B= -1 * 4
3
 + 2* 4

2
 -1 * 4

1
 + 1 * 4

0 
= 35 
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Now in order to reduce computation and extra computing units, all the capacitances use the 

provided template as below 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 

                                                                                          0 0 0 1 1 0 0 1 

                                                                                          1 1 0 1 1 1 0 10 

 

                                                                        0 0 0 0 0 0 0 0 0 1 1 0 0 1       *  1 

                                                                        1 1 1 1 1 1 1 0 0 1 1 1             * -1 

                                                                        0 0 0 0 1 1 0 0 1 0                   *  2 

                                                                        1 1 1 0 0 1 1 1                         * -1       

 

                                                                        1 1 1 1 0 0 1 0 0 1 0 1 0 1    

This is a –ve number . Convert it 

                                                                        0 0 0 0 1 1 0 1 1 0 1 0 1 1 

 

                                                                           512   256  64  32   8      2    1   = 875 

Using the Template 25 * -35 
 

                                                                                  Sign bit 

 

                                                                                         0 0 0 1 1 0 0 1 

                                                Add    SS                          1 1 0 1 1 1 0 1 0 

                                                Add inverted S 

Add  Inverted  sign and add 1 

                                                                               1 0 0 0 0 0 1 1 0 0 1       *  1 

Add  Inverted sign bit                                         1 0 1 1 1 0 0 1 1 1             * -1 

                                                                         1 0 0 1 1 0 0 1 0                   *  2 

 No sign bit                                                       1 1 0 0 1 1 1                        * -1       

 

                                                                      1 1 1 1 0 0 1 0 0 1 0 1 0 1    

This is a –ve number. Convert it 

                                                                        0 0 0 0 1 1 0 1 1 0 1 0 1 1 

 

                                                                           512   256  64  32   8      2    1   = 875 
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                                  16 x 16 multiplier array with Booth encoding and sign-generation 

                         
A general example of 16x 16 bit multiplier using the given template is shown above. 
 
 
Optimized Wallace Tree Multiplier 

Several popular and well-known schemes, with the objective of improving the speed of the 

parallel multiplier, have been developed in past. Wallace introduced a very important iterative 

realization of parallel multiplier. This advantage becomes more pronounced for multipliers of 

bigger than 16 bits.  

    In Wallace tree architecture, all the bits of all of the partial products in each column are 

added together by a set of counters in parallel without propagating any carries. Another set of 

counters then reduces this new matrix and so on, until a two-row matrix is generated. The most 

common counter used is the 3:2 counter which is a Full Adder.. The final results are added 

using usually carry propagate adder. The advantage of Wallace tree is speed because the 

addition of partial products is now O (logN). A block diagram of 4 bit Wallace Tree multiplier 

is shown in below. As seen from the block diagram partial products are added in Wallace tree 

block.  The result of these additions is the final product bits and sum and carry bits which are 

added in the final fast adder (CRA). 
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Since Wallace Tree is a summation method, it can be used in conjunction with array multiplier 

of any kind including Booth array. The diagram below shows the implementation of 8 bit 

squarer using the Wallace tree for compressing the addition process.  
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Figure 4. Operation of 8 bit square 
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 32 bit multiplication using Booth and Wallace tree. 
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Summary  
     In this section performance measures of multipliers discussed so far are summarized and 

compared. These results were obtained after synthesizing individual architectures targeting Xilinx 

FPGA 4052XL-1HQ240C. All comparisons are based on the synthesis reports keeping one 

common base for comparison.  We summarize Area (Total number of CLBs required), Delay and 

Power Consumption and also calculate Delay·Power (DP), Area·Power (AP), Area·Speed (AT) 

and Area·Speed
2
 (AT

2
) product.  

    From the Table we can see that delay of Wallace tree multiplier and Combined Booth-Wallace tree multiplier is 

almost the same and is the least. Hence they are fastest among five multipliers. DP product is also the least for the 

above two multiplier and are a good choice for this performance measure. Serial Parallel multiplier is a best choice 

when speed is not important but reduced area and power consumption is of more interest and also for AP and AT 

product Serial Parallel multiplier is a good choice. However, one of the most important performance parameter is 

AT
2
. From the table we see that Modified Booth-Wallace Tree multiplier is the best choice as far as AT

2 
is concerned. 

The Serial Parallel multiplier which is a good choice for AP and AT product has worst performance for AT
2
.  

 

 Array 
Multi
plier 

Modified 
Booth 
Multiplier 

Wallace 
Tree 
Multiplier 

Modified Booth  
-Wallace Tree 
Multiplier 

Twin Pipe 
Serial-Parallel 
Multiplier 

Area – Total 
CLB’s (#) 

1165 1292 1659 1239 133 

Maximum Delay 
D (ns) 
 

 
187.87 

 

 
139.41 

 
101.14 

 

 
101.43 

22.58 
(722.56)* 

Power(mW) (at 
highest speed)  

16.650
6 

(at188
ns) 

23.136 
(at 140ns) 

30.95 
(101.14ns) 

30.862 
(at 101.43ns) 

2.089 
(at 722.56ns) 

 

Power  P (mW)     
when delay = 
722.56ns  

 
4.329 

 
4.638 

 
4.332 

 
4.332 

 
2.089 

Delay ·Power 
Product (DP) 
(ns mW) 
 

 
813.28 

 
622.30 

 
438.138 

 
439.39 

 
1509.42 

 

Area·Power 
Product (AP) 
(# mW) 
 

 
5043.2

8 

 
5767.23 

 
7186.788 

 
5367.35 

 
277.837 

Area·Delay 
Product (AD) 
(# ns) 
 

 
218.86
8 x 103 

 

 
180.118 x 

103 

 
167.791 x 

103 

 
125.671 x 103 

 
96.101 x 103 * 

Area·Delay2 
Product(AD2) 
(# ns2) 
 

 
41.119 
x 106 

 
25.110 x 106 

 
16.970 x 

106 

 
12.747 x 106 

 
69.438 x 106 * 
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Appendix A 
 

 

 

Signed Number Multiplication 

 
 

1. Introduction 

  
Direct two's complement array multiplication can perform "direct" multiplication of two's 

complement numbers without requiring the complementing stages, significantly speeds up the 

multiplication process. This appendix will discuss two direct two's complement multiplication 

algorithms and their implementation. 

These two direct two's complement multiplication algorithms are: 

1)  Tri-section modified Pezaris two's complement multiplication 

2)  Baugh-Wooley two's complement multiplication 

These two algorithms are generally used in systems where the operands are less than 16-bit. 

They are relatively simpler than Booth multiplier whose structure is based on recoding the 2's 

complement operand in order to reduce the number of partial products to be added.  

 
2. Tri-section modified Pezaris two's complement multiplier:  
_ 

_ 

In 2's complement number representation, the most significant bit (MSB) is weighted 

negatively.  In realizing such a system, Pezaris generalizes the full adders into four types.  In  

type 0,  which  represents  a  normal  adder,  all three inputs x, y, z are weighted positively and 

the result lies in  the  range  {0,3}.  This  result  is  represented  by  a  2-bit  binary  number  C  

S  where  C  and  S  are  also  weighted positively.  In the other three types there are some 

signals, indicated by the dots, that are weighted negatively.  

 

Listed below are four arithmetic equations that describe the input/output relationships of the 

four types of generalized full adders. 

Type 0:  C2
1
 + S2

0
 = X2

0
 + Y2

0
 + Z2

0
 

Type 1:  C2
1
 + (-S)2

0
 = X2

0
 + Y2

0
 + (-Z)2

0
 

Type 2:  (-C)2
1
 + S2

0
 = (-X)2

0
 + (-Y)2

0
 + Z2

0
 

Type 3:  (-C)2
1
 + (-S)2

0
 = (-X)2

0
 + (-Y)2

0
 + (-Z)2

0 

 

These four arithmetic equations lead to the truth-table descriptions of the four generalized full 

adders given in the following table.  
Table: Truth Table Describing the Four Types of Generalized Full Adders 

Full Adder Weighted Inputs Weighted Outputs 

Type 0 X2
0
   Y2

0
 Z2

0
 C2

1
  S2

0
 

Type 3 - X2
0
   - Y2

0
 - Z2

0
 - C2

1
  - S2

0
 

 

 

0 0 0 0 0 

0 0 1 0 1 
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Truth  

Table 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

Type 1 X2
0
   Y2

0
 - Z2

0
 C2

1
  - S2

0
 

Type 2 - X2
0
   - Y2

0
 Z2

0
 - C2

1
  S2

0
 

 

 

 

Truth  

Table 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 1 1 

0 1 1 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 1 0 

1 1 1 1 1 

 

One can easily derive the Boolean equations governing the four types of full adders from the 

table entries. 

Type 0 or Type 3: 

S = X'Y'Z + X'YZ' + XY'Z' + XYZ 

C = XY + YZ +ZX 

Type 1 or Type 2: 

S = X'Y'Z + X'YZ' + XY'Z' + XYZ 

C = XY + YZ' +Z'X 

 

Pezaris two's complement multiplier use mixture types of full adders.  

The schematic circuit diagram of a 5-by-5 Pezaris array multiplier is shown below: 
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The schematic logic circuit diagram of a 5-by-5 Tri-section modified Pezaris two’s complement array multiplier
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The examples of 5-by-5 Pezaris are shown below: 
multiplicand multiplier 

positive negative 

negative positive 

positive positive 

negative negative 
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Example of Tri-section modified Pezaris Two’s Complement Multiplication

1   1   1   0   1   1   1   1   1   1

0  (1) (1) (0) (1)

X

(0)   1   1   0   1

(1)   1   0   1   1

(0)  1   1   0   1

(0)  1   1   0   1

(0)  1   1   0   1

(0)  0   0   0   0

+

=13

= -5

= -65

1   1   1   0   1   1   1   1   1   1

0  (0) (0) (0) (0)

X (0)   1   1   0   1

(1)   1   0   1   1

(0)  0   0   0   0

(1)   1   0   1   1

(1)   1   0   1   1

(1)   1   0   1   1

+

=13

= -5

= -65

0

a0b0 

1

P0

1

a4b0

0

a3b0

1
a1b0

0
a2b0

1

P9

1

P8

1

P7

1

P6

0

P5

1

P4

1

P3

1

P2

1

P1

1

0 000

a0b1

1

a3b1

1
a2b1

1

a1b1

0

a0b2

0

a3b2

0

a2b2

0

a1b2

0

a4b3

0

a4b2

0

a4b1

0

a0b3

1

a3b3

1

a2b3

1

a1b3

0

a0b4

1
a4 b4

0

a3b4

1

a2b4

1

a1b4

0

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

1010

1

0

00

0

00

0
0

0

1

1

1

1

1
1

1

1

1

0

0
0

0

0
0

0

0

1

1

1

1

1

1

1

1

1

0

0

1
11

1

a0b0 

1

P0

1

a4b0

1

a3b0

1
a1b0

1
a2b0

0

P9

1

P8

1

P7

1

P6

0

P5

1

P4

1

P3

1

P2

1

P1

1

0 000

a0b1

0

a3b1

0
a2b1

0

a1b1

0

a0b2

1

a3b2

1

a2b2

0

a1b2

1

a4b3

1

a4b2

1

a4b1

0

a0b3

1

a3b3

1

a2b3

0

a1b3

1

a0b4

0
a4 b4

0

a3b4

0

a2b4

0

a1b4

0

0

FA

0

FA

0

FA

0

FA

0

FA

0
FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

100

1

0

0

00

0

0

0

1

1

1

1

1
1

1

1

1

0

0

0
0

0

1

1

1

1

1

1

1

1

 



Page 31 of 39 

Example of Tri-section modified Pezaris Two’s Complement Multiplication

0   0   0   1   0   0   0   0   0   1

0  (0) (0) (0) (0)

X

(0)   1   1   0   1

(0)   0   1   0   1

(0)  1   1   0   1

(0)  1   1   0   1

(0)  0   0   0   0

+

=13

= 5

= 65

(0)  0   0   0   0

1  (1) (0) (1) (1)

X (1)   0   0   1   1

(1)   1   0   1   1

(0)  0   0   0   0

(1)   1   0   1   1

(1)   1   0   1   1

+

= -13

= -5

= 65

(0)  0   0   0   0

0   0   0   1   0   0   0   0   0   1

0

a0b0 

1

P0

1

a4b0

0

a3b0

1
a1b0

0
a2b0

1

P9

0

P8

0

P7

0

P6

1

P5

0

P4

0

P3

0

P2

0

P1

0

0 000

a0b1

0

a3b1

0
a2b1

0

a1b1

0

a0b2

1

a3b2

1

a2b2

1

a1b2

0

a4b3

0

a4b2

0

a4b1

0

a0b3

0

a3b3

0

a2b3

0

a1b3

0

a0b4

0
a4 b4

0

a3b4

0

a2b4

0

a1b4

0

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

1

010

1

0

0 0

0

00

0

0

0

0

1

1

1

1

1

0

1
0

0

0
0

0

1

1
1

1 1
1

0

0

0

0 0

1

1

0

0

11

a0b0 

1

a4b0

1

a3b0

1
a1b0

1
a2b0

00 000

a0b1

1

a3b1

1
a2b1

0

a1b1

1

a0b2

0

a3b2

0

a2b2

0

a1b2

0

a4b3

0

a4b2

0

a4b1

1

a0b3

0

a3b3

0

a2b3

0

a1b3

0

a0b4

1
a4 b4

1

a3b4

1

a2b4

0

a1b4

1

0

FA

0

FA

0

FA

0

FA

0

FA

0
FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

1

0

0

1

0

0

0

0

0

0

10

1

1

1

0

0

0
1

011

1

P0

1

P9

0

P8

0

P7

0

P6

1

P5

0

P4

0

P3

0

P2

0

P1

0

1
0

0

0

0

0

0

0

0

0

0

0

0

 
 

 

 

3. Baugh-Wooley two's complement multiplier: 

 

Baugh and Wooley have proposed an algorithm for direct two's complement array 

multiplication. The principal advantage of their algorithm is that the signs of all summands are 

positive, thus allowing the array to be constructed entirely with the conventional Type 0 full 

adders. This uniform structure is very attractive for VLSI.  

 

The schematic circuit diagram of a 5-by-5 Baugh-Wooley array multiplier is shown below: 
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The schematic logic circuit diagram of a 5-by-5 Baugh-Wooley two’s complement array multiplier

 
The examples of 5-by-5 Baugh-Wooley are shown below: 

 
multiplicand multiplier 

positive negative 

negative positive 

positive positive 

negative negative 

 

Example of Baugh-Wooley Two’s Complement Multiplication

     p9      p8      p7     p6      p5      p4    p3     p2    p1    p0 P

a4'       a3'b4     a2'b4    a1'b4    a0'b4

X

A

B

a4  a3  a2  a1  a0 

b4  b3  b2  b1  b0 

a4b0'  a3b0  a2b0  a1b0  a0b0 

a4b4     a4b3'   a3b3    a2b3   a1b3   a0b3 

a4b2'    a3b2   a2b2   a1b2  a0b2 

a4b1'   a3b1  a2b1  a1b1  a0b1 

+

b4'                                                         a4 

1                                                    b4

1   1   1   0   1   1   1   1   1   1

     0   0   1   0   0

= -65

X =13

= -5

0   1   1   0   1

1   1   0   1   1

1   0   0   0   0

0   1   0   1   1

0   0   1   0   1   1

0   1   0   1   1

+

1                  1

  1                      0

0   0   0   1   0   0   0   0   0   1

     1   0   0   0   0

= 65

X

=13

= 5

0   1   1   0   1

0   0   1   0   1

0   0   0   0   0

0   1   1   0   1

0   0   0   0   0   0

0   1   1   0   1

+

1                  0

  1                      0

0   0   0   1   0   0   0   0   0   1

     0   1   1   0   0

= 65

X

= -13

= -5

1   0   0   1   1

1   1   0   1   1

0   0   0   1   1

0   0   0   1   1

1   0   0   0   1   1

1   0   0   0   0

+

0                  1

  1                      1

1   1   1   0   1   1   1   1   1   1

     1   0   0   1   0

= -65

X

=13

= -5

0   1   1   0   1

1   1   0   1   1

0   1   1   0   1

0   1   1   0   1

0   0   1   1   0   1

0   0   0   0   0

+

0                  0

  1                      1
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4. Comparison 
 

Table: Direct two's complement multiplication 
 

n * n two's Complement Array Multiplier 
  Tri-section Pezaris Baugh-Wooley  

 Advantage Regular format array Irregular format array, 

two more rows  

 Disadvantage Three type full adder 

uesd 

Only one type full 

adder uesd 

Full Adder 

Used 

Type 0 (n
2
 - 3n +2) / 2 n

2
 - n +3 

Type 1 (n
2
 - 3n +2) / 2 0 

Type 2 2 n -1 0 

Type 3 0 0 

Total n
2
 - n  n

2
 - n +3 

Total time delay  (Multiply time) 4 nΔ- 2Δ 4 nΔ 

  *  Δ is the unit gate delay. 

 

5. VHDL coding: 

As an example a 5-bit two's complement multiplication of Tri-section modified Pezaris and 

Baugh-Wooley are implemented by VHDL code and part of the simulation result are shown 

below: 
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6. FPGA Implementation: 

Implement Multipliers in Xilinx Virtex II FPGAs. 

Then indicate the critical path, compare the performance, area and power consumption. 
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Appendix B 

Examples of signed multiplication (When multiplier operand is 
positive) 

Example. 1 

 

 

  -100  -10010=100111002  

        X      4     410  = 01002 

              -400     

 

By Sign Extension method, 

 

 10011100 

         X       0100  

      00000000000 

      0000000000 

      110011100 

      00000000 

      11001110000          -400 
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According to the extend and invert algorithm, 

 

            10011100 

         X       0100  

          100000000 

          10000000 

        00011100 

      10000000 

      11001110000  Ans is -400 

 

 

 

 

 

 

 

 

 

 

 

 

Ex 2 
 

    -5  -510   = 10112  

        X      4              410  = 01002 

              -20     

 

 

By Sign Extension method, 

 

      1011 

         X     0100  

             

 0000000 

            000000 

            11011 

            0000 

           1101100   2’s complement of  -20 

 

According to the algorithm of extend and invert method, 
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      1011 

         X     0100  

               10000 

               1000 

             0011 

           1000 

           1101100    –20 in 2’s complement 

 

 

 

 

 

Ex 3 
 

 

   -4  -410  = 11002  

        X      3              310  = 00112 

              -12     

 

 

 

By Sign Extension method, 

 

                1100 

         X     0011  

               

   111100 

              11100 

              0000 

            0000 

            1110100                   -12 in 2’s complement 

                      

According to the sign extend and invert algorithm, 

 

                 1100 

         X     0011  

               

    01100 

               0100 

             1000 

           1000 

          1110100         -12 in 2’s complement 
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Ex 4 
 

 

   -12  -1210  = 101002  

        X      12              1210  = 011002 

             -144 

By Sign Extension method, 

 

      10100 

         X     01100  

         000000000 

         00000000 

         1110100 

         110100 

         00000 

        101110000           -144 

 

According to the sign extend and invert algorithm, 

 

 

                 10100 

         X     01100  

                

    100000 

               10000 

             00100 

           00100 

         10000 

        101110000            - 144 
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Examples of B00th multiplication 
 

Example  
Using Booth algorithm multiply A and B. 

A= 20 

B=30 

 

A= 0010100         Please note that both numbers are extended to cover 2A or 2B and the  

B= 0011110          sign bit (whichever is larger). 

 

A * B  =                               A=                    0 0 1 0 1 0 0 

 

                                                                                -0 

                                                                            

                                             B=                0   0   1   1   1   1   0   0 

                                                                                           

                                                                      +2                 -2 

 

2A = 40 =   00101000 

-2A       =    11011000 

 

Now performing the addition we have 

 

                                                                                              1 1 1 1 1 1 1 0 1 1 0 0 0 

                                                                                              0 0 0 0 0 0 0 0 0 0 0 

                                                                                              0 0 0 1 0 1 0 0 0 

                                                                                    

                                                                                               0 0 0 1 0 0 1 0 1 1 0 0 0 

 

 

 

 

                                                                          512     +      64     +    16   +   8  =  (600)10 

 

 

 

 

Now let us try  

 

B * A  =                               B=                    0 0 1 1 1 1 0 

 

                                                                               + 1 

                                                                            

                                             A=                   0   1   0   1     0   0   0 

                                                                                           

                                                                      +1                 +0 
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Now performing the addition we have 

 

                                                                                              0 0 0 0 0 0 0 0 0 0 0 0 0 

                                                                                              0 0 0 0 0 0 1 1 1 1 0 

                                                                                              0 0 0 0 1 1 1 1 0 

                                                                                    

                                                                                               0 0 0 1 0 0 1 0 1 1 0 0 0 

 

 

 

 

                                                                          512     +      64     +    16   +   8  =  (600)10 

 

 

F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i 
F.A C i S i P 00 P 10 P 01 P 11 P 02 P 12 P 03 0 0 0 P 20 P 21 P 02 P 11 P 01 P 10 P 00 P i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A P 12 P 03 0 0 0 P 20 P 21 P 02 P 11 P 01 P 10 P 00 P i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A 
i S i C F.A P 12 P 03 0 0 0 P 20 P 21 P 


