
Page 1 of 39

Multipliers

Introduction

 Multipliers play an important role in today’s digital signal processing and various other

applications. With advances in technology, many researchers have tried and are trying to design

multipliers which offer either of the following design targets – high speed, low power

consumption, regularity of layout and hence less area or even combination of them in one

multiplier thus making them suitable for various high speed, low power and compact VLSI

implementation.

 The common multiplication method is “add and shift” algorithm. In parallel multipliers

number of partial products to be added is the main parameter that determines the performance of

the multiplier. To reduce the number of partial products to be added, Modified Booth algorithm

is one of the most popular algorithms. To achieve speed improvements Wallace Tree algorithm

can be used to reduce the number of sequential adding stages. Further by combining both

Modified Booth algorithm and Wallace Tree technique we can see advantage of both algorithms

in one multiplier. However with increasing parallelism, the amount of shifts between the partial

products and intermediate sums to be added will increase which may result in reduced speed,

increase in silicon area due to irregularity of structure and also increased power consumption due

to increase in interconnect resulting from complex routing. On the other hand “serial-parallel”

multipliers compromise speed to achieve better performance for area and power consumption.

The selection of a parallel or serial multiplier actually depends on the nature of application. In

this lecture we introduce the multiplication algorithms and architecture and compare them in

terms of speed, area, power and combination of these metrics.

Page 2 of 39

Multiplication Algorithm

The multiplication algorithm for an N bit multiplicand by N bit multiplier is shown below:

Y= Yn-1 Yn-2Y2 Y1 Y0 Multiplicand

X= Xn-1 Xn-2 X2 X1 X0 Multiplier

2

Yn-1X0 Yn-2X0 Yn-3X0 …… Y1X0 Y0X0

Yn-1X1 Yn-2X1 Yn-3X1 …… Y1X1 Y0X1

Yn-1X2 Yn-2X2 Yn-3X2 …… Y1X2 Y0X2

… … … …

…. …. …. …. ….

Yn-1Xn-2 Yn-2X0 n-2 Yn-3X n-2 …… Y1Xn-2 Y0Xn-2

Yn-1Xn-1 Yn-2X0n-1 Yn-3Xn-1 …… Y1Xn-1 Y0Xn-1

P2n-1 P2n-2 P2n-3 P2 P1 P0

Y= Yn-1 Yn-2Y2 Y1 Y0

X= Xn-1 Xn-2 X2 X1 X0

===

Generally

Example 1101 4-bits

1101 4-bits

 1101

 0000

 1101

 1101

 10101001

Page 3 of 39

AND gates are used to generate the Partial Products, PP, If the multiplicand is N-bits and the

Multiplier is M-bits then there is N* M partial product. The way that the partial products are

generated or summed up is the difference between the different architectures of various

multipliers.

Multiplication of binary numbers can be decomposed into additions. Consider the

multiplication of two 8-bit numbers A and B to generate the 16 bit product P.

 A7 A6 A5 A4 A3 A2 A1 A0

 X B7 B6 B5 B4 B3 B2 B1 B0

 A7.B0 A6.B0 A5.B0 A4.B0 A3.B0 A2.B0 A1.B0 A0.B0

 + A7.B1 A6.B1 A5.B1 A4.B1 A3.B1 A2.B1 A1.B1 A0.B1

 + A7.B2 A6.B2 A5.B2 A4.B2 A3.B2 A2.B2 A1.B2 A0.B2

 + A7.B3 A6.B3 A5.B3 A4.B3 A3.B3 A2.B3 A1.B3 A0.B3

 + A7.B4 A6.B4 A5.B4 A4.B4 A3.B4 A2.B4 A1.B4 A0.B4

 + A7.B5 A6.B5 A5.B5 A4.B5 A3.B5 A2.B5 A1.B5 A0.B5

 + A7.B6 A6.B6 A5.B6 A4.B6 A3.B6 A2.B6 A1.B6 A0.B6

+A7.B7 A6.B7 A5.B7 A4.B7 A3.B7 A2.B7 A1.B7 A0.B7

--

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

The equation for the addition is: 









1

0

1

0

2 A(m)B(n) n)P(m
m

i

n

j

ji

jiba .

Multiplication Algorithm

 If the LSB of Multiplier is ‘1’, then add the multiplicand into an accumulator.

 Shift the multiplier one bit to the right and multiplicand one bit to the left.

 Stop when all bits of the multiplier are zero.

From above it is clear that the multiplication has been changed to addition of numbers. If

the Partial Products are added serially then a serial adder is used with least hardware. It is

possible to add all the partial products with one combinational circuit using a parallel

multiplier. However it is possible also, to use compression technique then the number of

partial products can be reduced before addition .is performed.

Patial

Products to

be added

Page 4 of 39

Serial Multiplier
Where area and power is of utmost importance and delay can be tolerated the serial multiplier

is used. This circuit uses one adder to add the m * n

partial products. The circuit is shown in

the fig. below for m=n=4. Multiplicand and Multiplier inputs have to be arranged in a special

manner synchronized with circuit behavior as shown on the figure. The inputs could be

presented at different rates depending on the length of the multiplicand and the multiplier. Two

clocks are used, one to clock the data and one for the reset. A first order approximation of the

delay is O (m,n). With this circuit arrangement the delay is given as D =[(m+1)n + 1] tfa.

3

1-bit

REG

+

G2

G1

0 00

Serial Register

qd

Reset=0

x
0

y
0

x
0
y

0

0

0

1

x
0
y

0

0

CLK CLK/(N+1)

CLK

0

0

Slide 1

X: x3 x2 x1 x0 Y:y3 y2 y1 y0

Input Sequence for G1:

00x3 x2 x1 x00 x3 x2 x1 x0 0x3 x2 x1 x0 0x3 x2 x1 x0

00y3 y3 y3 y3 0y 2 y2 y2 y2 0y1 y1 y1 y1 0y 0 y0 y0 y0

Reset:010000100001000010000

X: x3 x2 x1 x0 Y:y3 y2 y1 y0

Input Sequence for G1:

00x3 x2 x1 x00 x3 x2 x1 x0 0x3 x2 x1 x0 0x3 x2 x1 x0

00y3 y3 y3 y3 0y 2 y2 y2 y2 0y1 y1 y1 y1 0y 0 y0 y0 y0

Reset:010000100001000010000

As shown the individual PP is formed individually. The addition of the PPs are performed as

the intermediate values of PPs addition are stored in the DFF, circulated and added together

with the newly formed PP. This approach is not suitable for large values of M or N.

For snapshots of data movements please see the course website/slides of lecture 3.

Page 5 of 39

Serial/Parallel Multiplier

The general architecture of the serial/parallel multiplier is shown in the figure below. One

operand is fed to the circuit in parallel while the other is serial. N partial products are formed

each cycle. On successive cycles, each cycle does the addition of one column of the

multiplication table of M*N PPs. The final results are stored in the output register after N+M

cycles. While the area required is N-1 for M=N. For snapshots of data transfer through this

multiplier please see the course website/slides of lecture

A pipelined version of an 8 bit multiplier is shown below.



 



+ ++

y
0

y
3

y
2

y
1

x
3
x

2
x

1
x

0

S
0

0

000

000

00

S
0

S
0S

0 S
0

Page 6 of 39

Shift and Add Multiplier

The general architecture of the shift and add multiplier is shown in the figure below for a 32 bit

multiplication. Depending on the value of multiplier LSB bit, a value of the multiplicand is

added and accumulated. At each clock cycle the multiplier is shifted one bit to the right and its

value is tested. If it is a 0, then only a shift operation is performed. If the value is a 1, then the

multiplicand is added to the accumulator and is shifted by one bit to the right. After all the

multiplier bits have been tested the product is in the accumulator. The accumulator is 2N

(M+N) in size and initially the N, LSBs contains the Multiplier. The delay is N cycles

maximum. This circuit has several advantages in asynchronous circuits. To view data

movements please see course website/slides of lecture 3.

Array Multiplier

Page 7 of 39

Array Multipliers

 Array multiplier is well known due to its regular structure. Multiplier circuit is based on add and

shift algorithm. Each partial product is generated by the multiplication of the multiplicand with

one multiplier bit. The partial product are shifted according to their bit orders and then added.

The addition can be performed with normal carry propagate adder. N-1 adders are required

where N is the multiplier length.

A3 A2 A1 A0

Inputs

x B3 B2 B1 B0

C B0 x A3 B0 x A2 B0 x A1 B0 x A0

Internal Signals

+ B1 x A3 B1 x A2 B1 x A1 B1 x A0

C sum sum sum sum

+ B2 x A3 B2 x A2 B2 x A1 B2 x A0

C sum sum sum sum

+ B3 x A3 B3 x A2 B3 x A1 B3 x A0

C sum sum sum sum

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Outputs

Page 8 of 39

An example of 4-bit multiplication method is shown below:

Although the method is simple as it can be seen from this example, the addition is done serially

as well as in parallel. To improve on the delay and area the CRAs are replaced with Carry Save

Adders, in which every carry and sum signal is passed to the adders of the next stage. Final

product is obtained in a final adder by any fast adder (usually carry ripple adder). In array
multiplication we need to add, as many partial products as there are multiplier bits. This
arrangements is shown in the figure below

a
0

a
1

a
2

a
3

Four-bit Adder

a
0

a
1

a
2

a
3

a
0

a
1

a
2

a
3

Four-bit Adder

a
0

a
1

a
2

a
3

Four-bit Adder

b
0

b
1

b
2

b
3

C
in

C
i

n

C
in

C
out

C
out

C
out

0

0

0

0

Product (A*B)

A = a
3
a

2
a

1
a

0

B = b
3
b

2
b

1
b

0

Page 9 of 39

Total Area = (N-1) * M * Area FA

Delay= 2(M-1) FA

Now as both multiplicand and multiplier may be positive or negative, 2’s complement number

system is used to represent them. If the multiplier operand is positive then essentially the same

technique can be used but care must be taken for sign bit extension.

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

F.A

C
i

S
i

P
00

P
10

P
01

P
11

P
02

P
12

P
03

0 0 0

P
20

P
21

P
22

P
13

P
30

P
31

P
32

P
23

0P
33

R
0

R
1

R
2R

3
R

4
R

5R
6

R
7

Total of 16

gates

A
0

A
1

A
2

A
3

B
0

B
1

B
2

B
3

P
ij

A
j

B
i

30

30





j

i

**P
ij
=A

i
B

j

Page 10 of 39

The reason for dealing with signed number incorrectly is the absence of sign bit expansion in

this multiplier.

 a1 a0 a1 a0

 X b1 b0 X b1 b0

 a1b0 a0b0 a1b0 a1b0 a1b0 a0b0

 a1b1 a0b1 a1b1 a1b1 a0b1

Wrong Correct

There is a way to correct this fault, which do not need to expand all of the bits in the partial

product addition.

When 2’s complement partial products are added in carry save arithmetic all numbers to be

added in one adder stage have to be of equal bit length. Therefore, the sign bits of the partial

product(s) in the first row and the sum and carry signals of each adder row are extended up to

the most significant sign bit of the number with the largest absolute value to be added in this

stage. The sign bit extension results in a higher capacitive load (fan out) of the sign bit signals

compared to the load of other signals and accordingly slows down the speed of the circuit.

Algorithms exist when adding two partial products (A+B) which will eliminate the need of

sign bit extension (Please see Appendix A when both numbers can be positive or negative):

1. Extend sign bit of A by one bit and invert this extended bit.

2. Invert the sign bit of B.

3. Add A and B. Add ‘1’ to one position left of MSB of B

 Here is an example of 6 bit sign addition:

In General we can invert all the sign bits and add a “1” to column n as shown in the diagram

below:

a’5 a5 a4… a1 a0

+ 1 b’5 b4…… b1 b0

 a5 a5 a5 a4… a1 a0

+ b5 b5 b4 b1 b0

Page 11 of 39

It is possible however to simplify this further and use the following template. Extend the sign

of the first partial product row by 1 bit and invert this bit. Invert all other sign bits of all partial

products as shown below

10 9 8 7 6 5 4 3 2 1 0

 1

 * * * * * Ŝ1X X X X X

 * * * * Ŝ2 X X X X X

 * * * Ŝ3 X X X X X

 * * Ŝ4 X X X X X

 * Ŝ5 X X X X X

 Ŝ6 X X X X X

10 9 8 7 6 5 4 3 2 1 0

 * * * * Ŝ1S1XX X X X

 * * * * Ŝ2 X X X X X

 * * * Ŝ3 X X X X X

 * * Ŝ4 X X X X X

 * Ŝ5 X X X X X

 Ŝ6 X X X X X

ADD ‘1”

INVERT ALL

SIGN BITS

Extend sign

bit and invert

Invert all

other sign bits

Page 12 of 39

Below are some examples of this method

Example 1

 -210 = 1102

 * 310 = 0112

 -6 = 11010 This is 2’s Complement of 6

By sign extension method

 -210 = 1102 110

 * 310 = 0112 * 011

 -6 11110

 1110

 000

 11010 This is 2’s Complement of 6

Now, according to the algorithm,

 110

 * 011

 0110

 010

 100

 11010 This is 2’s Complement of 6

The Diagram below shows the architecture of a 32 bit array adder. (Please note that the design

is modified to take care of 2”s complement numbers)

Extended

sign bit and
inverted

Inverted

sign bits

Sign

bits

Page 13 of 39

Array Multiplier for a 32 bit number (2”s complement numbers)

Booth Multipliers
 It is a powerful algorithm for signed-number multiplication, which treats both positive and

negative numbers uniformly.

Page 14 of 39

 For the standard add-shift operation, each multiplier bit generates one multiple of the

multiplicand to be added to the partial product. If the multiplier is very large, then a large

number of multiplicands have to be added. In this case the delay of multiplier is determined

mainly by the number of additions to be performed. If there is a way to reduce the number of

the additions, the performance will get better.

 Booth algorithm is a method that will reduce the number of multiplicand multiples. For a

given range of numbers to be represented, a higher representation radix leads to fewer digits.

Since a k-bit binary number can be interpreted as K/2-digit radix-4 number, a K/3-digit radix-8

number, and so on, it can deal with more than one bit of the multiplier in each cycle by using

high radix multiplication. This is shown for Radix-4 in the example below.

Multiplicand A = ● ● ● ●

Multiplier B = (●●)(●●)

Partial product bits ● ● ● ● (B1B0)2 A4
0

 ● ● ● ● (B3B2)2 A4
1

Product P = ● ● ● ● ● ● ● ●

 Radix-4 multiplication in dot notation.

As shown in the figure above, if multiplication is done in radix 4, in each step, the partial

product term (Bi+1Bi)2 A needs to be formed and added to the cumulative partial product.

Whereas in radix-2 multiplication, each row of dots in the partial products matrix represents 0

or a shifted version of A must be included and added.

Table 1below is used to convert a binary number to radix-4 number .

Initially, a “0” is placed to the right most bit of the multiplier. Then 3 bits of the multiplicand

is recoded according to table below or according to the following equation:

Zi = -2xi+1 + xi + xi-1

Example:

Multiplier is equal to 0 1 0 1 1 10
0 added

Page 15 of 39

then a 0 is placed to the right most bit which gives 0 1 0 1 1 10 0

the 3 digits are selected at a time with overlapping left most bit as follows:

 -1

 0 0 1 0 1 1 1 0 0 -2

 -0

 +1

Table .1 Radix-4 Booth recoding

Xi+1 X Xi-1 Zi/2

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

For example, an unsigned number can be converted into a signed-digit number radix 4:

(10 01 11 01 10 10 11 10)2 = (–2 2 –1 2 –1 –1 0 –2)4

The Multiplier bit-pair recoding is shown in Table .2

Table Multiplier recoding

0 0 0 +0*multiplicand

0 0 1 +1*multiplicand

Page 16 of 39

0 1 0 +1*multiplicand

0 1 1 +2*multiplicand

1 0 0 -2*multiplicand

1 0 1 -1*multiplicand

1 1 0 -1*multiplicand

1 1 1 -0*multiplicand

Here –2*multiplicand is actually the 2s complement of the multiplicand with an

equivalent left shift of one bit position. Also, +2 *multiplicand is the multiplicand shifted left

one bit position which is equivalent to multiplying by 2.

To enter  2*multiplicand into the adder, an (n+1)-bit adder is required. In this case, the

multiplicand is offset one bit to the left to enter into the adder while for the low-order

multiplicand position a 0 is added. Each time the partial product is shifted two bit positions to

the right and the sign is extended to the left.

During each add-shift cycle, different versions of the multiplicand are added to the new partial

product depends on the equation derived from the bit-pair recoding table above.

 Let’s see some examples:

Example 1:

 011101 (+29)

 000011 (+3)

0

+2 -1 +1

000000000011
1111111101
00000110

0000010101111 (+87)

Example 2:

Page 17 of 39

 011101 (+29)

 111101 (-3)

0

+2 -1 +1

111111111101
0000000011
11111010

1111101010011

2s complement of

multiplicand

(-87)

Example 3:

 100011 (-29)

 111101 (-3)

0

-2 +1 -1

000000000011
1111111101
00000110

0000010101111

Shifted 2s

complement

(+87)

Comparison of Booth and shift and add methods

Hardware implementation of Booth

 Once the partial products are generated then the addition process is very similar
to the array multiplier. Usually carry save adders are used with the final sum added using a CRA.

Page 18 of 39

Since the Booth Method applies to 2’s complement arithmetic, care must be taken to insure sign
extensions are in place as shown in red dots in the following diagram.

 Several techniques exist that reduces this task with ready made templates.

Once the table of the partial products are drawn, all the rows of the partial products have to be

arithmetically extended to 2*N, where N is the length of the multiplicand. This is necessary to

obtain correct results but it increases the capacitive load, the area and the computational time.

Instead the template above can be used (Copied from book: Advanced Computer Arithmetic

Design, by M.J. Flynn, S F. Oberman, Wiley) to reduce the calculation. In the above template,

there are 16 bit numbers. And the 17
th

 bit is the sign bit. Also, the partial products on each row

are entered as 1’complement numbers. If 2’complement numbers are used then the S entries

Page 19 of 39

on the right side can be removed. Please note that the S bit is the sign bit of the booth encoding

of that row)

S
1S

1
S

1S
1

S
1S

1
S

1

S
2S

2
S

2S
2

S
2

S
3S

3
S

3

S
4

B

A

P

S
1S

1
S

1

S
21

S
3

B

A

P

Sign template Sign extension

S
1S

1
S

1S
1

S
1S

1
S

1

S
2S

2
S

2S
2

S
2

S
3S

3
S

3

S
4

B

A

P

S
1S

1
S

1S
1

S
1S

1
S

1

S
2S

2
S

2S
2

S
2

S
3S

3
S

3

S
4

B

A

P

S
1S

1
S

1

S
21

S
3

B

A

P

S
1S

1
S

1

S
21

S
3

B

A

P

Sign template Sign extension

Example of using the template:
Let us multiply 25 * -35. sign bit

 A= +25 00011001

 B= -35 11011101

Now decode the multiplier 2 1

 1 1 0 1 1 1 0 1 0

 -1 -1

Check these values

B= -1 * 4
3
 + 2* 4

2
 -1 * 4

1
 + 1 * 4

0
= 35

Page 20 of 39

Now in order to reduce computation and extra computing units, all the capacitances use the

provided template as below

 0 0 0 1 1 0 0 1

 1 1 0 1 1 1 0 10

 0 0 0 0 0 0 0 0 0 1 1 0 0 1 * 1

 1 1 1 1 1 1 1 0 0 1 1 1 * -1

 0 0 0 0 1 1 0 0 1 0 * 2

 1 1 1 0 0 1 1 1 * -1

 1 1 1 1 0 0 1 0 0 1 0 1 0 1

This is a –ve number . Convert it

 0 0 0 0 1 1 0 1 1 0 1 0 1 1

 512 256 64 32 8 2 1 = 875

Using the Template 25 * -35

 Sign bit

 0 0 0 1 1 0 0 1

 Add SS 1 1 0 1 1 1 0 1 0

 Add inverted S

Add Inverted sign and add 1

 1 0 0 0 0 0 1 1 0 0 1 * 1

Add Inverted sign bit 1 0 1 1 1 0 0 1 1 1 * -1

 1 0 0 1 1 0 0 1 0 * 2

 No sign bit 1 1 0 0 1 1 1 * -1

 1 1 1 1 0 0 1 0 0 1 0 1 0 1

This is a –ve number. Convert it

 0 0 0 0 1 1 0 1 1 0 1 0 1 1

 512 256 64 32 8 2 1 = 875

Page 21 of 39

s0
-1 s0s0 P0

17P0
16 P0

15P0
14 P0

13P0
12 P0

11P0
10 P0

9P0
8 P0

7P0
6 P0

5P0
4 P0

3P0
2 P0

1P0
0

 1s1
-1P1

17P1
16 P1

15P1
14 P1

13P1
12 P1

11P1
10 P1

9P1
8 P1

7P1
6 P1

5P1
4 P1

3P1
2 P1

1P1
0 s0

 1s2
-1P2

17P2
16 P2

15P2
14 P2

13P2
12 P2

11P2
10 P2

9P2
8 P2

7P2
6 P2

5P2
4 P2

3P2
2 P2

1P2
0 s1

 1s3
-1P3

17P3
16 P3

15P3
14 P3

13P3
12 P3

11P3
10 P3

9P3
8 P3

7P3
6 P3

5P3
4 P3

3P3
2 P3

1P3
0 s2

 1s4
-1P4

17P4
16 P4

15P4
14 P4

13P4
12 P4

11P4
10 P4

9P4
8 P4

7P4
6 P4

5P4
4 P4

3P4
2 P4

1P4
0 s3

 1s5
-1P5

17P5
16 P5

15P5
14 P5

13P5
12 P5

11P5
10 P5

9P5
8 P5

7P5
6 P5

5P5
4 P5

3P5
2 P5

1P5
0 s4

 1s6
-1P6

17P6
16 P6

15P6
14 P6

13P6
12 P6

11P6
10 P6

9P6
8 P6

7P6
6 P6

5P6
4 P6

3P6
2 P6

1P6
0 s5

 s7
-1P7

17P7
16 P7

15P7
14 P7

13P7
12 P7

11P7
10 P7

9P7
8 P7

7P7
6 P7

5P7
4 P7

3P7
2 P7

1 s6

 P8
17P8

16 P8
15P8

14 P8
13P8

12 P8
11P8

10 P8
9P8

8 P8
7P8

6 P8
5P8

4 P8
3P8

2 P8
1P8

0 s7

 16 x 16 multiplier array with Booth encoding and sign-generation

A general example of 16x 16 bit multiplier using the given template is shown above.

Optimized Wallace Tree Multiplier

Several popular and well-known schemes, with the objective of improving the speed of the

parallel multiplier, have been developed in past. Wallace introduced a very important iterative

realization of parallel multiplier. This advantage becomes more pronounced for multipliers of

bigger than 16 bits.

 In Wallace tree architecture, all the bits of all of the partial products in each column are

added together by a set of counters in parallel without propagating any carries. Another set of

counters then reduces this new matrix and so on, until a two-row matrix is generated. The most

common counter used is the 3:2 counter which is a Full Adder.. The final results are added

using usually carry propagate adder. The advantage of Wallace tree is speed because the

addition of partial products is now O (logN). A block diagram of 4 bit Wallace Tree multiplier

is shown in below. As seen from the block diagram partial products are added in Wallace tree

block. The result of these additions is the final product bits and sum and carry bits which are

added in the final fast adder (CRA).

Page 22 of 39

Since Wallace Tree is a summation method, it can be used in conjunction with array multiplier

of any kind including Booth array. The diagram below shows the implementation of 8 bit

squarer using the Wallace tree for compressing the addition process.

x
0
y

0

x
1
y

0

x
0
y

1

x
3
y

0

x
2
y

1

x
1
y

2

x
0
y

3

x
2
y

0

x
1
y

1

x
0
y

2

x
4
y

0

x
3
y

1

x
2
y

2

x
1
y

3

x
0
y

4

x
4
y

1

x
3
y

2

x
2
y

3

x
1
y

4

x
4
y

2

x
3
y

3

x
2
y

4

x
4
y

3

x
3
y

4

x
4
y

4

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
0

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

Page 23 of 39

 n7 n6 n5 n4 n3 n2 n1 n0

n7 n6 n5 n4 n3 n2 n1 n0

n7n0 n6n0 n5n0 n4n0 n3n0 n2n0 n1n0 n0n0

n7n1 n6n1 n5n1 n4n1 n3n1 n2n1 n1n1 n0n1

n7n2 n6n2 n5n2 n4n2 n3n2 n2n2 n1n2 n0n2

n7n3 n6n3 n5n3 n4n3 n3n3 n2n3 n1n3 n0n3

n7n4 n6n4 n5n4 n4n4 n3n4 n2n4 n1n n0n4

n7n5 n6n5 n5n5 n4n5 n3n5 n2n5 n1n5 n0n5

n7n6 n6n6 n5n6 n4n6 n3n6 n2n6 n1n6 n0n6

n7n7 n6n7 n5n7 n4n7 n3n7 n2n7 n1n7 n0n7

Cout n7n6 n7n5 n7n4 n7n3 n7n2 n7n1 n7n0 n6n0 n5n0 n4n0 n3n0 n2n0 n1n0 0 n0

 n7 n6n5 n6n4 n6n3 n6n2 n6n1 n5n1 n4n1 n3n1 n2n1 n1

 n6 n5n4 n5n3 n5n2 n4n2 n3n2 n2

 n5 n4n3 n3

 n4

Figure 4. Operation of 8 bit square

Page 24 of 39

 n7n4 n6n5 n6 n1n0 n1 n0 0 n3n0 n2n1 n5n0 n4n1 n3n2 n6n0 n5n1 n4n2 n7n0 n6n1 n5n2 n7n1 n6n2 n5n3 n7n2 n6n3 n5n4

F

A

1

3

H

A

1

F

A

1

F

A

3

F

A

5

F

A

7

F

A

1

0

n3

n4

C5

C7

C8

C10

C11

C14

C15

C17

ms1

ms3

ms5

ms8

ms10

n2n0 n4n0 n3n1 n4n3

C0

C1

C2

C4

C6

C9

C12

C13

C16

C20 C22

ms0 ms2

ms7

ms9

ms12

ms13

n5 n7n3 n6n4

C19

C24

ms4

ms6

ms14

F

A

1

8

 F

A

1

6

F

A

8

F

A

1

4

H

A

3

F

A

4

F

A

1

1

H

A

4

F

A

6

 H

A

5

F

A

9

H

A

6

 H

A

7

F

A

1

2 F

A

1

5 F

A

1

7 F

A

1

9 F

A

2

0

H

A

2

F

A

2

C3

 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

F

A

2

1

n2

n7n5

C18

C21

C23

C25

C26

C27

ms11

n7n6 n7

Figure 5. Wallace Tree structure of 8 bit square

Page 25 of 39

 32 bit multiplication using Booth and Wallace tree.

Page 26 of 39

Summary
 In this section performance measures of multipliers discussed so far are summarized and

compared. These results were obtained after synthesizing individual architectures targeting Xilinx

FPGA 4052XL-1HQ240C. All comparisons are based on the synthesis reports keeping one

common base for comparison. We summarize Area (Total number of CLBs required), Delay and

Power Consumption and also calculate Delay·Power (DP), Area·Power (AP), Area·Speed (AT)

and Area·Speed
2
 (AT

2
) product.

 From the Table we can see that delay of Wallace tree multiplier and Combined Booth-Wallace tree multiplier is

almost the same and is the least. Hence they are fastest among five multipliers. DP product is also the least for the

above two multiplier and are a good choice for this performance measure. Serial Parallel multiplier is a best choice

when speed is not important but reduced area and power consumption is of more interest and also for AP and AT

product Serial Parallel multiplier is a good choice. However, one of the most important performance parameter is

AT
2
. From the table we see that Modified Booth-Wallace Tree multiplier is the best choice as far as AT

2
is concerned.

The Serial Parallel multiplier which is a good choice for AP and AT product has worst performance for AT
2
.

 Array
Multi
plier

Modified
Booth
Multiplier

Wallace
Tree
Multiplier

Modified Booth
-Wallace Tree
Multiplier

Twin Pipe
Serial-Parallel
Multiplier

Area – Total
CLB’s (#)

1165 1292 1659 1239 133

Maximum Delay
D (ns)

187.87

139.41

101.14

101.43

22.58
(722.56)*

Power(mW) (at
highest speed)

16.650
6

(at188
ns)

23.136
(at 140ns)

30.95
(101.14ns)

30.862
(at 101.43ns)

2.089
(at 722.56ns)

Power P (mW)
when delay =
722.56ns

4.329

4.638

4.332

4.332

2.089

Delay ·Power
Product (DP)
(ns mW)

813.28

622.30

438.138

439.39

1509.42

Area·Power
Product (AP)
(# mW)

5043.2

8

5767.23

7186.788

5367.35

277.837

Area·Delay
Product (AD)
(# ns)

218.86
8 x 103

180.118 x

103

167.791 x

103

125.671 x 103

96.101 x 103 *

Area·Delay2
Product(AD2)
(# ns2)

41.119
x 106

25.110 x 106

16.970 x

106

12.747 x 106

69.438 x 106 *

Page 27 of 39

Appendix A

Signed Number Multiplication

1. Introduction

Direct two's complement array multiplication can perform "direct" multiplication of two's

complement numbers without requiring the complementing stages, significantly speeds up the

multiplication process. This appendix will discuss two direct two's complement multiplication

algorithms and their implementation.

These two direct two's complement multiplication algorithms are:

1) Tri-section modified Pezaris two's complement multiplication

2) Baugh-Wooley two's complement multiplication

These two algorithms are generally used in systems where the operands are less than 16-bit.

They are relatively simpler than Booth multiplier whose structure is based on recoding the 2's

complement operand in order to reduce the number of partial products to be added.

2. Tri-section modified Pezaris two's complement multiplier:
_

_

In 2's complement number representation, the most significant bit (MSB) is weighted

negatively. In realizing such a system, Pezaris generalizes the full adders into four types. In

type 0, which represents a normal adder, all three inputs x, y, z are weighted positively and

the result lies in the range {0,3}. This result is represented by a 2-bit binary number C

S where C and S are also weighted positively. In the other three types there are some

signals, indicated by the dots, that are weighted negatively.

Listed below are four arithmetic equations that describe the input/output relationships of the

four types of generalized full adders.

Type 0: C2
1
 + S2

0
 = X2

0
 + Y2

0
 + Z2

0

Type 1: C2
1
 + (-S)2

0
 = X2

0
 + Y2

0
 + (-Z)2

0

Type 2: (-C)2
1
 + S2

0
 = (-X)2

0
 + (-Y)2

0
 + Z2

0

Type 3: (-C)2
1
 + (-S)2

0
 = (-X)2

0
 + (-Y)2

0
 + (-Z)2

0

These four arithmetic equations lead to the truth-table descriptions of the four generalized full

adders given in the following table.
Table: Truth Table Describing the Four Types of Generalized Full Adders

Full Adder Weighted Inputs Weighted Outputs

Type 0 X2
0
 Y2

0
 Z2

0
 C2

1
 S2

0

Type 3 - X2
0
 - Y2

0
 - Z2

0
 - C2

1
 - S2

0

0 0 0 0 0

0 0 1 0 1

Page 28 of 39

Truth

Table

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Type 1 X2
0
 Y2

0
 - Z2

0
 C2

1
 - S2

0

Type 2 - X2
0
 - Y2

0
 Z2

0
 - C2

1
 S2

0

Truth

Table

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

One can easily derive the Boolean equations governing the four types of full adders from the

table entries.

Type 0 or Type 3:

S = X'Y'Z + X'YZ' + XY'Z' + XYZ

C = XY + YZ +ZX

Type 1 or Type 2:

S = X'Y'Z + X'YZ' + XY'Z' + XYZ

C = XY + YZ' +Z'X

Pezaris two's complement multiplier use mixture types of full adders.

The schematic circuit diagram of a 5-by-5 Pezaris array multiplier is shown below:

Page 29 of 39

The schematic logic circuit diagram of a 5-by-5 Tri-section modified Pezaris two’s complement array multiplier

 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 P

a4b4 (a4b3)(a4b2)(a4b1)(a4b0)

X

A

B

(a4) a3 a2 a1 a0

(b4) b3 b2 b1 b0

(a4b0) a3b0 a2b0 a1b0 a0b0

(a4b2) a3b2 a2b2 a1b2 a0b2

(a4b3) a3b3 a2b3 a1b3 a0b3

(a4b1) a3b1 a2b1 a1b1 a0b1

+

a0b0

FA1

FA2

P0

a4b0 a3b0 a1b0a2b0

P9 P8 P7 P6 P5 P4 P3 P2 P1

0 000

a0b1

a3b1 a2b1
a1b1

a0b2
a3b2 a2b2 a1b2

a4b3

a4b2

a4b1

a0b3a3b3 a2b3 a1b3

a0b4a4 b4 a3b4 a2b4 a1b4

FA0

FA0

FA0

FA0FA0

FA0FA1FA1

FA1 FA1

FA1

FA2FA2 FA2

FA2FA2FA2FA2

0

The examples of 5-by-5 Pezaris are shown below:
multiplicand multiplier

positive negative

negative positive

positive positive

negative negative

Page 30 of 39

Example of Tri-section modified Pezaris Two’s Complement Multiplication

1 1 1 0 1 1 1 1 1 1

0 (1) (1) (0) (1)

X

(0) 1 1 0 1

(1) 1 0 1 1

(0) 1 1 0 1

(0) 1 1 0 1

(0) 1 1 0 1

(0) 0 0 0 0

+

=13

= -5

= -65

1 1 1 0 1 1 1 1 1 1

0 (0) (0) (0) (0)

X (0) 1 1 0 1

(1) 1 0 1 1

(0) 0 0 0 0

(1) 1 0 1 1

(1) 1 0 1 1

(1) 1 0 1 1

+

=13

= -5

= -65

0

a0b0

1

P0

1

a4b0

0

a3b0

1
a1b0

0
a2b0

1

P9

1

P8

1

P7

1

P6

0

P5

1

P4

1

P3

1

P2

1

P1

1

0 000

a0b1

1

a3b1

1
a2b1

1

a1b1

0

a0b2

0

a3b2

0

a2b2

0

a1b2

0

a4b3

0

a4b2

0

a4b1

0

a0b3

1

a3b3

1

a2b3

1

a1b3

0

a0b4

1
a4 b4

0

a3b4

1

a2b4

1

a1b4

0

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

1010

1

0

00

0

00

0
0

0

1

1

1

1

1
1

1

1

1

0

0
0

0

0
0

0

0

1

1

1

1

1

1

1

1

1

0

0

1
11

1

a0b0

1

P0

1

a4b0

1

a3b0

1
a1b0

1
a2b0

0

P9

1

P8

1

P7

1

P6

0

P5

1

P4

1

P3

1

P2

1

P1

1

0 000

a0b1

0

a3b1

0
a2b1

0

a1b1

0

a0b2

1

a3b2

1

a2b2

0

a1b2

1

a4b3

1

a4b2

1

a4b1

0

a0b3

1

a3b3

1

a2b3

0

a1b3

1

a0b4

0
a4 b4

0

a3b4

0

a2b4

0

a1b4

0

0

FA

0

FA

0

FA

0

FA

0

FA

0
FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

100

1

0

0

00

0

0

0

1

1

1

1

1
1

1

1

1

0

0

0
0

0

1

1

1

1

1

1

1

1

Page 31 of 39

Example of Tri-section modified Pezaris Two’s Complement Multiplication

0 0 0 1 0 0 0 0 0 1

0 (0) (0) (0) (0)

X

(0) 1 1 0 1

(0) 0 1 0 1

(0) 1 1 0 1

(0) 1 1 0 1

(0) 0 0 0 0

+

=13

= 5

= 65

(0) 0 0 0 0

1 (1) (0) (1) (1)

X (1) 0 0 1 1

(1) 1 0 1 1

(0) 0 0 0 0

(1) 1 0 1 1

(1) 1 0 1 1

+

= -13

= -5

= 65

(0) 0 0 0 0

0 0 0 1 0 0 0 0 0 1

0

a0b0

1

P0

1

a4b0

0

a3b0

1
a1b0

0
a2b0

1

P9

0

P8

0

P7

0

P6

1

P5

0

P4

0

P3

0

P2

0

P1

0

0 000

a0b1

0

a3b1

0
a2b1

0

a1b1

0

a0b2

1

a3b2

1

a2b2

1

a1b2

0

a4b3

0

a4b2

0

a4b1

0

a0b3

0

a3b3

0

a2b3

0

a1b3

0

a0b4

0
a4 b4

0

a3b4

0

a2b4

0

a1b4

0

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

1

010

1

0

0 0

0

00

0

0

0

0

1

1

1

1

1

0

1
0

0

0
0

0

1

1
1

1 1
1

0

0

0

0 0

1

1

0

0

11

a0b0

1

a4b0

1

a3b0

1
a1b0

1
a2b0

00 000

a0b1

1

a3b1

1
a2b1

0

a1b1

1

a0b2

0

a3b2

0

a2b2

0

a1b2

0

a4b3

0

a4b2

0

a4b1

1

a0b3

0

a3b3

0

a2b3

0

a1b3

0

a0b4

1
a4 b4

1

a3b4

1

a2b4

0

a1b4

1

0

FA

0

FA

0

FA

0

FA

0

FA

0
FA

0

FA

1

FA

1

FA

1

FA

1

FA

1

FA

1

FA

2
FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

FA

2

1

0

0

1

0

0

0

0

0

0

10

1

1

1

0

0

0
1

011

1

P0

1

P9

0

P8

0

P7

0

P6

1

P5

0

P4

0

P3

0

P2

0

P1

0

1
0

0

0

0

0

0

0

0

0

0

0

0

3. Baugh-Wooley two's complement multiplier:

Baugh and Wooley have proposed an algorithm for direct two's complement array

multiplication. The principal advantage of their algorithm is that the signs of all summands are

positive, thus allowing the array to be constructed entirely with the conventional Type 0 full

adders. This uniform structure is very attractive for VLSI.

The schematic circuit diagram of a 5-by-5 Baugh-Wooley array multiplier is shown below:

Page 32 of 39

FA

FAFA FA FA

FAFA FA FA

FAFA FA FA

FAFA FA FA

FAFA FA FA FAFA

 1

P0

a4b0' a3b0
a1b0a2b0 a0b0

P9 P8 P7 P6 P5 P4 P3 P2 P1

0 000

a0b1

a3b1 a2b1
a1b1

a0b2
a3b2 a2b2 a1b2

a4b3'

a4b2'

a4b1'

a4' b4'

a0b3a3b3 a2b3 a1b3

a0'b4
a4b4

a3'b4 a2'b4 a1'b4

a4

b4

The schematic logic circuit diagram of a 5-by-5 Baugh-Wooley two’s complement array multiplier

The examples of 5-by-5 Baugh-Wooley are shown below:

multiplicand multiplier

positive negative

negative positive

positive positive

negative negative

Example of Baugh-Wooley Two’s Complement Multiplication

 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 P

a4' a3'b4 a2'b4 a1'b4 a0'b4

X

A

B

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

a4b0' a3b0 a2b0 a1b0 a0b0

a4b4 a4b3' a3b3 a2b3 a1b3 a0b3

a4b2' a3b2 a2b2 a1b2 a0b2

a4b1' a3b1 a2b1 a1b1 a0b1

+

b4' a4

1 b4

1 1 1 0 1 1 1 1 1 1

 0 0 1 0 0

= -65

X =13

= -5

0 1 1 0 1

1 1 0 1 1

1 0 0 0 0

0 1 0 1 1

0 0 1 0 1 1

0 1 0 1 1

+

1 1

 1 0

0 0 0 1 0 0 0 0 0 1

 1 0 0 0 0

= 65

X

=13

= 5

0 1 1 0 1

0 0 1 0 1

0 0 0 0 0

0 1 1 0 1

0 0 0 0 0 0

0 1 1 0 1

+

1 0

 1 0

0 0 0 1 0 0 0 0 0 1

 0 1 1 0 0

= 65

X

= -13

= -5

1 0 0 1 1

1 1 0 1 1

0 0 0 1 1

0 0 0 1 1

1 0 0 0 1 1

1 0 0 0 0

+

0 1

 1 1

1 1 1 0 1 1 1 1 1 1

 1 0 0 1 0

= -65

X

=13

= -5

0 1 1 0 1

1 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 0 1 1 0 1

0 0 0 0 0

+

0 0

 1 1

Page 33 of 39

4. Comparison

Table: Direct two's complement multiplication

n * n two's Complement Array Multiplier
 Tri-section Pezaris Baugh-Wooley

 Advantage Regular format array Irregular format array,

two more rows

 Disadvantage Three type full adder

uesd

Only one type full

adder uesd

Full Adder

Used

Type 0 (n
2
 - 3n +2) / 2 n

2
 - n +3

Type 1 (n
2
 - 3n +2) / 2 0

Type 2 2 n -1 0

Type 3 0 0

Total n
2
 - n n

2
 - n +3

Total time delay (Multiply time) 4 nΔ- 2Δ 4 nΔ

 * Δ is the unit gate delay.

5. VHDL coding:

As an example a 5-bit two's complement multiplication of Tri-section modified Pezaris and

Baugh-Wooley are implemented by VHDL code and part of the simulation result are shown

below:

Page 34 of 39

6. FPGA Implementation:

Implement Multipliers in Xilinx Virtex II FPGAs.

Then indicate the critical path, compare the performance, area and power consumption.

References:
[1] Kai Hwang “Computer Arithmetic: Principles, Architecture, and Design”

 John Wiley & Sons 1979

[2] S. D. Pezaris "A 40-ns 17-Bit by 17-Bit Array Multiplier", IEEE Trans. on

Computers, pp. 442-447,.Abr. 1971

[3] C. Baugh y A. Wooley "A Two's Complement Parallel Array Multiplication

Algorithm". IEEE Trans.on Computer, Vol.C-22, Nº12. Dic.1973.

Appendix B

Examples of signed multiplication (When multiplier operand is
positive)

Example. 1

 -100 -10010=100111002

 X 4 410 = 01002

 -400

By Sign Extension method,

 10011100

 X 0100

 00000000000

 0000000000

 110011100

 00000000

 11001110000 -400

Page 35 of 39

According to the extend and invert algorithm,

 10011100

 X 0100

 100000000

 10000000

 00011100

 10000000

 11001110000 Ans is -400

Ex 2

 -5 -510 = 10112

 X 4 410 = 01002

 -20

By Sign Extension method,

 1011

 X 0100

 0000000

 000000

 11011

 0000

 1101100 2’s complement of -20

According to the algorithm of extend and invert method,

Page 36 of 39

 1011

 X 0100

 10000

 1000

 0011

 1000

 1101100 –20 in 2’s complement

Ex 3

 -4 -410 = 11002

 X 3 310 = 00112

 -12

By Sign Extension method,

 1100

 X 0011

 111100

 11100

 0000

 0000

 1110100 -12 in 2’s complement

According to the sign extend and invert algorithm,

 1100

 X 0011

 01100

 0100

 1000

 1000

 1110100 -12 in 2’s complement

Page 37 of 39

Ex 4

 -12 -1210 = 101002

 X 12 1210 = 011002

 -144

By Sign Extension method,

 10100

 X 01100

 000000000

 00000000

 1110100

 110100

 00000

 101110000 -144

According to the sign extend and invert algorithm,

 10100

 X 01100

 100000

 10000

 00100

 00100

 10000

 101110000 - 144

Page 38 of 39

Examples of B00th multiplication

Example
Using Booth algorithm multiply A and B.

A= 20

B=30

A= 0010100 Please note that both numbers are extended to cover 2A or 2B and the

B= 0011110 sign bit (whichever is larger).

A * B = A= 0 0 1 0 1 0 0

 -0

 B= 0 0 1 1 1 1 0 0

 +2 -2

2A = 40 = 00101000

-2A = 11011000

Now performing the addition we have

 1 1 1 1 1 1 1 0 1 1 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 1 0 1 0 0 0

 0 0 0 1 0 0 1 0 1 1 0 0 0

 512 + 64 + 16 + 8 = (600)10

Now let us try

B * A = B= 0 0 1 1 1 1 0

 + 1

 A= 0 1 0 1 0 0 0

 +1 +0

Page 39 of 39

Now performing the addition we have

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 1 1 1 1 0

 0 0 0 0 1 1 1 1 0

 0 0 0 1 0 0 1 0 1 1 0 0 0

 512 + 64 + 16 + 8 = (600)10

F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i
F.A C i S i P 00 P 10 P 01 P 11 P 02 P 12 P 03 0 0 0 P 20 P 21 P 02 P 11 P 01 P 10 P 00 P i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A P 12 P 03 0 0 0 P 20 P 21 P 02 P 11 P 01 P 10 P 00 P i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A
i S i C F.A P 12 P 03 0 0 0 P 20 P 21 P

