Multipliets

Introduction

Multipliers play an important role in today’s digital signal processing and various other
applications. With advances in technology, many researchers have tried and are trying to design
multipliers which offer either of the following design targets — high speed, low power
consumption, regularity of layout and hence less area or even combination of them in one
multiplier thus making them suitable for various high speed, low power and compact VLSI
implementation.

The common multiplication method is “add and shift” algorithm. In parallel multipliers
number of partial products to be added is the main parameter that determines the performance of
the multiplier. To reduce the number of partial products to be added, Modified Booth algorithm
is one of the most popular algorithms. To achieve speed improvements Wallace Tree algorithm
can be used to reduce the number of sequential adding stages. Further by combining both
Modified Booth algorithm and Wallace Tree technique we can see advantage of both algorithms
in one multiplier. However with increasing parallelism, the amount of shifts between the partial
products and intermediate sums to be added will increase which may result in reduced speed,
increase in silicon area due to irregularity of structure and also increased power consumption due
to increase in interconnect resulting from complex routing. On the other hand “serial-parallel”
multipliers compromise speed to achieve better performance for area and power consumption.
The selection of a parallel or serial multiplier actually depends on the nature of application. In
this lecture we introduce the multiplication algorithms and architecture and compare them in
terms of speed, area, power and combination of these metrics.

Page 1 of 39

Multiplication Algorithm

The multiplication algorithm for an N bit multiplicand by N bit multiplier is shown below:

Y= Y11 Yhoo o, Y>Y1 Yo Multiplicand
X=Xna X2 e, Xy X1 Xo Multiplier
Generally
N0 2 2 Y, Y, Y,
e X K K e Ko X X
Yn-1X0 Yn-2X0 YNn-3X0 Y1X0 YOXO
Yn-1X1 Yn-2X1 Yn-3X1 Y1X1 YOX1
YNn-1X2 Yn-2X2 Yn-3X2 Y1X2 YOX2
Yn-1Xn-2 Yn-2X0 n-2 Yn-3Xn-2 Y1Xn-2 YOXn-2
Yn-1Xn-1 Yn-2X0n-1 Yn-3Xn-1 Y1Xn-1 YOXn-1
P2n-1 P2n-2 P2n-3 P2 P1 PO

Example 1101 4-bits
1101 4-bits

1101
0000
1101
1101

10101001

Page 2 of 39

AND gates are used to generate the Partial Products, PP, If the multiplicand is N-bits and the
Multiplier is M-bits then there is N* M partial product. The way that the partial products are
generated or summed up is the difference between the different architectures of various

multipliers.

Multiplication of binary numbers can be decomposed into additions. Consider the

multiplication of two 8-bit numbers A and B to generate the 16 bit product P.

+ A7.

A7.B0 A6.BO A5.BO A4.BO A3.BO A2.BO Al.BO A0.BO
Bl A6.B1 A5.B1 A4.B1 A3.Bl A2.Bl Al.Bl A0.Bl

+ A7.B2 A6.B2 A5.B2 A4.B2 A3.B2 A2.B2 Al.B2 A0.B2
+ A7.B3 A6.B3 A5.B3 A4.B3 A3.B3 A2.B3 Al.B3 A0.B3
+ A7.B4 A6.B4 A5.B4 A4.B4 A3.B4 A2.B4 Al.B4 A(0.B4
+ A7.B5 A6.B5 A5.B5 A4.B5 A3.B5 A2.B5 Al.B5 A0.B5
+ A7.B6 A6.B6 A5.B6 A4.B6 A3.B6 A2.B6 Al.B6 A0.B6
+A7.B7 A6.B7 A5.B7 A4.B7 A3.B7 A2.B7 Al.B7 AQ0.B7

m-1 n-—:

1
The equation for the addition is: P(m+n)=AMBMn)=>"
i=0 j=0

ab. 2" .

1]

Multiplication Algorithm

e If the LSB of Multiplier is ‘1°, then add the multiplicand into an accumulator.

e Shift the multiplier one bit to the right and multiplicand one bit to the left.

e Stop when all bits of the multiplier are zero.

N

Patial
Products to
be added

From above it is clear that the multiplication has been changed to addition of numbers. If

the Partial Products are added serially then a serial adder is used with least hardware. It is

possible to add all the partial products with one combinational circuit using a parallel

multiplier. However it is possible also, to use compression technique then the number of

partial products can be reduced before addition .is performed.

Page 3 of 39

Serial Multiplier

Where area and power is of utmost importance and delay can be tolerated the serial multiplier
is used. This circuit uses one adder to add the m * n partial products. The circuit is shown in
the fig. below for m=n=4. Multiplicand and Multiplier inputs have to be arranged in a special
manner synchronized with circuit behavior as shown on the figure. The inputs could be
presented at different rates depending on the length of the multiplicand and the multiplier. Two
clocks are used, one to clock the data and one for the reset. A first order approximation of the
delay is O (m,n). With this circuit arrangement the delay is givenas D =[(m+1)n + 1] tz..

XXX % YiY3%¥iYo
Input Sequence for G1:
00%%% %0 %% % % 0%% % % 0% %% %

00Y3Y5YsYs 0¥, Y2 Y2 0Y1 Y1 Y1 Y1 0¥ 0 Yo Yo Yo
Reset: 010000100001 000010000

1-bit |9
Reset=0

P—= 0 0 0 0

Serial Register

CLK CLK/(N+1)

Slide 1

3

As shown the individual PP is formed individually. The addition of the PPs are performed as
the intermediate values of PPs addition are stored in the DFF, circulated and added together
with the newly formed PP. This approach is not suitable for large values of M or N.

For snapshots of data movements please see the course website/slides of lecture 3.

Page 4 of 39

XXX %o

Serial/Parallel Multiplier

The general architecture of the serial/parallel multiplier is shown in the figure below. One
operand is fed to the circuit in parallel while the other is serial. N partial products are formed
each cycle. On successive cycles, each cycle does the addition of one column of the
multiplication table of M*N PPs. The final results are stored in the output register after N+M
cycles. While the area required is N-1 for M=N. For snapshots of data transfer through this
multiplier please see the course website/slides of lecture

yo yl y2 y3

A pipelined version of an 8 bit multiplier is shown below.

+a J_‘ i} a lJJ_‘ Ii} [} i} i) ’JJ_I _,\} i} J_L li [J_‘ Ii} s | ,\ n
b (N IJ_/‘ L, b4 Ly [J] i
= =
= = =
h - (. Q
™
1"‘\ ’."\ . ""\ "‘- 3 "\ ?'\ o T =
0% -0 (B B0 (0D {0004
LA'E Al Afe = AE AlS Al AL

Page 5 of 39

Shift and Add Multiplier

The general architecture of the shift and add multiplier is shown in the figure below for a 32 bit
multiplication. Depending on the value of multiplier LSB bit, a value of the multiplicand is
added and accumulated. At each clock cycle the multiplier is shifted one bit to the right and its
value is tested. If it is a O, then only a shift operation is performed. If the value is a 1, then the
multiplicand is added to the accumulator and is shifted by one bit to the right. After all the
multiplier bits have been tested the product is in the accumulator. The accumulator is 2N
(M+N) in size and initially the N, LSBs contains the Multiplier. The delay is N cycles
maximum. This circuit has several advantages in asynchronous circuits. To view data
movements please see course website/slides of lecture 3.

Multiplicand

32 bits

32-bit AL

ey

— Shift Right
Product i (Multiplier) :

\ 04 bits

' Control
Write

Page 6 of 39

Array Multipliers

Array multiplier is well known due to its regular structure. Multiplier circuit is based on add and
shift algorithm. Each partial product is generated by the multiplication of the multiplicand with
one multiplier bit. The partial product are shifted according to their bit orders and then added.
The addition can be performed with normal carry propagate adder. N-1 adders are required
where N is the multiplier length.

A3 A2 Al A0
X B3 B2 B1 BO Inputs
C BOxA3 BOxA2 BOxAl BOxAO0
+ B1xA3 B1xA2 Bl1xAl B1xAO0
C sum sum sum sum
+ B2xA3 B2xA2 B2xAl B2xA0 Internal Signals
C sum sum sum sum
+ B3xA3 B3xA2 B3xAl B3xA0
sum sum sum sum
Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO0 Outputs

Page 7 of 39

An example of 4-bit multiplication method is shown below:

a3 a2 al aO
bO
A=aza,a,a,
B =b,b,b,b,
a3 a'2 al a‘O
ﬂ B
0
. C.
Cout Four-bit Adder i la—0
a3 a2 al aO
W B
Cout Four-bit Adder C,le0
a, a, a, a,
ﬂ B
Cout Four-bit Adder C,[* 0
f Vo Voo

Product (A*B)

Although the method is simple as it can be seen from this example, the addition is done serially
as well as in parallel. To improve on the delay and area the CRAs are replaced with Carry Save
Adders, in which every carry and sum signal is passed to the adders of the next stage. Final
product is obtained in a final adder by any fast adder (usually carry ripple adder). In array
multiplication we need to add, as many partial products as there are multiplier bits. This
arrangements is shown in the figure below

Page 8 of 39

A, A A A **P :A B Pes Py O Py P O Por P O
i~ b L]] L[| L[]
F.A F.A F.A
Total of 16 A B Bo
gates [cC S cC S C S
B, i ! i ; i i
) B
0< |_s 3 : P, P, P, Psy
0<j<3 B]| | |
l F.A F.A F.A
Pij C. S C, S ¢ S
Pas Pa P Pao
|| | |
F.A F.A F.A
C, S c, S (S
P T °
L L[] ’_, |
F.A F.A F.A
C S C S C S
v \j \J
o = R, R R R, R,

Total Area = (N—l) * M * Area FA

Delay= 2(M-1) T,

Now as both multiplicand and multiplier may be positive or negative, 2’s complement number
system is used to represent them. If the multiplier operand is positive then essentially the same
technique can be used but care must be taken for sign bit extension.

Page 9 of 39

The reason for dealing with signed number incorrectly is the absence of sign bit expansion in
this multiplier.

al a0 al a0
X bl b0 X bl b0
alb0 aOb0 alb0 alb0 alb0 aOb0
albl aObl albl albl aObl
Wrong Correct

There is a way to correct this fault, which do not need to expand all of the bits in the partial
product addition.
When 2’s complement partial products are added in carry save arithmetic all numbers to be
added in one adder stage have to be of equal bit length. Therefore, the sign bits of the partial
product(s) in the first row and the sum and carry signals of each adder row are extended up to
the most significant sign bit of the number with the largest absolute value to be added in this
stage. The sign bit extension results in a higher capacitive load (fan out) of the sign bit signals
compared to the load of other signals and accordingly slows down the speed of the circuit.
Algorithms exist when adding two partial products (A+B) which will eliminate the need of
sign bit extension (Please see Appendix A when both numbers can be positive or negative):

1. Extend sign bit of A by one bit and invert this extended bit.
2. Invert the sign bit of B.
3. Add A and B. Add ‘1’ to one position left of MSB of B

Here is an example of 6 bit sign addition:

ds ds dg dg. .. a; dg

+ b= D= ba bl ba

a’s as ag. . di do

+ 1 b’zbas b1 ba

In General we can invert all the sign bits and add a “1” to column n as shown in the diagram
below:

Page 10 of 39

109876543210
ADD1” — g

xR GIX XXX X
* Q) XXX X X
* kG XXX X X

* kG XXX X X
INVERT ALL T S XXX XX

SIGN BITS Se X X X X X

-/

It is possible however to simplify this further and use the following template. Extend the sign
of the first partial product row by 1 bit and invert this bit. Invert all other sign bits of all partial
products as shown below

109 87654 3210

Extend sign
bit and invert y
* ok ox ok § G XX X X X
* ko x G X X X X X
* ko Qo XX X X X
* kG, X X X X X
* S X X X X X
Invert all ge X X X X X

other sign bits \/

Page 11 of 39

Below are some examples of this method

Example 1
-210 = 1102
* 310 = 0112
-6 =11010 This is 2’s Complement of 6

By sign extension method l\

-210 = 1102
* 310 = 0112 * 011 bits
-6 11110
1110
—000

11010 — > This is 2’s Complement of 6

Now, according to the algorithm,

110

Extended * 011
sign bitand [0110

010
11010 ' This 1s 2’s Complement of 6

Inverted
sign bits

The Diagram below shows the architecture of a 32 bit array adder. (Please note that the design

is modified to take care of 2”’s complement numbers)

Page 12 of 39

Array Multiplier for a 32 bit number (2”’s complement numbers)

¥ E_ﬁ {J] EJ] @
LI DRLE:
\FAX \F.qf \Fﬁf \Fﬁf \T—TAX

[A/

ﬁ
&
{
o
FF_,-d"
—

I AT ATTER

| !
BRI RAY P12 Rl Lk

Booth Multipliers

34

It is a powerful algorithm for signed-number multiplication, which treats both positive and

negative numbers uniformly.

Page 13 of 39

For the standard add-shift operation, each multiplier bit generates one multiple of the
multiplicand to be added to the partial product. If the multiplier is very large, then a large
number of multiplicands have to be added. In this case the delay of multiplier is determined
mainly by the number of additions to be performed. If there is a way to reduce the number of
the additions, the performance will get better.

Booth algorithm is a method that will reduce the number of multiplicand multiples. For a
given range of numbers to be represented, a higher representation radix leads to fewer digits.
Since a k-bit binary number can be interpreted as K/2-digit radix-4 number, a K/3-digit radix-8
number, and so on, it can deal with more than one bit of the multiplier in each cycle by using

high radix multiplication. This is shown for Radix-4 in the example below.

Multiplicand A= o000

Multiplier B= (o0)(00)

Partial product bits X (B1Bg), A4’
XX (B3By), A4

Product P= e o0cco cooe

Radix-4 multiplication in dot notation.

As shown in the figure above, if multiplication is done in radix 4, in each step, the partial
product term (Bi+1B;)> A needs to be formed and added to the cumulative partial product.
Whereas in radix-2 multiplication, each row of dots in the partial products matrix represents 0
or a shifted version of A must be included and added.

Table 1below is used to convert a binary number to radix-4 number .
Initially, a “0” is placed to the right most bit of the multiplier. Then 3 bits of the multiplicand
is recoded according to table below or according to the following equation:

Zi = -2Xi+1 T Xi * Xi1

Example:
Multiplierisequalto 0101110

0 added
e

Page 14 of 39

then a 0 is placed to the right most bit which gives 01011100
the 3 digits are selected at a time with overlapping left most bit as follows:

-1 <

+1

Table .1 Radix-4 Booth recoding
Xi+1 X

x

Zipp

P P P P O O O
P r O O - = O O
- O kb O = O = O

For example, an unsigned number can be converted into a signed-digit number radix 4:

(1001110110101110); = (22 -12-1-10-2),

The Multiplier bit-pair recoding is shown in Table .2

Table Multiplier recoding

0 0 0 +0*multiplicand
0 0 1 +1*multiplicand

Page 15 of 39

+1*multiplicand
+2*multiplicand
-2*multiplicand
-1*multiplicand

-1*multiplicand

e e = =)
R P O O Kk K
R O kB O KLk O

-0*multiplicand

Here —2*multiplicand is actually the 2s complement of the multiplicand with an
equivalent left shift of one bit position. Also, +2 *multiplicand is the multiplicand shifted left
one bit position which is equivalent to multiplying by 2.

To enter +2*multiplicand into the adder, an (n+1)-bit adder is required. In this case, the
multiplicand is offset one bit to the left to enter into the adder while for the low-order
multiplicand position a 0 is added. Each time the partial product is shifted two bit positions to
the right and the sign is extended to the left.

During each add-shift cycle, different versions of the multiplicand are added to the new partial
product depends on the equation derived from the bit-pair recoding table above.

Let’s see some examples:

Example 1:

000011 (+3)
X 01181_@ (+29)
—/
+2 -1 +1

000000000011
1111111101
00000110

1 < 000001010111 (+87)

Example 2:

Page 16 of 39

111101 (-3)
X 0111:)/1_@ (+29)

—/
+2-1+1
111111111101
2s complement of
multiF:)Iicand — 0000000011
11111010
1 <+ 111110101001 (-87)
Example 3:
111101 (-3)
X 1003%&@ (-29)
—/
-2+1-1
[000000000011
Shifted 2s
complement —» 1111111101
00000110

1 < 000001010111 (+87)

Comparison of Booth and shift and add methods

Multiplicand 010101

Multiplicand 010101
Multiplier 001010 Multiplier 001010
000000 111
08%%%}%1 000000001010
08%%%}%1 0000001010
000000 00001010
000011010010 Result 000011010010

REGULAR SHIFT AND ADD MULTIPLICATION BOOTH MULTIPLICATION

Hardware implementation of Booth

Intermediate
Recoding

Result

Once the partial products are generated then the addition process is very similar
to the array multiplier. Usually carry save adders are used with the final sum added using a CRA.

Page 17 of 39

Since the Booth Method applies to 2’s complement arithmetic, care must be taken to insure sign
extensions are in place as shown in red dots in the following diagram.

00000000

00000000
0 0000 O0COOCOGLOGOOGOOGO®O
@0 00000 OCOGOOGOOO
0 00000000
““““ll [

Several techniques exist that reduces this task with ready made templates.

Once the table of the partial products are drawn, all the rows of the partial products have to be
arithmetically extended to 2*N, where N is the length of the multiplicand. This is necessary to
obtain correct results but it increases the capacitive load, the area and the computational time.
Instead the template above can be used (Copied from book: Advanced Computer Arithmetic
Design, by M.J. Flynn, S F. Oberman, Wiley) to reduce the calculation. In the above template,
there are 16 bit numbers. And the 17" bit is the sign bit. Also, the partial products on each row
are entered as 1’complement numbers. If 2°complement numbers are used then the S entries

SSe o 8 0 0 0 8 0 0 0 000000

O 0 0 0 0 0 0 0 0 0 0 D BRORN

1] 5 @ O 0 0 0 0 0 0 0 B OO0 NN

=i

,_.
2]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L)

2

(IR I T I I I I I I I I B §
Page 18 of 39

baan

D Z @& 8 & & & & & 5 0 0 0 8 0 8 8 8~

on the right side can be removed. Please note that the S bit is the sign bit of the booth encoding
of that row)

I A | I A |
! | B | | B |
! 5,55000000000 5,5 555 55000000000
155000000000 555 55000000000
5;,000000000 555000000000

000000000 ;000000000
[P [P

' Sign template Sign extension

Example of using the template:

Let us multiply 25 * -35. sign bit
A= +25 00011001
B= -35 11011101

Now decode the multiplier 2 1
A

10111010
s

Check these values
B=-1*4%+2%42-1*4'+1*4°=35

Page 19 of 39

00011001
110111010

00000000011001 *1
111111100111 *-1
0000110010 *
11100111 *

11110010010101

PR

512 256 64 32 8 1 =875

This is a —ve number . Convert it

Now in order to reduce computation and extra computing units, all the capacitances use the
provided template as below

Using the Template 25 * -35

Sign bit

00011001
Add SS 11011110
Add inverted S
Add Inverted sign and add 1

100 011001 *1

Add Inverted sign bit 1M 1 * .1
\:ﬁ%ﬁ 0 * 9

No sign bit ﬂ* 1 * .1

11110010010101

This is a —ve number. Convert it
000011011010112

512 256 64 32 8 2 1 =875

Page 20 of 39

So-l S0So P017P016 P015P014 P013P012 PO].].POIO P09P08 P07P06 P05P04 P03P02 POIPOO
151'1P117P116 P115P114 P113P112 P111P110 P19P18 P17P16 P15P14 P13P12 Pllplo So
152—1P217P216 P215P214 P213P212 lelpzlo P29P28 P27P26 P25P24 P23P22 PZlPZO 1
153-1P317P316 P315P314 P313P312 PgllpglO P39P38 P37P36 P35P34 P33P32 PSlPSO S
154—1P417P416 P415P414 P413P412 P411P410 P49P48 P47P48 P45P44 P43P42 P41P40 S
155—1P517P516 P515P514 P513P512 P511P510 P59P58 P57P56 P55P54 P53P52 P51P50 S
186-1P617P615 P615P614 P613P612 P611P610 PGQPGE P67P66 P65P54 P63P82 Pﬁlpﬁo Ss
-1p_17p_16 15p_14 13p_12 11p_10 9p_8 p_6 5p_4 3p_2 1
s7 Pz 'P7 PP PP 2 PPy P P7° P7'P7° PPy P°P7~ Py Se

P817P816 P815P814 P813P812 P811P810 PBQPBB P87P86 P85P84 P83P82 P81P80 s

16 x 16 multiplier array with Booth encoding and sign-generation

A general example of 16x 16 bit multiplier using the given template is shown above.

Optimized Wallace Tree Multiplier

Several popular and well-known schemes, with the objective of improving the speed of the
parallel multiplier, have been developed in past. Wallace introduced a very important iterative
realization of parallel multiplier. This advantage becomes more pronounced for multipliers of
bigger than 16 bits.

In Wallace tree architecture, all the bits of all of the partial products in each column are
added together by a set of counters in parallel without propagating any carries. Another set of
counters then reduces this new matrix and so on, until a two-row matrix is generated. The most
common counter used is the 3:2 counter which is a Full Adder.. The final results are added
using usually carry propagate adder. The advantage of Wallace tree is speed because the
addition of partial products is now O (logN). A block diagram of 4 bit Wallace Tree multiplier
is shown in below. As seen from the block diagram partial products are added in Wallace tree
block. The result of these additions is the final product bits and sum and carry bits which are
added in the final fast adder (CRA).

Page 21 of 39

XsY4
X34
X4Y3
X5Y4

G
>
™

XY
X1Y4

™ N
> >
N
x

ﬂg

o ﬁ?
L@ 1§
N

+) () (4 +

XY
XoY4
X1Y3
X5¥5
X3y
XYo
XoY3
X1Ys,
XY
X3Yo
XoY2
X1Y;
XYo
XoY1

X
X

n
e
n
n

t) +)
S
+

+

P —

P = P P

4 3

5 P

2 1
Since Wallace Tree is a summation method, it can be used in conjunction with array multiplier
of any kind including Booth array. The diagram below shows the implementation of 8 bit

squarer using the Wallace tree for compressing the addition process.

Page 22 of 39

%Yo
XoYo

nf n6 n5 nd n3 n2 nl nO

nf n6 n5 n4d n3 n2 nl n0

n7/n0 n6n0 n5n0 n4n0 n3n0 n2n0 nin0 nONO
n7/nl n6nl n5n1 nd4nl n3nl n2nl nlnl nOnl
n7/n2 n6n2 n5n2 n4n2 n3n2 n2n2 nln2 nOn2
n7n3 n6n3 n5n3 n4n3 n3n3 n2n3 nln3 nOn3
n7n4 n6n4d n5n4 nd4n4 n3nd4 n2n4 nln nOnd
n7n5 n6n5 n5n5 n4n5 n3n5 n2n5 niln5 nOn5
n7n6 n6n6 n5n6 n4n6 n3n6 n2n6 nln6é nOn6
n7n7 n6én7 n5n7 n4n7 n3n7 n2n7 nln7 nOn7

Cost N7n6 n7n5 n7n4 n7n3 n7n2 n7nl n7n0 n6n0

n5n0 n4n0 n3n0 n2n0 nlnO 0 no
n7 nén5 n6n4 n6n3 n6n2 n6nl n5nl n4nl n3nl n2nl nl
n6 n5n4 n5n3 n5n2 n4n2 n3n2 n2
n5 n4n3 n3

n4

Figure 4. Operation of 8 bit square

Page 23 of 39

n7r\4\1 nilj Jns n7n2N n6\1j 24 !\ﬁn% y g \Ijnlyzwx nili Z\Z n5n¥4nil/ n?Z/ n3n0\ \ﬁnlwz Wnl 0
F F F F

F F

C6

il

n7n6 n7
G

C.

S15 S14 S13 S12 Si1 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 SO

Figure 5. Wallace Tree structure of 8 bit square

Page 24 of 39

32 bit multiplication using Booth and Wallace tree.

— Multiplier Multiplicand

!

| Partial Froduct O

| Partial Product 1

| Partial Product 2

|

| Partial Product 3

[c |

| Partial Product <

[c]

¥

Partial Product 5

[|

| Partial Product 6

; Lc|

Fanial Product 2 E—

[

l Panial Product

X

Partial Product 9

Lc|

l Barial Product 10

Partial Product 11 L]

[

X

Modified Booth Encoder

| Parial Product 4

1 Bartial Product 13 E‘

_"'I Paortial Product 14 E—
il Bartial Product 15 |—C—

| 1|° |1 | ------------------ |1 |° |l | llr-LC_ Fix Murmber { 10181010101018101010101610101011)

LI

WALLACE TREE ADDERS

| Firzst Humber

Second Mumber

| Carry Select Adder (CSA)

Page 25 of 39

Summary

In this section performance measures of multipliers discussed so far are summarized and
compared. These results were obtained after synthesizing individual architectures targeting Xilinx
FPGA 4052XL-1HQ240C. All comparisons are based on the synthesis reports keeping one
common base for comparison. We summarize Area (Total number of CLBs required), Delay and
Power Consumption and also calculate Delay-Power (DP), Area-Power (AP), Area-Speed (AT)
and Area-Speed? (AT?) product.

From the Table we can see that delay of Wallace tree multiplier and Combined Booth-Wallace tree multiplier is
almost the same and is the least. Hence they are fastest among five multipliers. DP product is also the least for the
above two multiplier and are a good choice for this performance measure. Serial Parallel multiplier is a best choice
when speed is not important but reduced area and power consumption is of more interest and also for AP and AT
product Serial Parallel multiplier is a good choice. However, one of the most important performance parameter is
AT?. From the table we see that Modified Booth-Wallace Tree multiplier is the best choice as far as AT?is concerned.
The Serial Parallel multiplier which is a good choice for AP and AT product has worst performance for AT?.

Array | Modified | Wallace Modified Booth | Twin Pipe
Multi | Booth Tree -Wallace Tree Serial-Parallel
plier Multiplier | Multiplier | Multiplier Multiplier
Area — Total 1165 1292 1659 1239 133
CLB’s (#)
Maximum Delay 22.58
D (ns) 187.87 139.41 101.14 101.43 (722.56)"
Power(mW) (at 16.650 23.136 30.95 30.862 2.089
highest speed) 6 (at 140ns) | (101.14ns) (at 101.43ns) (at 722.56ns)
(at188
ns)
Power P (mW)
when delay = 4.329 4.638 4.332 4.332 2.089
722.56ns
Delay -Power
Product (DP) 813.28 622.30 438.138 439.39 1509.42
(ns mW)
Area-Power
Product (AP) 5043.2 5767.23 7186.788 5367.35 277.837
(# mW) 8
Area-Delay
Product (AD) 218.86 | 180.118 x | 167.791x 125.671 x 10° 96.101 x 10*
(# ns) 8 x 10’ 10° 10°
Area-Delay’
Product(AD?) 41.119 | 25.110 x 10° | 16.970 x 12.747 x 10° 69.438 x 10°*
(# ns?) x 10° 10°

Page 26 of 39

Appendix A

Signed Number Multiplication

1. Introduction

Direct two's complement array multiplication can perform "direct” multiplication of two's
complement numbers without requiring the complementing stages, significantly speeds up the
multiplication process. This appendix will discuss two direct two's complement multiplication
algorithms and their implementation.

These two direct two's complement multiplication algorithms are:

1) Tri-section modified Pezaris two's complement multiplication

2) Baugh-Wooley two's complement multiplication

These two algorithms are generally used in systems where the operands are less than 16-bit.
They are relatively simpler than Booth multiplier whose structure is based on recoding the 2's
complement operand in order to reduce the number of partial products to be added.

2. Tri-section modified Pezaris two's complement multiplier:

In 2's complement number representation, the most significant bit (MSB) is weighted
negatively. In realizing such a system, Pezaris generalizes the full adders into four types. In
type 0, which represents a normal adder, all three inputs X, y, z are weighted positively and
the result lies in the range {0,3}. This result is represented by a 2-bit binary number C
S where C and S are also weighted positively. In the other three types there are some
signals, indicated by the dots, that are weighted negatively.

Listed below are four arithmetic equations that describe the input/output relationships of the
four types of generalized full adders.

Type O: C2' +52°=X2° + Y20 + 72°

Type 1: C2' + (-8)2° = X2° + Y20 + (-2)2°

Type 2: (-C)2% +82° = (-X)2° + (-Y)2° + Z22°
Type 3: (-C)2* + (-8)2° = (-X)2° + (-Y)2° + (-2)2°

These four arithmetic equations lead to the truth-table descriptions of the four generalized full

adders given in the following table.
Table: Truth Table Describing the Four Types of Generalized Full Adders

Full Adder Weighted Inputs Weighted Outputs
Type 0 X2" Y2' z2° c2! s2°
Type 3 - X2° -Y2° -72° -C2! -S2°

0 0 0 0 0
0 0 1 0 1

Page 27 of 39

0 1 0 0 1
Truth 0 1 1 1 0
Table 1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Type 1 X2° Y2° -72° c2! - 520
Type 2 - X2° -Y2° z2° -C2! s2°
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
Truth 0 1 1 0 0
Table 1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

One can easily derive the Boolean equations governing the four types of full adders from the
table entries.

Type 0 or Type 3:

S=XYZ+XYZ +XY'Z'+XYZ

C=XY +YZ+zZX

Type 1 or Type 2:

S=XY'Z+XYZ+XYZ+XYZ

C=XY+YZ +Z'X

Pezaris two's complement multiplier use mixture types of full adders.
The schematic circuit diagram of a 5-by-5 Pezaris array multiplier is shown below:

Page 28 of 39

(a) a & a a0 A

X (bs) bs bz by bo B

(asho) asho azbo aiby abo

(asby) ashy aphs aib; aob;

(aubz) asb; agbz aib; acby

(asbs) asbs azbs aibs aghs

+ aubs (asbs)(asbz)(asbs)(asbo)

p9 p8 p7 pb6

P9 P8

The examples of 5-by-5 Pezaris are shown below:

s p4 p3 p2 p1 po P

P7

The schematic logic circuit diagram of a 5-by-5 Tri-section modified Pezaris two’s complement array multiplier

P3

multiplicand multiplier
positive negative
negative positive
positive positive
negative negative

Page 29 of 39

aibo

P1

o abo

aoby

PO

© 11 0 1 =13
X @ 10 1 =5
© 110 1
© 110 1
© 0 0 0 0
©1 10 1
+ 0 @@ ©OM@
111011
1
P9 P2 P1 PO
1 1 1 o 1 1 1 1 1 1

(1 1 011 =-5
X © 1 1 0 1 =13
@ 10 1 asbo
(© 0 0 0 O
1 1011

1 101 1
+ 0 (0) (0) (0) (0)

1110111

Page 30 of 39

N

Example of Tri-section modified Pezaris Two’s Complement Multiplication

© 1 1 0 1 =13
X © 0 1 0 1 =5

© 1 1
© o0 o0 o0 o0

o
b

aibo aobo
o 1

© 1 1 0 1 FA aoby

(© o0 o0 0 o

+ 0 (0) (0) (0) (0)

O 0 01 0 OO

@ 1 0 1 1
X (1@ o0 o0 1 1

oy
Lo
®

@ 1 0
@ 1 0 1 1
© o0 o0 o0 o
© o0 0 0 o
+ 1 @O @M@

B
R
o)
o

0O 0O 010 00O

Example of Tri-section modified Pezaris Two’s Complement Multiplication

3. Baugh-Wooley two's complement multiplier:

Baugh and Wooley have proposed an algorithm for direct two's complement array
multiplication. The principal advantage of their algorithm is that the signs of all summands are
positive, thus allowing the array to be constructed entirely with the conventional Type 0 full
adders. This uniform structure is very attractive for VLSI.

The schematic circuit diagram of a 5-by-5 Baugh-Wooley array multiplier is shown below:

Page 31 of 39

aibg

o

agh;
ab, R Y FA ab:
by’
FA s FA abs e aibs FA adbs
aby’
al by
B @
P9 P8 P7 P6 PS5 P4 P3 P2 P1
The schematic logic circuit diagram of a 5-by-5 Baugh-Wooley two’s complement array multiplier
multiplicand multiplier
positive negative
negative positive
positive positive
negative negative
as as az a1 a0 A
X ba bz b> bs bo B
asbo’ asbo azbo aibo aobo
asb.’ asb; azb; a.b: acbi
asbz’ asbz: azbz aibz acb:
asba asbs’ asbs azbs aibs aobs
as’ as'bs azbs ai'bs ao'bs
ba’ aa
-+ 1 ba
5] P8 p7 p6 PS5 p4 p3 p2 p1 po P
o 1 o 1 =13 N _ s
X 1 1 11 =-5 X o 1 o =13
o1 1 0 1 o 1 1
o1 1 1 1 0 o0 o
o o0 o0 o0 o0 1 0 1
0O 01 1 0 1 O 0 1 0 1 1
10 0 1 0 00 10 0O
o o 1 1
+ 1 1 + 1 o
111 0 1 1 1 1 1 1 =-65 111 0 1 1 1 1 - .65
1 0 1 =13 1 1 =-13
X o 1 0 =5 X 11 1 =-5
o1 1 0 1 o o 1
O O o o o o O o 1
11 0 1 10 0 0
O O o 0 o o 1 0 O O 1 1
10 0 0 0 011 0 O
1 o o 1
+ 1 o + 1 1
O 0O 01 0 0O 0O 0O 0 1 =65 O 0O 0O 1 0o 0o o o =65

Page 32 of 39

Example of Baugh-Wooley Two’s Complement Multiplication

aby

4. Comparison

Table: Direct two's complement multiplication

n * n two's Complement Array Multiplier

Tri-section Pezaris Baugh-Wooley

Advantage Regular format array Irregular format array,

two more rows

Disadvantage Three type full adder Only one type full

uesd adder uesd

Full Adder Type 0 (n°-3n+2)/2 n“-n+3
Used Type 1 (n°-3n+2)/2 0

Type 2 2n-1 0

Type 3 0 0

Total n’-n n’-n+3

Total time delay (Multiply time) 4 nA- 2A 4 nA

* A s the unit gate delay.

5. VHDL coding:

As an example a 5-bit two's complement multiplication of Tri-section modified Pezaris and
Baugh-Wooley are implemented by VHDL code and part of the simulation result are shown
below:

File Edit Marker GoTo ¥iew Options Window Help

D=8 (e erleweli] zl=(=] Elel=l=]] =]] s

+
s‘n ulm 15‘0 ZIIJO zs‘n a!l)o 35|n 4(‘10 4s|n 5(‘10 ;
.Bench/CLK. 3}
B ..Bench/A[40) 10
= ..Bench/B{4:0) 1o 11 12 13 14 15 16 17 18 18 14 1B 1c 1D 1E 1F ao o1 oz 03 o4 as 06 o7 as as
B ..Bench/P_beh(ai0) i*|oFo | oeo |opo |oco | oo |oaAo | oso | oso | o7o | oso | oso | 040 | o030 | ozo |o1o | ooo | sFo | 3E0 | =00 | sco | 30 |30 | 390 | 380 | avo
= ..Bench/P_Pez(2:0) 1*| 0Fo | 0OEO |0DO | 0CO | OBO |0AO (090 | 0S80 | 070 | 060 | OS50 | 040 | 030 | 020 | 010 | 000 | 3F0 | 3E0 | 300 | 3CO | 3BO | 340 | 390 | 380 | 370
= ..Bench/P_BW(3:0) 1*| OFD | OED | 0DO | 0CO | OBO (0DAO (090 | 080 | 070 | 060 | 0S50 | 040 | 030 | 020 (010 | 000 | 3F0 | 3E0 | 3D0 | 3C0 | 3BO | 3A0 | 390 | 3680 | 370
..Benchrverification T+ TRUE[TRUE [TRUE[TRUE TRUE [TRUE [TRUE [TRUE[TRUE [TRUE TRUE[TRUE [TRUE [TRUE[TRUE [TRUE[TRUE[TRUE [TRUE[TRUE [TRUE [TRUE [TRUE [TRUE[TRUE
=]
el [=
Ready |Time = 20500 |wWif=7 |wic=7 |sel=0

File Edit Marker GoTo View Options Window Help

D] 2ElE] eforelie] z[=]=] == [<[=]+] =[] o] S)2

.
00 55‘0 6(‘)0 65‘0 7(‘)0 75‘0 8(‘)0 85‘0 S(‘)O SSIO 1 OIOO ;
= ..Benchia(40) 10 11
= ..Bench/B(4:0) 09| oA oB oc ao 0E oF 1 11 12 13 14 15 16 17 18 19 14 1B 1C 10D 1E 1F oo o1 oz
= ..Bench/P_beh{2:0) 3*| 360 350 340 330 3z0 310 oFo 0E1 oDz | 0C3 | 0B4 | DAS ul=]=3 o087 078 069 |0SA | 04B 03C | 02D | 01E oOoF ooo | 3F1 3E2
= ..Bench/P_Pez(9:0) 3*| 360 350 | 340 | 330 | 320 (310 | OFO | DE1 0Dz | 0C3 | 0B4 | 0AS | 036 | 087 078 | 063 |05A | 04B | 03C | 02D | O1E | DOF 0oo | 3F1 [3E2
= ..Bench/P_BwW(2:0) 3*| 360 350 340 330 3z0 310 oFo 0E1 oDz | 0C3 | 0B4 | DAS ul=]=3 o087 078 069 |0SA | 04B 03C | 02D | 01E oOoF ooo | 3F1 3E2
«.Bench/verification [T*[TRUE [TRUE[TRUE[TRUE[TRUE[TRUE[TRUE [TRUE[TRUE [TRUE[TRUE[TRUE [TRUE[TRUE([TRUE[TRUE([TRUE[TRUE[TRUE[TRUE [TRUE[TRUE[TRUE [TRUE[TRUE]
=1
—~H— el [0 [+
Ready [Time = 20500 [Wif=7 [fc=7 [Sel=0

Eile Edit Marker GoTo VMiew Options Window Help

D& e enlemn]e]] === m === =] [ry =] =T

=
20(‘)00 20(‘)50 201‘00 201|50 ZOZI()O ZOZISO 201?00 201?50 20?00 20‘?50 ;
= ..BenchiA(4n) oF
= ..Bench/B(4:0) 17 18 19 14 1B 1c 10D 1E 1F oo o1 oz 03 o4 os al=] o7 os os oA oB oc oD [u]=3 oF
= ..Bench/P_beh(9:0) 379 | 388 | 397 |3A6 | 3B5 | 3C4 | 303 | 3E2 | 3F1 000 | 0O0OF | 01E | 02D | 03C | 04B | 05A | 069 078 | 087 | 096 | 0AS | 0B4 | 0C3 | 0D2 DE1
= ..Bench/P_Pez(9:0) 379 | 388 | 397 |3A6 | 3B5 | 3C4 | 303 | 3E2 | 3F1 000 | 0O0OF | 01E | 02D | 03C | 04B | 05A | 069 078 | 087 | 096 | 0AS | 0B4 | 0C3 | 0D2 DE1
= ..Bench/P_BW(2:0) 579 | 988 [397 [246 [285 | 3C4 [303 [9Ez [3F1 | ooo [ooF [o01E [oz0 [o3c [046 [osA [069 [o7s [087 [096 [0as [oB4 [ocs [oDz [oEr
..Benchiverification ITRUE[TRUE [TRUE[TRUE[TRUE[TRUE[TRUE [TRUE [TRUE[TRUE [TRUE[TRUE [TRUE[TRUE[TRUE [TRUE[TRUE[TRUE [TRUE[TRUE [TRUE[TRUE[TRUE [TRUE| TRUE
=
Tl =] IS
Ready [Time = 20500 [wWif=7 [wifo=7 |Sel-0

Page 33 of 39

6. FPGA Implementation:
Implement Multipliers in Xilinx Virtex 1l FPGAs.
Then indicate the critical path, compare the performance, area and power consumption.

References:
[1] Kai Hwang “Computer Arithmetic: Principles, Architecture, and Design”
John Wiley & Sons 1979

[2] S. D. Pezaris "A 40-ns 17-Bit by 17-Bit Array Multiplier", IEEE Trans. on
Computers, pp. 442-447,.Abr. 1971

[3] C. Baugh y A. Wooley "A Two's Complement Parallel Array Multiplication
Algorithm". IEEE Trans.on Computer, Vol.C-22, N°12. Dic.1973.

Appendix B

Examples of signed multiplication (When multiplier operand is

positive)

Example. 1
-100 -100,0=10011100,
X 4 4,9 =0100,
-400

By Sign Extension method,

10011100
X 0100
00000000000
0000000000
110011100
00000000
11001110000

-400

v

Page 34 of 39

According to the extend and invert algorithm,

10011100
X 0100
100000000
10000000
00011100
10000000
11001110000 » Ansis-400

Ex 2

-5 -510 = 10112
X 4 410 = 0100,
-20

By Sign Extension method,

1011
X 0100

0000000

000000

11011

0000

1101100 » 2’s complement of -20

According to the algorithm of extend and invert method,

Page 35 of 39

1011
X__0100
10000
1000
0011
1000
1101100 >

-4 -410 = 11002
X 3 310 = 0011,

By Sign Extension method,

1100
X 0011

111100

11100

0000
0000

—20 in 2’s complement

1110100
According to the sign extend and invert algorithm,

1100
X 0011

01100
0100
1000
1000

1110100 _

Page 36 of 39

»
»

-12 in 2’s complement

-12 in 2’s complement

-12 -1219 = 10100,
X 12 1210 = 011002
-144

By Sign Extension method,

10100
X 01100
000000000
00000000
1110100
110100
00000
101110000

-144

v

According to the sign extend and invert algorithm,

10100
X 01100

100000
10000
00100
00100
10000
101110000

- 144

v

Page 37 of 39

Examples of BOOth multiplication

Example
Using Booth algorithm multiply A and B.

A=20
B=30

A= 0010100 Please note that both numbers are extended to cover 2A or 2B and the
B= 0011110 sign bit (whichever is larger).

A*B = A= 0010100
-0
B= 00111'100
—
+2 2

2A =40= 00101000
-2A = 11011000

Now performing the addition we have

1111111011000
00000000000
000101000

0001001011000

'/

512 + 64 + 16 + 8 = (600)1

Now let us try

B*A = B= 0011110
+1
A= 0101 8 0
H_/
+1 +0

Page 38 of 39

Now performing the addition we have

000000000OO0OOOO
00000011110
000011110

0001001011000

'/

512 + 64 + 16 + 8 = (600)1

Page 39 of 39

