
 Floating Point Arithmetic 

1 Introduction 

Fixed point numbers suffer from limited range and accuracy. For a given word length 

both fixed point and floating point representations give equal distinct numbers. The 

difference is that in fixed point representation the spacing between the numbers is equal, 

so smaller numbers when truncated or rounded give a much larger error than the larger 

numbers. However floating point representation gives different spacing between 

numbers. We get denser distances between numbers when the number is small and 

sparser distance for larger numbers. So the absolute representation error increases with 

larger numbers. 

Floating point numbers are used to obtain a dynamic range for representable real numbers 

without having to scale the operands. Floating point numbers are approximations of real 

numbers and it is not possible to represent an infinite continum of real data into precisely 

equivalent floating point value.  

Number system is completely specified by specifying a suitable base , significand (or 

mantissa) M, and exponent E. A floating point number F has the value  

F=M 
E
 

 is the base of exponent and it is common to all floating point numbers in a system. 

Commonly the significand is a signed - magnitude fraction. The floating point format in 

such a case consists of a sign bit S, e bits of an exponent E, and m bits of an unsigned 

fraction M, as shown below 

The value of such a floating point number is given by: 

 

The most common representation of exponent is as a biased exponent, according to which 

 bias is a constant and E
true

 is the true value of exponent. The range of E
true

 using the e 

bits of the exponent field is 
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The bias is normally selected as the magnitude of the most negative exponent; i.e. 2
e-1

, so 

that 

The advantage of using biased exponent is that when comparing two exponents, which is 

needed in the floating point addition, for example the sign bits of exponents can be 

ignored and they can be treated as unsigned numbers  

The way floating point operations are executed depends on the data format of the oper-

ands. IEEE standards specify a set of floating point formats, viz., single precision, single 

extended, double precision, double extended. Table 1 presents the parameters of the 

single and double precision data formats of IEEE 754 standard. 

Fig.2 1 shows the IEEE single and double precision data formats. The base is selected as 

2. Significands are normalized in such a way that leading 1 is guaranteed in precision (p) 

data field. It is not the part of unsigned fraction so the significand is in the form 1.f. This 

increases the width of precision, by one bit, without affecting the total width of the 

format. 

 

Table 1: Format parameters of IEEE 754 Floating Point Standard 

 

Parameter Format 

 Single 

Precision 

Double 

Precision 

Format width in bits 32 64 

Precision (p) =  

fraction + hidden bit 

23 + 1 52 + 1 

Exponent width in bits 8 11 

Maximum value of 

exponent 

+ 127 + 1023 

Minimum value of 

exponent 

-126 -1022 

 

2
e 1–

E
true

2
e 1–

1– –  

0 E 2
e

1–   



 

The value of the floating point number represented in single precision format is  

where 127 is the value of bias in single precision format (2
n-1 

–1) and exponent E ranges 

between 1 and 254, and E = 0 and E = 255   are reserved for special values. 

The value of the floating point number represented in double precision data format is  

Where1023 is the value of bias in double precision data format. Exponent E is in the 

range.  

The extreme values of E (i.e. E = 0 and E = 2047) are reserved for special values. 

The extended formats have a higher precision and a higher range compared to single and 

double precision formats and they are used for intermediate results [2]. 

 

2.   Choice of Floating Point Representation 

The way floating point operations are executed depends on the specific format used for 

representing the operands. The choice of a floating point format for the hardware imple-

mentation of floating point units is governed by factors like the dynamic range require-

ments, maximum affordable computational errors, power consumption etc. The exponent 

bit width decides the dynamic range of floating point numbers while the significand bit 

(a) IEEE single precision data format

(b) IEEE double precision data format

Fig 2.1 - Single and double precision data formats of IEEE 754 standard
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width decides the resolution. The dynamic range offered by floating point units is much 

higher than that offered by fixed point units of equivalent bit width. Larger dynamic 

range is of significant interest in many computing applications like in multiply - 

accumulate operation of DSPs. But larger range is not needed in all the applications. The 

actual bit-width required in many applications need not match with the ones provided by 

IEEE standards. For example, considering the design of an embedded system, the choice 

of IEEE data formats need not give optimal results. In some cases, even IEEE specified 

rounding scheme may not guarantee acceptable accuracy. That means, depending on the 

specifications of a certain application, dedicated system solutions can work with non 

IEEE data formats as well as rounding schemes such that the real life input/output signals 

satisfy the data processing goals required by the target application. Although custom 

specification of floating point format do find some applications, in the recent years more 

and more manufacturers are following IEEE standards for the design of their hardware. 

IEEE compliance guarantees portability of software between different platforms. 

Applications that do not need such portability need not stick to IEEE standards. 

 

Examples_1: 

For an 8 bit word, determine the range of values that it represents in floating point and the 

accuracy of presentation for the following scenarios: (Assume a hidden 1 representation 

and extreme values are not reserved). 

a) If 3bits are assigned to the exponents 

b) If 4 bits are assigned to the exponents 

 

S E M 

Answer: 

a) S=0, E=3bits, M=4bits, 

Then the bias is 2
n-1

 –1= 2
3-1

 –1= 3 

  Maximum range,   

0  1   1    1   1    1     1     1 

                                     (-1)
0  

1.1111 2
7-3  

= 1.1111 2
4  

= 11111=3110 

        Minimum range, assuming exponent 000 is reserved for zero 



 

0  0   0    1   0    0     0     0 

                                      (-1)
0  

1.0000 2 
1-3  

= 1.0000 2
-2  

= 0.01=0.2510    

 

 

b) S=0, E=4bits, M=3bits , 

Then the bias is 2
n-1

 –1= 2
4-1

 –1= 7 

  Maximum range,   

0  1   1    1   1   1    1   1     

                                     (-1)
0  

1.111 2
15-7  

= 1.111 2
8  

= 111100000= 48010 

        Minimum range, assuming exponent 000 is reserved for zero 

 

0  0   0    0    1   0    0     0 

                                      (-1)
0  

1.0000 2 
1-7  

= 1.0000 2
-6  

= 0.000001=0.01562510    

You must know that the total No. of numbers that can be represented is the same. The 

difference between example (a) and example (b) is that the resolution of the numbers that 

can be represented is different. 

Exercise: 

For a) above determine the decimal number corresponding to when M contains 0001 and 

0010. 

For b) above determine the decimal number corresponding to when M contains the 

number 001 and 010. 

Discuss the resolution of the numbers represented in (a) & (b). 

Example_2 

Represent 21.7510 in Floating point. Use the IEEE 754 standard. 



Answer: 

21.75 in binary is   10101.11  or 1.010111 2
4
 

S=0 

Bias is 2
7
-1=127  E= 127 + 4 = 131 

 

1bit        8 bits                              23 bits 

0 1  0 0 0 0 011 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 
Example _3  

 

Represent -0.437510 in floating point, using IEEE standard 754 

 
Answer: 

Binary equivalent of –0.4375 = -.0111 or – 1.11 2
-2 

 

S= 1 

Exponent is –2 + 127 =125  or  01111101 

 

 

 

1bit        8 bits                              23 bits 

1 01 1 1 1 1  01 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

 

 

 

 

 

3   IEEE Rounding 

All real numbers can not be represented precisely by floating point representation. There 

is no way to guarantee absolute accuracy in floating point computations. Floating point 

numbers are approximations of real numbers. Also the accuracy of results obtained in a 



floating point arithmetic unit is limited even if the intermediate results calculated in the 

arithmetic unit are accurate. The number of computed digits may exceed the total number 

of digits allowed by the format and extra digits have to be disposed before the final 

results are stored in user-accessible register or memory. When a floating point number 

has to be stored or output on the bus, then the width of the memory and the bus dictates 

that certain numbers greater than the width of the significand to be removed. Rounding is 

the process of removing the extra bits with the digital system resulting from internal 

computation (higher precision) to the exact bus width. IEEE 754 standard prescribes 

some rounding schemes to ensure acceptable accuracy of floating point computations. 

The standard requires that numerical operations on floating point operands produce 

rounded results. That is, exact results should be computed and then rounded to the nearest 

floating point number using the ‘round to nearest - even’ approach. But in practice, with 

limited precision hardware resources, it is impossible to compute exact results. So two 

guard bits (G and R) and a third bit, sticky (S), are introduced to ensure the computation  

results within an acceptable accuracy using minimum overhead. 

The default rounding mode specified by the IEEE 754 standard is round to nearest - even. 

In this mode, the results are rounded to the nearest values and in case of a tie, an even 

value is chosen. Table 2.2, shows the operation of round to nearest - even, for different 

instances of significand bit patterns. In this table, X represents all higher order bits of the 

normalized significand beyond the LSBs that take part in rounding while the period is  

Table 2.2: Round to nearest - even rounding 

 

Significand Rounded 

Result 

Error Significand Rounded 

Result 

Error 

X0.00 X0. 0 X1.00 X1. 0 

X0.01 X0. - 1/4 X1.01 X1. - 1/4 

X0.10 X0. - 1/2 X1.10 X1. + 1 + 1/2 

X0.11 X1. + 1/4 X1.11 X1. + 1 + 1/4 

separating p MSBs of the normalized significand from round (R) and sticky (S) bits. It 

can be seen from the table that the average bias (which is the average of the sum of errors 

for all cases) for the round to nearest scheme is zero. Fig 2.2 illustrates the relative 

positions of the decision making bits. Rounding to the nearest value necessitate a 

conditional addition of 1/2 ulp (units in the last place). The decision for such addition can 

be reached through the evaluation of the LSB (M0) of the most significand p bits of the 

normalized significand, the round (R) bit and the sticky (S) bit. Rounding is done only if 

condition   R.(M0 +S) is true (Boolean). 



Example: 

Round the following data structure, according to the nearest even 

                                                                                                  M0       R     S 

0 01 1 1 1 1  01 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

Answer: 

Since R(M0 + S ) holds, then, the rounding will produce the following results: 

 

0 01 1 1 1 1  01 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

 

4 Floating Point Multiplication 

The algorithm of IEEE compatible floating point multipliers is listed in Table 2.3. Multi-

plication of floating point numbers F1 (with sign s1, exponent e1 and significand p1) and 

F2 (with sign s2, exponent e2 and significand p2) is a five step process. Its flow chart is 

presented in Fig 2.3 [2]. 

 

 

 

 

 

Figure 2.2 - Normalized Significand before rounding

p - 1 higher order bits M
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Table 2.3: Floating point multiplication algorithm 

 

Step 1 

 

Calculate the tentative exponent of the product by adding the biased exponents 

of the two numbers, subtracting the bias. The bias is 127 and 1023 for 

single precision and double precision IEEE data format 

respectively 
e1 e2 bias–+

 
Step 2 

 

If the sign of two floating point numbers are the same, set the sign of product to 

‘+’, else set it to ‘-’. 

 

Step 3 

 

Multiply the two significands. For p bit significand the product is 2p bits wide 

(p, the width of significand data field, is including the leading hidden bit (1)). 

Product of significands falls within range: 
1 product 4  
Step 4 

 

Normalize the product if MSB of the product is 1 (i.e. product of two 

significands), by shifting the product right by 1 bit position and 

incrementing the tentative exponent. 
significands 2 Evaluate exception conditions, if any. 

 

Step 5 

 

Round the product if R(M0 + S) is true, where M0 and R represent the pth and 

(p+1)st bits from the left end of normalized product and Sticky bit (S) is the 

logical OR of all the bits towards the right of R bit. If the rounding condition is 

true, a 1 is added at the pth bit (from the left side) of the normalized product. 

If all p MSBs of the normalized product are 1’s, rounding can generate a carry-

out. In that case normalization (step 4) has to be done again. 

 

 



 

 

 

1- Add the biased exponents of the two numbers, 

2- Set the sign of the product to positive if the sign of the 

3- Multiply the significands

Start

4- Normalize the product if its MSB is 1, by shifting it 

Overflow or
Underflow?

5- Round the significand of result to the appropriate

Finish

Exception

Still normalize?

subtracting the bias from the sum to get the tentative
exponent of product

original operands are the same. If they differ make the 
sign negative

right by 1 bit position and incrementing the exponent

Fig 2.3 - Block diagram of IEEE compliant floating point multiplication
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Fig 2.4 illustrate the process of significand multiplication, normalization and rounding.  

 

Example: 

 

Multiply the following two   numbers. Use IEEE 754 standard: 

A= 25.510    B=  -0.37510 

 

Answer: 

A can be represented as  A= 1.10011 * 2
4  

or 
  
exp= 127+ 4 = 13110,   Sig =1.10011, S=0 

 

 

 

B can be represented as  B= 1.1 * 2
-2  

or 
  
exp= 127 -2= 12510  , sig =1.1  ,   S=1 

 

 

 

Add exponent and subtract bias   

Exponent = 1  0 0 0  0 01 1   +  0  1 1 1 1 1 0 1  -   0 1 1 1 1 1 1 1 =  1 0 0 0  0 0 0 1    

 

Multiply Significands  1.1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  * 

                                     1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                 10.0110010000000000000000000000000000000000000 

Now round the results. 

Figure 2.4 - Significand multiplication, normalization and rounding
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Result of significand multiplication before normalization shift
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R SM
0
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Normalized product before Rounding

Input
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2p bits

1 p - 1 lower order bits 

p - 1 lower order bits1

Significands before multiplication

p-bit significand field

 

0 1  0 0 0  0 01 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0  1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



After rounding we get:  10. 01100100000000000000000    

After normalization we get:  1. 0 0110010000000000000000     * 2
1   

 

New exponent after normalization 1  0 0 0  0 0 0 1   + 0 0 0 0 0 0 0 1 = 1 0 0 0 0 0 1 0 

 Final result  

           

 

Unbiased value of exponent is 1000 0010 -0111 1111 = 0000-0011 ie (130-127 =3)10 

 

A * B = 1. 0011001 *   2
3
       = -9.562510          

 

Multiplier Architecture 
A simple multiplier architecture is shown below: 

The exponent logic is responsible for extracting the exponents and adding them and 

subtracting the bias.  The Control/Sign logic, decodes the sign bit (EXOR) and directs the 

significands to the integer multiplier. 

The results of the significands multiplication is rounded by the rounding logic and if 

necessary is normalized through a shift operation. The exponent in updated by the 

exponent increment block and the final results, are presented to the output logic. This 

architecture is shown in figure below 
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 This architecture can be improved by addition of two features as shown in the diagrams 

below. A bypass is added so that Not-A-Number, such as non computing operations can 

bypass the multiplication process. The architecture also features pipelining lines, where 

the multiplier can be made to operate faster at the expense of latency. 
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Comparaison for the Scalable Single Data Path FPM, Double Data Path FPM and 

Pipelined Double Data Path FPM is also done for IEEE single precision data format in 

order to validate the findings that DDFPM require less power as compared to SDDFPM. 

Table 2.4 below shows the results obtained by synthesizing the three design using 0.22 

micron CMOS technology. 

 

 

 

 

Table 2.4 : Comparaison of SDFPM,DDFPM,PDDFPM 

 

 AREA 

(cell) 

POWER 

(mW) 

Delay 

(ns) 

Single Data Path FPM 2288.5 204.5 69.2 

Double Data Path FPM 2997 94.5 68.81 

Pipelined Double Data Path FPM 3173 105 42.26 

 

As we can see from the Table 2.4 that the power reduction is quite significant in case of a 

DDFPM as compare to SDFPM which is almost 53% . This validate our findings for the 

the DDFPM require less power.  

Pipelined DDFPM is designed in order to reduce the overall delay without much increase 

in area and power. The findings show that the worst case delay is reduced by almost 39%, 

however there is 5.5% increase in area and 10% increase in power which is quite 

acceptable.  

 

 

 

 

 

 

 

 
 



               Table      Test Cases for IEEE Single Precision for SDFPM 

 

 

 

 

 

 

 

  

 

 

 
 
 

Above is the synopsys simulation results of Single Data Path FP Multiplier 

 

 

 

 

 

Case-1 

Normal 

Number 

 S Exponent Significand 

Operand1 0 10000001 00000000101000111101011 

Operand2 0 10000000 10101100110011001100110 

Result 0 10000010 10101101110111110011100 

Case-2 

Normal 

Number 

 

 S Exponent Significand 

Operand1 0 10000000 00001100110011001100110 

Operand2 0 10000000 00001100110011001100110 

Result 0 10000001 00011010001111010110111 

Case-1 Case-2 



2.5 Floating Point Addition 

The algorithm of addition of floating point numbers F1 (with sign s1, exponent e1 and 

significand p1) and F2 (with sign s2, exponent e2 and significand p2) is listed in Table 2.5 

[1], and block diagram is presented in Fig 2.5 [2]. 

 

Table 2.5: Floating point addition algorithm 

 

Step 1 

Compare the exponents of two numbers for and calculate the absolute value of difference 

between the two exponents . Take the larger exponent as the tentative exponent of 

the result. 
e1 e2

 
e1 e2

 
Step 2 
e1 e2–

 
Shift the significand of the number with the smaller exponent right through a number of bit positions 

that is equal to the exponent difference. Two of the shifted out bits of the aligned significand are 

retained as guard (G) and Round (R) bits. So for p-bit significands, the effective width of aligned 

significand must be p + 2 bits. Append a third bit, namely the sticky bit (S), at the right end of the 

aligned significand. The sticky bit is the logical OR of all shifted out bits. 

 

Step 3 

 

Add/subtract the two signed-magnitude significands using a (p + 3)-bit adder. Let the result of this 

is SUM. 

 

Step 4 

 

Check SUM for carry out (Cout) from the MSB position during addition. Shift SUM right by one bit 

position if a carry out is detected and increment the tentative exponent by 1. During subtraction, 

check SUM for leading zeros. Shift SUM left until the MSB of the shifted result is a 1. Subtract the 

leading zero count from tentative exponent. 

Evaluate exception conditions, if any. 

 

Step 5 

 

Round the result if the logical condition R”(M0 + S’’) is true, where M0 and R’’ represent the pth 

and (p + 1)st bits from the left end of the normalized significand. New sticky bit (S’’) is the logical 

OR of all bits towards the right of the R’’ bit. If the rounding condition is true, a 1 is added at the 

pth bit (from the left side) of the normalized significand. 

If p MSBs of the normalized significand are 1’s, rounding can generate a carry-out. In that case 

normalization (step 4) has to be done again. 

 



 

 

 

1- Compare the exponent of the two numbers and find the

2- Shift the significand of the number with smaller 
exponent right until its exponent would match the larger

Start

4- Normalize the sum, either shifting right by 1 bit and 
incrementing the exponent or shifting left through a 
number of bits (equal to leading zero count) and 
decrementing the exponent

exponent difference

exponent

Overflow or
Underflow?

5- Round the significand of the result to the appropriate 

Finish

Exception

Still normalize?

3- Add/subtract the aligned significands

number of bits

Fig 2.5 - Block diagram of IEEE compliant floating point addition
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Example 2 

 

Add the following two   numbers. Use IEEE 754 standard: 

A= 25.510    B=  -63.2510 

 

Answer: 

A Can be represented as:  

A= 1.10011 * 2
4  

or 
  
exp= 127+ 4 = 13110,   Sig =1.10011, S=0 

 

 

 

B Can be represented as 

B= 1.1111101 * 2
5  

or 
  
exp= 127 +5= 13210  , Sig =1. 1111101  ,   S=1 

 

 

        

Compare the exponents and determine the bigger number and make it the reference. 

10 0 0 0 1 0 0  -  1  0 0 0  0 01 1  =  1
 

 

Shift the smaller number to the right by one place (normalizing to the exponents 

difference of 1) gives significance of A= 0 . 1 1 0 0 1 1 * 2
5  

 

 

Now Add both numbers together            A       0 . 1 1 0 0 1 1 0  + 

                                                                 B       1 . 1 1 1 1 1 0 1  

                                                           -------------------------------------- 

Since B is –ve then taking it 2’s complement and performing addition,  we get 

 

                                                                 A      0 0 . 1 1 0 0 1 1 0     +    

                                                                 B      1 0 . 0 0 0 0 0  1 1   2’s Complement of B 

                                                           -------------------------------------- 

                                                                          1 0 . 1 1 0 1 0 0 1 

Which is  a –ve number. Taking its sign and magnitude gives the results as Significand of 

the result =  0 1 .  0 0 1 0 1 1 1. with S=1  

Therefore the results can now be integrated as  

 

  

 

 

This is equal to  - 1. 0 0 1 0 1 1 1  * 2
5   

=  - 37.7510 

 

 

 

0 1  0 0 0  0 01 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1  0 0 0 0 1 0 0 1 1 1 1 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1  0 0 0 0 1 0 0 0 0 1 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



 

Floating Point Adder Architecture 

A block diagram of floating Point adder is shown below. Exponents, sign bits and the 

significands are fed into the adder. The exponents subtractor gives the amount of shift, 

while the comparator gives which operands is to be shifted. The right shift of the smaller 

number is achieved by a barrel shifter. Inversion of one operand is achieved by the sign 

bits and the bit inverters. The Adder adds the operands and passes the results to the 

rounding logic. Leading Zero Anticipator logic determines the normalization needed 

where the results are normalized and the exponents are adjusted. Finally the right 

significand is selected and is passed to the output together with the exponents and the 

sign. This architecture features two additional non standard blocks The LZA logic and the 

lines where pipelining registers can be inserted to speed up the design 
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2.7 Exceptions 

For the handling of arithmetic operations on floating point data, IEEE standard specifies 

some exception flags. Some exception conditions are listed in Table 2.5 [3]. When the 

results of an arithmetic operation exceeds the normal range of floating point numbers as 

shown in Fig 2.7 [2], overflow or underflow exceptions are initiated. Please see Table 2.6 

 

Table 2.5: Exceptions in IEEE 754 

 

Exception Remarks 

Overflow Result can be   or default maximum value 

Underflow Result can be 0 or denormal 

Divide by Zero Result can be  
Invalid Result is NaN 

Inexact System specified rounding may be required 

 

                       Table 2.6: Operations that can generate Invalid Results 

 

Operation Remarks 

Addition/ 

Subtraction 
An operation of the type    

Multiplication An operation of the type x 
Division Operations of the type and
Remainder Operations of the type x REM 0 and  REM y 

Square Root Square Root of a negative number 

 

0  Positive numbersNegative numbers

Underflow

Within RangeWithin RangeOverflow Overflow

Fig 2.7 - Range of floating point numbers

Denormalized

 



 

 

 

Detection of overflow or underflow is quite straight forward as the range of floating point 

numbers is associated with the value of exponents. Table 2.6 [1] lists all possible 

operations that result in an invalid exception. During invalid exception the result is set to 

a NaN (not a number). Inexact exceptions are true whenever the result of a floating point 

operation is not exact and IEEE rounding is required [1]. In IEEE single precision data 

format, width of exponent field is 8, so 256 combinations of exponent are possible. 

Among them two are reserved for special values. The value e = 0 is reserved to represent 

zero (with fraction f = 0) and denormalized numbers (with fraction ). The value e = 255 is 

reserved for  (with fraction f = 0) and NaN (with fraction ). The leading bit of 

significands (hidden bit) is zero instead of one for all the special quantities. 

R S
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0
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Fig 2.6 - Significand addition, normalization and rounding
 

f 0  
  

f 0  



 

Low Power Triple Data Path Adder, TFADD 

In literature several architectures exist that improves on the basic adder. The TFADD is 

such an architecture. It uses the range of values of the input data to decide on which path the 

data should be processed. This architecture provides 3 data paths for data processing with 

the bypass path being a non computing path. Data that do not require calculation such as 

addition with zero or NaN passes through this path.  The architecture is shown in the figure 

below with the control state machine. If the exponents difference between the two operands 

is “1” then the then there is no need for initial shift of one operand thus a barrel shifter can 

be eliminated from this path, however we will need a barrel shifter for normalization. On the 

other hand if the exponent difference is greater than 1, then there is a barrel shifter for initial 

shifting of one operand, but there will be no need for a barrel shifter for normalization. Thus 

each path is shorter by one barrel shifter. Depending on the operands value and sign, this 

method has less delay and less power at the expense of extra area. The finite state machine 

below shows the operation of the adder.   State I is the bypass state, while state K, requires 

no normalization barrel shifter. State J the data follows the middle path where there is no 

need for the exponent alignment barrel shifter. 
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Fig 4.2 - Block diagram of the TDPFADD
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   This figure shows pipelining the TPFADD to speed up its operation 
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 TEST RESULTS [21] 

Several tests on data has been carried out. In particular IEEE standard 754 for the single 

and double precision have been tested for a variety of inputs to see its performance in 

extreme conditions. The code out of the generator has also been synthesized by Synopsys 

using Xilinx 4052XL-1 FPGA technology. The results are shown in Table below. 

 

             

 

 

 

Table   Comparison of Synthesis results  for IEEE 754 Single Precision FP addition. Using  

Xilinx 4052XL-1 FPGA 

 

PARAMETERS SIMPLE TDPFAD

D 

PIPE/ 

TDPFADD 

Maximum delay, D 

(ns) 

327.6 213.8 101.11 

Average Power, P 

(mW)@ 2.38 MHz 

1836 1024 382.4 

Area A, Total  

number of CLBs (#) 

664 1035 1324 

Power Delay Product 

(ns. 10mW) 

7.7. *10
4
 4.31  *10

4
.  3.82 *10

4
 

Area Delay Product 

(10 # .ns) 

2.18`*10
4
 2.21 * 10

4
 1.34 *10

4
 

Area-Delay
2
 Product 

(10# . ns
2
 ) 

7.13.*10
6
 4.73 * 10

6
 1.35 *10

6
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barrel Shifters 
In many applications such as floating point adders or multipliers circuits are needed that 

can shift several data items in one move, such a circuit is named barrel shifter. A variety 

of barrel shifters exist each targeted towards a special application. We will not cover all 



applications rather the principal operation. The figure below shows a right shift barrel 

shifter constructed from four 4-1 multiplexer that performs 0, 1, 2 ,3 bits right shift of 

data  x3 x2 x1 x0 in response to the control input S1 S0.  
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For example if S1S0 is 11 then the output is 000x3. It is possible to change the shift order 

by reconfiguring the inputs. It is also possible to make the data rotate, by appropriate 

connection of input of the multiplexer. The circuit below shows a barrel shifter that 

performs rotation of data input in accordance with the control table given below. 
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0 0 D3 D2 D1 D0 No Shift 

0 1 D2 D1 D0 D3 Rotate Once 

1 0 D1 D0 D3 D2 Rotate Twice 

1 1 D0 D3 D2 D1 Rotate 3 times 

  

 

 

 

 



Most barrel shifters however are designed with 2 to1 MUXs using distributed shifting 

method. With the distributed method the delay is always proportional to log2 n where n is 

the number of shifts required.  

The figure below, shows this principal. At the first level of 2-1 Mux data are connected 

into the MUX with one data difference. The out from this MUX is connected to a 

second level of 2-1 MUX, with data connected with a difference of two bits. With the 

3
rd

 level the process is repeated with 4 bits of shift.  
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The diagram below shows setting S2=1, S1=0, S0=1, which gives us 5 shifts of data to 

the right. The path of the first data bit output is shown. 
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Appendix [20] 

 
Introduction to IEEE-754 standard 

In the early days of computers, vendors start developing their own representations and 

methods of calculations. These different approaches lead to different results in 

calculations. So the IEEE organization defined in the IEEE-754 standard a representation 

of the floating point numbers and the operations.  

Representation  



As in all floating point representations, the IEEE representation divides the number of 

bits into three groups, the sign, the exponent and the fractional part.  

Fractional part 

 

Fractional part is  represented as sign-magnitude, which needs a reserved bit for the sign.  

The exponent 

The exponent is based on the biased representation. This means if k is the value of the 

exponent bits, then the exponent of the floating-point number is k the bias. So to 

represent the exponent zero the bits should hold the value of the bias.  

A.1 Hidden-bit  

Another feature of the IEEE representation is the hidden bit. This bit is the only bit   to 

the left of the fraction point. This bit is assumed to be 1, which gives an extra bit of 

storage in the representation to increases the precision. 

Sign Bit 

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative 

number. Flipping the value of this bit flips the sign of the number.  

 

A.2 Precision 

The IEEE-754 defines set of precisions which depends on the number of bits used. There 

are two main precisions, the single and the double. 

A.2.1 Single Precision 

The IEEE single precision floating point standard representation require a 32 bit word, 

which may be represented as numbered from 0 to 31, right to left as shown 

                           MSB(31)      30                     23           22                                                             LSB(0) 

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF 

 

A.2.2 Double Precision 

The IEEE single precision floating point standard representation require a 32 bit word, 

which may be represented as numbered from 0 to 63, right to left as shown 

  
  MSB(63)        62                               52         51                                                                                                                                                             LSB(0) 

S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

 

 

 



Table A.1: Exponent range and number of bits in single 

 and double precision floating-point representation. 

 

 
 

 

 

 

 

 

 

 

 
A.3 Normalization 

Normalization is the act of shifting the fractional part in order to make the left bit of the 

fractional point  “1”. During this shift the exponent is incremented. 

A.3.1 Normalized numbers  

Normalized numbers are numbers that have their MSB a “1” in the most left bit of the 

fractional part. 

A.3.2 Denormalized numbers  

Denormslized numbers are the opposite of the normalized numbers. (i.e. the MSB 1 is not 

in the most left bit of the fractional part).  

Operations:  

Some operations require that the exponent field be the same for all operands (like 

addition). In this case one of the operands should be denormalized.  

A.3.3 Gradual underflow: 

One of the advantages of the denormalized numbers is the gradual underflow. This came 

from the fact the normalized number that can represent minimum number is 1.0×2
min

 and 

all numbers smaller than that are rounded to zero (which means there are no numbers 

between 1.0×2
min

 and 0. The denormalized numbers expands the range and gives gradual 

underflow through the division of the range between 1.0×2
min

 to 0 with the same steps as 

the normalized numbers.  

 

 Single Double 

Exponent(max) +127 +1023 

Exponent(min) -126 -1022 

Exponent Bias +127 +1023 

Precision (#bits) 24 53 

Total Bits 32 64 

Sign bits 1 1 

Exp Bits 8 11 

Fraction 23 52 



A.4 Special values 

The IEEE-754 standard supports some special values that gives special functions and 

give some signals.  

 

Table A.2:  Special values 

Name Exponent Fraction sign Exp Bits Fract Bits 

+0 min1 = 0 + All zeros All Zeros 

0 min1 = 0  All zeros All Zeros 

Number min  e  max any  any Any Any 

+ max+1 = 0 + All ones All zeros 

 max+1 = 0  All ones All zeros 

NaN Max+1  0 any All ones Any 

A.4.1 Zero 

The zero is represented as a signed zero (-0 and +0)  

-1 in the exponent and zero in the fraction.  

The signed zero is important for operations that preserve the sign like multiplication and 

division. It is also important to generate + or -. 

A.4.2 NaN 

Some computations generate undefined results like 0/0 and √[(-1)]. These operations 

should be handled or we will get strange results and behavior. NaN is defined to be 

generated upon these operations and so the operations are defined for it to let the 

computations continue.  

Whenever a NaN participates in any operation the result is NaN.  

There is a family of NaN according to the above table and so the Implementations are 

free to put any information in the fraction part.  

All comparison operators ( = , < , ≤ , > , ≥ ) (except ( ≠ )should return false when NaN is 

one of its operands.  

 

Table A.3: Sources of NaN 

 

Operation Produced by 

+ +() 

× 0× 

/ 0/0, / 



A.4.3 Infinity 

The infinity is like the NaN, it is a way to continue the computation when some 

operations are occurred.  

Generation: 

Infinity is generated upon operations like x/0 where x ≠ 0  

Results:  

The results of operations that get ∞ as a parameter is defined as: "Replace the ∞  by the 

limit limx


∞ . For example 3/∞ = 0 because limx→∞3/x = 0 and √{∞} = ∞ and 4-∞ =-∞  

 

A.5 Exceptions 

Exceptions are important factors in the standard to signal the system about some 

operations and results.  

When an exception occurs, the following action should be taken: 

 A status flag is set.  

 The implementation should provide the users with a way to read and write the 

status flags.  

 The Flags are ``sticky'' which means once a flag is set it remains until its 

explicitly cleared.  

 The implementation should give the ability to install trap handlers that can be 

called upon exceptions. 

 

       Common exceptions in floating-point numbers are: 

 Overflow, underflow and division by zero: 

As is obvious from the table below, the distinction between Overflow and 

division by zero is to give the ability to distinguish between the source of the 

infinity in the result.  

 Invalid: 

This exception is generated upon operations that generate NaN results. But 

this is not a reversible relation (i.e. if the output is NaN because one of the 

inputs is NaN this exception will not raise).  

 Inexact: 



It is raised when the result is not exact because the result can not be 

represented in the used precision and rounding cannot give the exact result.  

 

Table A.4: Exceptions in IEEE 754 standard 

Exception Cased by Result 

Overflow Operation produce large number  

Underflow Operation produce small number 0 

Divide by Zero x/0  

Invalid Undefined Operations NaN 

Inexact Not exact results Round(x) 

 
A.6 IEEE Rounding: 

 

As not all real numbers can be represented precisely by floating point representation, 

there is no way to guarantee absolute accuracy in floating point computations. Floating  

point numbers are approximations of real numbers. Also the accuracy of results obtained 

 in a floating point arithemetic unit is limited, even if the intermediate results calculated 

in the arithematic unit are accurate. The number of the computed digits may exceed the 

total number of digits allowed by the format and extra digits have to be disposed before 

the final results are stored in user-accessible register or memory. 

IEEE 754 standard prescribes some rounding schemes to ensure acceptable accuracy of 

floating point computations. The standard requires that numerical operations on floating 

point operands produce rounded results. That’s is, exact results should be computed and 

then rounded to the neareast floating point number using the “round to nearest – even” 

approach. But in practice, with limited precision hardware resources, it is impossible to 

compute exact results. So two guard bits (G & R) and third sticky (S) bit, are introduced 

to ensure the computation of results within acceptable accuracy using minimum 

overhead. 

The default rounding mode specified by the IEEE 754 is round to nearest-even. In this 

mode, the results are rounded to the nearest values and in case of a tie, an even value is 

chosen. Table A .5 shows the operation of round to nearest – even, for different instances 

of significand bit patterns. In this table X represents all higher order bits of the 



normalized significand beyond the LSBs that take part in rounding while the period is 

separating p MSBs of the normalized significand from round ( R ) and sticky (S) bits. 

 

Table A.5: Round to nearest – even rounding 

 

Significand 
Rounded 

Result 
Error Significand 

Rounded 

Result 
Error 

X0.00 X0. 0 X1.00 X1. 0 

X0.01 X0. - 1/4   X1.01 X1. - 1/4  

X0.10 X0. - 1/2    X1.10 X1. + 1 + 1/2  

X0.11 X1. + 1/4 X1.11 X1. + 1 + 1/4 

 

It can be seen from the table that the average bias (which is the average of the sum of 

errors for all cases) for the round to nearest scheme is zero. Fig A.1illustrate the relative 

positions of the decision making bits. Rounding to the nearest value necessitate a 

conditional addition of 1/2 ulp (units in the last place). The decision for such addition can 

be reached through the evaluation of the LSB (M0) of the most significand p bits of the 

normalized significand, the round ( R ) bit and the sticky ( S ) bit. Rounding is done only 

if R( M0 + S ) condition is true. 

 

p - 1 higher order bits SRM0

p - bit significand field

Round bit

Sticky bit
 

 

  Figure A.1: Normalized Significand before rounding 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX B 

EXAMPLES OF SDDITION AND MULTIPLICATION   

      
                   Let A= 24.25 

                      B= -0.125 

 

 

Then A is represented as      S=0 

                                              M= 011000.01    = 1.100001 * 2
4
 

                                               E = 127 + 4 =131   where the bias is 2 
8-1

 -1=127 

 
                          MSB(31) 30                       23   22                                                    LSB(0) 

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF 

 

 

         A=   
                          MSB(31) 30                        23  22                                                      LSB(0) 

0 1000 0011 10000100000000000000000000 

 

 Then B is represented as      S=1 

                                              M= 0.001    = 1.0000 * 2
-3

 

                                               E = 127 + (-3)  =124    where the bias is 2 
8-1

 -1 =127 

 

 

 

     B=           
                         MSB(31)   30                      23   22                                                    LSB(0) 

1 0111 1100 00000000000000000000000000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

ADDITION 

Now trying addition of these numbers  

 

A+ B  =R 

Initially compare exponent of A to exponent of B and select the larger and note the 

difference. 

eA > eB 

and eA-eB =7 

Now selecting the larger exponent to be the output exponent and shifting the smaller 

number by 7 bits to the right to align the binary point 

       Perform subtraction to obtain the significand of the reslt  

 

                                                            1.1000010   * 2
4
  

                                                         -  0.0000001  *  2
4 

  

                                                            1.10000001  * 2
4 

  

S R  = 0 

e R  = 127 + 4 =131 

MR = 1.10000001 

 

R=                               
                         MSB(31)   30                       23   22                                                   LSB(0) 

0 1000 0011 10000010000000000000000000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Multiplication 

Now trying multiplication of these numbers  

 

A*  B  =R 

Initially add the  exponent of A to exponent of B and  set the exponent of the results to 

this addition eA + eB 

and eA+ eB =  1000 0011 + 0111 1100 – 0111 1111 = 1000 0000  

 

       Perform multiplication  to obtain the significand of the result  

 

                                                            1.1000010    

                                                            0.0000001  
 

  

                                                            1.10000100  
 

  

S R  = 1 

e R  = 1000 0000 

MR = 1.10000100 

 

 

 

R=                                    
                               MSB(31) 30                        23  22                                                      LSB(0) 

1 1000 0000 10000100000000000000000000 

 

 

 

 
 


