LABORATORY MANUAL

FOR

DIGITAL SYSTEM DESIGN I

BY:

DR. A.J. AL-KHALILI & CHRIS TAILLEFER

CONCORDIA UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

2001

Bepartment of Electrical and Computer Emineering

REVISION HISTORY

Experiment 4 updated. August 2009. T. Obuchowicz
"The Report" section update. July 2010. T. Obuchowicz

EMERGENCY PROCEDURES

1. Emergency Evacuation during a Fire Alarm

- Stop your work and secure your area
- Proceed to the nearest Fire Exit
 Don't Use Elevators or Escalators Chimney effect
- General Alarm Bells ring continuously Message will be given through the Public Address System, if available
- Follow the directives from the Fire Monitors (wearing armbands)
- Once outside move away from the building to the gathering location

You must evacuate

2. Emergency Procedures in the Event of Fire Discovery

- Sound the alarm by activating the nearest Pull Station
- Call Security to confirm using:
 - Fire or Emergency telephones located near exit stairwells no dialing necessary, or
 - Public phones by dialing 848-3717 (no charge), or
 - Office phones by dialing 811, or
 - Cellular phones by dialing 848-3717
 - Give your Name, Location, and Nature of the problem
- Once informed of the situation Security will call 911

You must evacuate

3. What to do in case of Medical Emergency

Serious/Life-Threatening Emergency

- Call 9-911 to alert Urgences Santé
 Give your Name, Location and Nature of the problem
- You must call Security using (see above instructions)
- Give your Name, Location, and Nature of the problem and tell them that you have called the 911
- Provide first-aid assistance if you can or call 4181 to request an Emergency Responder
- Security will send an agent to assist you Agents have been trained to provide first-aid assistance

You must always contact Security

Non Life-threatening Situation (not requiring Urgences Santé)

- Call Security (see above instructions)
- Provide first-aid assistance if you can or call 4181 to request an Emergency Responder

CONTENTS

1

3

5

14

17

21

26

31

The Report

How To Draw A Logic Diagram

Experiment 1 Boolean Algebra and Logic Gates

Experiment 2 Combinational Logic Circuit Design

Experiment 3 Design of Coder and Decoder Circuits

Experiment 4 Latches and Flip-Flops

Experiment 5 Analysis and Design of Counters

Appendix A

Specifications of TTL Integrated Circuits

THE REPORT

For each experiment performed a report must be submitted. This report should present the relative theory used to accomplish the experiment including a discussion of the analysis and design of all circuits. The results obtained from the experiment should be presented in a clear and concise manner. The experimental results should be discussed and compared to the theoretical results.

The format for the report is as follows:

OBJECTIVES INTRODUCTION RESULTS DISCUSSION CONCLUSION PRE-LAB

OBJECTIVES - Describe IN YOUR OWN WORDS the goals of the experiment.

INTRODUCTION - Present any relevant theory used in the experiment using words, diagrams, tables, charts, schematics, etc.

RESULTS - Describe the procedure that was performed to obtain the results. Present the results in a clear and concise manner. Use tables, graphs, diagrams, etc. to aid in the presentation.

DISCUSSION - Discuss the results obtained. If the results are poor (i.e. the circuit did not function as expected) give possible reasons to explain the incorrect results. NOTE: A portion of the lab grade is allotted to correct circuit operation - you should strive to design and build a properly working circuit.

CONCLUSION - Explain what was learned from the experiment and summarize the salient theoretical aspects of the lab.

PRE-LAB - This is to be included as an appendix to the lab report. Any relevant material from the pre-lab used in the Introduction or Discussion sections should be reproduced in the section (i.e. do not simply include the pre-lab in the Introduction or Discussion sections).

Some tips about writing good reports:

- Label diagrams and tables with numbers and captions.
- Reference figures and tables by number in the text. If a figure or table is not referred to in body of the text then it should not be included in the report.
- Do not draw figures with pencil. Everything hand written should be in ink.
- Use your own words to describe everything. You may use referenced material when appropriate... BUT IT MUST BE REFERENCED!!!!!
- All text must be type written, preferably using a word-processing package such as MS Word[™] or FrameMaker[™].
- Proof-read the report for spelling and grammar mistakes: (Do not rely on "spell check" and "grammar check" software... it is good, but it does make mistakes!)
- Use a font size of 10-point or greater.
- Do not refer to figures or tables from the lab manual. Rather, they should be redrawn in the report.

Remember, a report is a means to document what you have done in an experiment. It should comprehensive enough such that anyone reading the report could reproduce your experiment to achieve the same results!

HOW TO DRAW A LOGIC CIRCUIT DIAGRAM

A logic circuit diagram is a block level diagram consisting of the inputs and outputs, the logic gates (e.g. AND, NOR, inverters, etc.), black box circuits, and the interconnectivity between all of them. Every logic gate in the diagram should contain a part number, an instance name, and the physical pin numbers that the wires would connect to the integrated circuit of that instance.

A <u>part number</u> is code that uniquely identifies the type of IC that is used. As each gate is shown using its logic diagram, it should be written on the gate what type of IC is implementing it. For example, a two input AND gate could be implemented using a 74x08 IC.

An <u>instance number</u> is any logic gate label that indicates from which IC the gate is being used. In other words, it is an identifier of the IC itself. It should be noted that many ICs have several gates inside. For example, the 74x08 Quad 2-Input AND gate IC has four 2-input and gates inside it. The figure below shows the arrangement of the AND gates inside the IC and which pins are used.

<u>Pin numbers</u> are the labels that indicate from which pin of a particular IC is being connected through a wire. (I.e. pin numbers are the numbers shown in the figure above from the actual IC pins.)

Some helpful tips to drawing good circuit diagrams are as follows:

- Wires should always be drawn vertically and horizontally, not diagonally. (Note that it is sometimes acceptable to draw diagonal lines when representing latches.)
- A dot should be put any place where two wires intersect and belong to the same node.
- Whenever possible, draw the inputs entering the circuit from the left side, and the outputs leaving from the right side.
- Label long wires at all its end-points throughout a diagram to help readability.
- Label internal wire nodes to help readability.
- Do not route ground and V_{DD} wires throughout a circuit diagram unless they connect to a gate input.

The figure below is an example of what a logic circuit diagram should look like. Note that the AND gates are labeled with their part number (74x08), an instance number (U1) and the IC pin numbers inside brackets. The OR gates are labeled with their part number (74x32), an instance number (U3), and the associated IC pin numbers. The outputs are P₀, P₁, P₂, and P₃. The inputs are labeled A₀, A₁, B₀, and B₁.

Example of a Logic Circuit Diagram

EXPERIMENT 1

INTRODUCTION TO THE PROTO-BOARD[®], LOGIC GATES, AND DEBUGGING TECHNIQUES

OBJECTIVES

- To introduce the Proto-Board® facilities.
- To gain experience using breadboards and wiring digital circuits.
- To learn techniques for debugging circuits.

INTRODUCTION

The Breadboard:

A breadboard is a device used to interconnect electronic circuits. As shown in Figure 1.1, the breadboard consists of many holes in which circuit components (i.e. ICs, resistors, capacitors, etc.) are inserted. A breadboard is connected internally via strips of metal. This facilitates the connection between components and permits the use of data and power buses. Figure 1.1 illustrates the internal connectivity of the holes.

Dual Inline Package (DIP) Integrated circuit (IC) components are inserted into the breadboard holes as shown in Figure 1.1. Note that the vertical connections do not cross the horizontal gap in the center of the breadboard.

Power and ground buses are usually constructed using the horizontally connected holes on the top and bottom of the breadboard.

Figure 1.1: Breadboard with a Placed Integrated Circuit

The Proto-Board[®]:

The Proto-Board[®] is a complete mixed-signal test-bench from Global Specialties equipped with regulated and variable power supplies, breadboards, switches, light emitting diodes (LEDs), pushbuttons, signal generators, potentiometers (POTs), pin-to-BNC connectors, and an 8Ω speaker.

The "ON" Button:

The Proto-Board[®] may be turned on using the big red switch at the top, left corner of the kit (next to the power cord). When the kit is turned on, the button should illuminate.

Power Supply:

The regulated power supply is located at the top, right side of the kit. There are four connectors with the colors of red, yellow, blue and black. The red connector is a 5V supply and the black connector is the ground (i.e. 0V).

Logic Indicators:

Under the power supply are the logic indictors. These are a set of LEDs. When +5V is placed on a pin, the corresponding red LED will be illuminated. Conversely, when 0V is placed on a pin, the green LED will light up. These LEDs will be used as the output display for the majority of the experiments.

6

Note the two-selector switches associated with the logic address. The top switch should be set to "+5V" and the lower switch should be set to "TTL".

Logic Switches:

On the bottom, left side of the kit are the logic switches. These will emulate digital inputs. When the switch is down the output is 0V or logic low. When the switch is up the output is logic high.

Note the selector switch associated with logic switches. It should be set to "+5V".

Frequency Generator:

Under the "ON" switch is a frequency and signal generator. This feature allows the generation of sinusoids, ramps, and square waveforms at frequencies in the range of 0.1Hz to 100kHz. For Experiments 4 and 5 the square waveform may be used as a clock for sequential circuits.

Pushbuttons:

Two pushbuttons are available for use with edge-triggered devices (e.g. 74LS74 Delay Flip-Flop). These are the two blue buttons located below the Frequency Generator.

NOTE: Do not use +V power supply with any of the circuitry in these experiment!!!

Logic Gates, Flip-Flops, Decoders, Multiplexers:

In general, any type of integrated circuit (IC) devices may be used. However, only transistor-transistor logic (a.k.a. TTL) will be used in these experiments. Table 1.1 lists the devices that will be used in this experiment. See Appendix A for the data sheets for each device. Note that each of these devices contains several gates inside. (I.e. don't use one IC for one gate!)

Table 1.1: TTL Gates

Device Number	Function
7400	Quad 2-input NAND gate
7402	Quad 2-input NOR gate
7404	Hex Inverter
7408	Quad 2-input AND gate
7410	Triple 3-input NAND gate
7432	Quad 2-input OR gate

Debugging Circuits:

Debugging a circuit implies determining where, if anything, something is not functioning. There are many common mistakes made that lead people to believe that their circuit is non-functional. Some of these common mistakes are:

- Forgetting to turn on the power switch! Image: Second secon
- Forgetting to connect to the ground and +5V supplies to each IC.
- Connecting the power and ground incorrectly.
- Improperty wiring a circuit.
- Connecting two outputs together.
- Using the wrong IC.
- Using an IC with broken pins such that no connection is made into the holes of a breadboard.
- Using an IC that is damaged internally. ICs may be damaged by applying an excessive voltage to any pin, by grounding output pins, connecting two outputs together, or by reversing the power and ground connections.

Due to these possible errors, you should follow these steps when debugging a circuit.

- 1. Check all connections carefully to ensure that the power and grounds are connected to each IC correctly and that no TTL gate outputs are connected together or grounded.
- 2. Check each IC to ensure that all the pins are not broken. Be very careful when placing and removing the IC from the breadboard. The pins are very delicate.
- 3. Turn the power supply on. Touch each IC with your finger. If the IC is hot, then it is possible that that IC is destroyed. Turn the power off immediately!!! Check the connection leading to that IC. If the connections are correct then test the "Burned" IC independently (i.e. take it out of the circuit and connect it by itself to determined if it is broken).
- 4. With the power supply turned on, check each internal circuit node to determine if the functionality is as expected. Always start from the node closest to the inputs. Use the LED arrays and a single wire to probe the nodes. Use a truth table to compare the expected results.

WARNINGS

- 1) TTL gate outputs should not be connected to other TTL gate outputs.
- 2) TTL gate outputs must never be shorted to ground. Check your connections carefully!
- Always connect unused TTL inputs to logic HIGH (+5V) or logic LOW (OV), whichever is appropriate. This reduces undesirable effects due to electrical noise.
- Always connect the ground and +5V to the integrated circuits before wiring the circuit. <u>Forgetting to connect the power supplies is one of</u> <u>the most common mistakes made.</u>
- 5) Never apply more than +5V to any pin of a TTL gate.
- 8) When modifying a circuit ensure that the power is turned off!

PRE-LAB

- 1) Read all of Experiment 1 (pages 5-13) to become familiar with the Proto-Board and Procedures for completing this experiment.
- 2) Analyze the logic circuits shown in figures 1.2, 1.3, and 1.4 to determine their Boolean logic function.
- 3) Analyze the circuit given in Figure 1.5. Provide your analysis in a truth table. Include in your truth table all the internal nodes (x, y, and z).

Part 1

Connect the circuits shown below on a breadboard. Note that the circuits (a) and (b) may be connected using the same IC. Test each circuit by connect the inputs (A, B, C, and D) to the switches on the Proto-Board[®]. Connect each output to one LED. Record your results in a Truth Table.

Demonstrate your circuits to the lab instructor before disconnecting them!

Part 2

Connect the circuit shown in Figure 1.3. Test all possible combinations to obtain a Truth Table.

Questions:

- 1) From your results, what Boolean function does this circuit produce?
- 2) Do your results agree with your analysis of this circuit? Why or why not?
- 3) Draw another circuit that would produce the same Boolean function using only NOR gates.

PART 3

Connect the circuit shown in Figure 1.4. Test all possible combinations to obtain a Truth Table. Note: You need only one IC to for this circuit!

Questions:

- 4) From your results, what Boolean function does this circuit produce?
- 5) Do your results agree with your analysis of this circuit? Why or why not?
- 6) What are the benefits of designing digital circuits using only NAND gates?

PART 4

Connect the circuit shown in Figure 1.5. Using an LED, probe each internal node (x, y, and z) and record your results in a truth table. If there are any problems with your circuit record what was wrong and how you were able to fix it.

If you determine that an IC is broken, then demonstrate it to the lab instructor.

Figure 1.5: Debugging Circuit

Questions:

7) Reiterate in your own words the procedure for debugging circuits. List the most common problems with digital circuits. Are there any other possible problems that could arise?

EXPERIMENT 2

COMBINATIONAL LOGIC CIRCUIT DESIGN

OBJECTIVE

- To gain experience in connecting digital circuits on a breadboard.
- To construct and verify the operation of a 2-bit multiplier.
- To obtain an appreciation for modular design.

INTRODUCTION

2-Bit Multiplier

A 2-bit multiplier is a circuit that multiplies two 2-bit binary numbers (A and B) to produce a 4-bit binary output (P). The truth table describing the system behavior is given in Table 2.1.

Table 2.1: Truth Table for a 2-Bit Multiplier with Inputs A and B and Output P

	·INP	UTS		1	OUTI	PUTS		I
<u>A1</u>	A ₀	B ₁	Bo	P ₃	P ₂	P ₁	Po	Decimal
0	0	0.	0	0	0	0	0	0
0	0	0	1	0	0	0	Ō	Ō
0	0	1	0	0	0	0	Ō	Ō
0	0	1	. 1	0	0	0	Õ	Ō
0	1	0	0	0	0	Ō	Õ	Ō
0	1	.0	1	0	0	Ō	1	1
0	1	1	0	0	0	1	Ó	2
0	1	1	1	0	Ō	1	1	3
1	0	0	0	Ō	Ö	Ó	o ·	õ
1	0	0	1	Ó	Ō	1	õ	2
1.	0	1	0.	Ö	1	ò	ō	Ā
1	0	1	1	ō	1	1	ō.	6
1	1	0	Ó	ō	ò	ò	ñ	Ő
1	1	0	1 .	Ő	õ	1	1	3
1	1	1	Ó	Ő	1	1	ó	6
1	1	1	1	1	Ó	O	1	9

It may be seen, for example, that the product of 1x1 (A₁A₀=01 and B₁B₀=01) yields the result of 1 (P₃P₂P₁P₀=0001). Similarly, the product of 3x2 (A₁A₀=11 and B₁B₀=10) yields 6 (P₃P₂P₁P₀=0110).

Modular Design

Large and complex circuits should always be designed and tested modularly. This implies that a circuit should be broken down into blocks that may be built and tested on their own. For example, the circuit for each output bit of the 2-bit multiplier described above should be built and tested independently of the others. This will aid in circuit debugging and it will ensure that if one circuit is nonfunctional, the others will not be affected. This example is simple and may not warrant modular design, however, it is important to understand the concepts of modularity and it's place in any design.

By contrast, the circuit in Figure 2.1 is a condensed combinational logic design of the 2-bit multiplier. It incorporates sharing of common sum and product terms.

Figure 2.1: 2-Bit Multiplier Circuit

PRE-LAB

- 1) Read <u>all</u> of Experiment 2 (pages 14-16) to become familiar with the Procedures for completing this experiment.
- Design the 2-bit multiplier using the truth table given in Table 2.1. Obtain the standard sum of products (SSOP) from the truth table. Minimize the logic using K-maps.
- 3) Draw the logic circuit diagram for the 2-bit multiplier. Do not forget to label each gate with its name, instance number, and pin numbers.
- 4) Analyze the circuit in Figure 2.1. Show that its truth table is the same as that given in Table 2.1.

PROCEDURE

- 1) Connect the 2-bit multiplier circuit that was designed in the Pre-Lab. Verify its functionality by testing all possible input values. Record your results in a truth table.
- 2) Connect the circuit in Figure 2.1. Verify its functionality by testing all possible input values. Record your results in a truth table.

Questions:

- 1) Describe in your own words the purpose of modular design. Why do we break down circuits into modules and design them independently?
- 2) The circuit in Figure 2.1 is a "condensed" design for a 2-bit multiplier. What are the advantages and disadvantages between the circuit that you have designed and the one in Figure 2.1? In your opinion, which design is better and why?

EXPERIMENT 3

DESIGN OF MSI COMPONENTS

OBJECTIVE

- To gain experience in connecting digital circuits on a breadboard.
- To design a 2-to-1 multiplexer.
- To design a combinational adder circuit.

INTRODUCTION

Multiplexer:

A multiplexer is a device that directs one of many inputs to a single output. The input is selected using "select" lines that are inputs to the device. Figure 2.1 (a) illustrates the system diagram of an n-to-1 multiplexer where n is the number of inputs and m is the number of select lines. It is always the case that $n = 2^m$.

Figure 2.1(b) shows the block diagram of a 2-to-1 multiplexer. When the select line S₀ is low the output is A₀ (i.e. $F = A_0$). When the select line is high then the output is A₁ (i.e. $F = A_1$).

Binary Adder:

The binary addition of two 1-bit numbers may be performed by adding the two bits to produce a sum bit and a carry bit. A circuit to perform this addition is called a "half-adder".

The binary addition of three 1-bit numbers may be performed by adding the three bits to produce a sum bit and a carry bit. A circuit to perform this addition is called a "full-adder".

The binary addition of two multi-bit numbers may be performed by adding the bits and carry, beginning with the least significant. For example, two 4-bit numbers may be added as follows:

1110 ← carry 0111 +<u>1110</u> 10101

It should be noticed that the least significant bits are added together with no carry. This implies using a half-adder. All other bits are added with a carry, thus implying a full-adder.

PRE-LAB

1) Read <u>all</u> of Experiment 3 (pages 17-20) to become familiar with the Procedures for completing the Procedures for completing this experiment.

2) Design a 2-to-1 multiplexer using standard logic gates such as inverters, NANDs, NORs, ANDs, ORs, etc. Obtain the standard sum of products (SSOP) from the truth table. Minimize the logic using K-maps.

3) Draw the logic diagram for the 2-to-1 mux. Do not forget to label each gate with its name, instance number, and pin numbers.

4) Draw a half-adder circuit using standard logic gates such as inverters, NANDs, NORs, ANDs, ORs, XORs, etc. Obtain the standard sum of products (SSOP) from the truth table. Minimize the logic using K-maps.

5) Draw the logic circuit diagram for the half-adder. Do not forget to label each gate with its name, instance number, and pin numbers.

6) Design a **full**-adder circuit using standard logic gates such as inverters, NANDs, NORs, ANDs, ORs, XORs, etc. Obtain the standard sum of products (SSOP) from the truth table. Minimize the logic using K-maps.

7) Draw the logic circuit diagram for the full-adder. Do not forget to label each gate with its name, instance number, and pin numbers.

8) Using the half-adder and full-adder circuits previously designed, generate the logic circuit for a 2-bit adder (i.e. a circuit that can add two binary numbers, each having 2-bits).

PROCEDURE

Part 1

Connect the 2-to-1 multiplexer circuit that was designed in the Pre-Lab. Verify its functionality by testing all possible input values. Record your results in a truth table.

Part 2

- 1) Connect the half-adder circuit designed in the Pre-Lab. Verify its functionality by testing all possible input values. Record your results in a truth table.
- 2) Connect the full-adder circuit designed in the Pre-Lab. DO NOT remove the half-adder circuit! Verify its functionality by testing all possible input values. Record your results in a truth table.
- 3) Connect the 2-bit adder using the half-adder and full-adder. Verify its functionality by testing all possible input values. Record your results in a truth table.

EXPERIMENT 4 LATCHES AND FLIP-FLOPS

OBJECTIVE

- To gain experience in connecting digital circuits on a breadboard.
- To acquire design, test, and debugging skills in sequential circuit design.
- To obtain an understanding of the design and functionality of latches and flip-flops.

INTRODUCTION

In order to design sequential logic circuits it is necessary to use logic elements that can <u>store</u> digital information. These devices are commonly referred to as latches and flip-flops.

Some of the most common latches and flip-flops are:

- Set-Reset (SR) Latch
- Clocked SR Latch
- JK Flip-Flop
- Toggle (T) Flip-Flop
- Delay (D) Flip-Flop

A flip-flop is a sequential device that samples its inputs and changes its output only at times determined by a clock signal. A *latch* is sequential device that watches all of its inputs continuously and changes its outputs at any time, independent of a clocking signal. Note that many textbooks refer to "latches" and "flip-flops" synonymously.

The SR Latch is the basic building block for the other flip-flops listed above. The logic diagram for the NAND and NOR-implementations of an SR Latch is shown in Figure 4.1.

The Clocked SR Latch is a basic SR latch with control logic that enables the latch to "hold" its previous output values regardless of the input signals. This device is sometimes referred to as an "SR Latch with Enable" or "SR Flip-Flop".

A JK Flip-Flop is a device that incorporates the functionality of an SR flip-flop but accounts for the "forbidden" input combination of the SR latch. This device has three inputs and two complementary outputs. Its inputs are J, K, and CP. CP is a clock pulse that synchronizes the state change. Inputs J and K are the equivalent set and reset lines of an SR flip-flop. When J is '1' and K is '0' the next state will be a 1 (i.e. Q = 1). When J is '0' and K is '1' the next state will be '0'. When J and K are '0' the next state will "hold" the previous state. When J and K are both '1' the output will toggle.

A T flip-flop is a sequential device that toggles or holds the output. When the T input is '0' the next state is equal to the previous state. When the T input is '1' the next state will be the compliment of the present state.

A D flip-flop is a sequential device that "delays" the input by one clock pulse. In other words, the input to the D flip-flop will propagate to the output of the flipflop after the next clock pulse.

Flip-flops may be characterized in terms of transition tables, or equivalently, state transition diagrams. The transition table of a flip-flop is obtained by deducing the next state (i.e. next output) for every possible combination of input values.

Figure 4.1: (a) NOR SR Latch (b) NAND SR Latch

PRE-LAB

1) Read all of Experiment 4 to become familiar with the Procedures for completing this experiment.

2) A state transition table for a latch is a table which lists as inputs the latch inputs (i.e. S and R for a SR latch, D for a D-type latch, etc. as well as the present value of the latch output (typically designated as Q(present)), the table lists the next state of the latch as the output (typically designated as Q(next)). For example, the state transition table for a NOR implementation would contain the following:

S	R	Q(present)	Q(next)	Comments
0	0	0	0	Hold
0		1	1	Hold
0	1	0	?	
0	1	1	?	
1	0	0	?	
1	0	1	?	
1	1	0	?	
1	1	1	?	

Table 1: State Transition Table for SR-NOR latch

Complete the state transition table for the NOR implementation of the SR latch. Draw the logic diagram for a NOR SR latch. Be sure to include instance names, part numbers and pin numbers as appropriate.

3) Derive the state transition table for the NAND implementation of a SR latch. Draw the its logic diagram.

4) Derive the state transition table for a NOR implementation of a SR latch with an enable input (i.e. a level-sensitive clocked SR latch). Draw it's logic diagram.

5) Derive the state-transition table for a NAND implementation of a D latch with an enable input. Draw the accompanying logic diagram.

PROCEDURE

Part 1

Connect the SR NOR latch circuit using 7402 NOR gates. Verify its functionality by testing all possible input combinations. Record your results in a state transition table.

Part 2

Connect the SR NAND latch circuit. Verify its functionality by testing all possible input combinations. Record your results in a state transition table.

Part 3

Connect the SR NOR latch with enable input. Verify its functionality by testing all possible input combinations. Record your results in a state transition table.

Part 4

Connect the D-type latch with enable input using a NAND SR latch implementation. Verify its functionality by testing all possible input combinations. Record your results in a state transition table.

QUESTIONS

1) What happens to the Q and Q' outputs of a NAND SR latch when both the S and R inputs have a logic '1' value?

2) What happens to the Q and Q' outputs of a NOR SR latch when both the S and R inputs have a logic '1' value?

3) Explain why a latch with a enable input does not change it's output value when the enable input is logic '0'.

4) What is the difference between a *sequential* circuit and a *combinational* circuit. What characteristic (in terms of hardware implementation) do all sequential circuits exhibit?

EXPERIMENT 5

ANALYSIS AND DESIGN OF COUNTERS

OBJECTIVE

- To further increase skills in connecting digital circuits and testing and debugging sequential designs.
- To gain experience in the analysis and design of sequential circuits.
- To obtain an understanding of the design and functionality of various sequential digital counter circuits.

INTRODUCTION

Analysis of Sequential Circuits:

The analysis of sequential circuits may easily be done by following several simple steps. The steps are as follows:

- 1) Label the inputs and outputs on the logic circuit diagram. Label each flip-flop and subscript its inputs. For example, if a circuit has two JK flip-flops and one D flip-flop, then label one JK flip-flop 'A' and its inputs J_A and K_A . The next JK flip-flop in the circuit could be named 'B' with inputs J_B and K_B . The D flip-flop may be named 'C' with input D_C .
- 2) Determine the flip-flop inputs in terms of the system inputs and present, state outputs from each flip-flop.
- 3) Generate a state transition table from the equation determined in step 2.
- 4) Generate a state transition diagram from the table obtained in step 3.

Design of Sequential Circuits:

The design of sequential circuits may be done by reversing the step from the analysis, as follows:

- 1) Derive a state transition diagram from a specification.
- 2) Generate a state transition table from the state diagram. For each state variable, include columns in the table for the flip-flop inputs. Use the appropriate flip-flop characteristic equation to determine the values to the flip-flop inputs. For example, the characteristic equation for a JK flip-flop is Q(t+1) = JQ' + K'Q.
- 3) Derive the Boolean equation for each input of every flip-flop. Minimize the Boolean algebra by using K-maps.
- 4) Determine the outputs as a function of flip-flop present state variables and system inputs. Minimize the Boolean algebra by using K-maps.
- 5) Draw the circuit diagram.

PRE-LAB

- 1) Read <u>all</u> of Experiment 5 (pages 26-30) to become familiar with the Procedures for completing this experiment.
- 2) Analyze the sequential counter circuit shown in Figure 5.1. Derive the state transition table and diagram.
- 3) Analyze the sequential counter circuit shown in Figure 5.2. Derive the state transition table and diagram.
- 4) Design a sequential counter with one input and two outputs. The circuit should count up from (i.e. 0→1→2→3→0→1→2→....) when the input is high. The circuit should count down (i.e. 3→2→1→0→3→2→1→....) when the input is low. The two outputs should represent the binary value of the count. Compose the state transition diagram and table. Use JK flip-flops to implement the design. Draw the logic circuit diagram. Don't forget the label each gate and flip-flop with its instance name and number, and associated pin numbers.

. .

PROCEDURE

Part 1

Connect the counter circuit shown in Figure 5.1. Verify its functionality by testing all possible counter values. Record the results in a state transition table.

Part 2

Connect the counter circuit given in Figure 5.2. Verify its functionality by testing all possible counter values. Record the results in a state transition table.

Part 3

Connect the up-down counter design in the Pre-Lab. Verify its functionality by testing all possible counter values. Record the results in a state transition table.

APPENDIX A

Specification of TTL Integrated Circuits

SN5400, SN54LS00, SN54S00 SN7400, SN74LS00, SN74S00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES SDLS025 - DECEMBER 1983 - REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input-NAND gates.

The SN5400, SN54LS00, and SN54S00 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7400, SN74LS00, and SN74S00 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT .
A	18	Y
н	Н	L
Ĺ	X	H
x	L.	H

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

SN5400 ... J PACKAGE SN54LSOO, SN54SOO ... J OR W PACKAGE SN7400 ... N PACKAGE SN74LSOO, SN74SOO ... D OR N PACKAGE

(TOP VIEW)

1A C	1 U14	D vcc
18 0		14B
1Y 🛛		D4A
2A 🖸]4Y
28 🖸]3B
2Y [] 3A
	7.8] 3Y

SN5400 ... W PACKAGE (TOP VIEW)

140	FU	140	44
18[4B
170		12	4A
Vccl	4		GND
270		10	38
2A [6	эþ	3A
28	7	8	3Y

SN54LS00, SN54S00 ... FK PACKAGE (TOP VIEW)

NC - No Internal connection

logic diagram (positive logic)

PRODUCTION-DATA-Individuality in summarizes of presidentian-data. Problem conform to appectications per the tenue of Tenue Instruments standard warranty, Proclassion processing does not more summy include tenting of all parameters.

Copyright @ 1988, Texas instruments incorporated

Courtesy of Texas Instruments

SN5400, SN54LS00, SN54S00 SN7400, SN74LS00, SN74S00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES SDLS025 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		SN5400			SN7400			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5		4.75	5	5.25	¹ V
VIH	High-lavel input voltage	· 2	•	, i	2			V
VIL	Low-level input voltage			0.8			8.0	V
⁸ OH	High-level output current			- 0.4	· · · · · ·		-0.4	mA
lOL	Low-level output current			16			16	mA
TA	Operating free-air temperature	- 55		125	.0		70-	°ċ

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS T			SN5400			SN740	0	
Franking i sh		TEST CONDI	TIONS	MIN	TYP#	MAX	MIN	TYP#	MAX	UNIT
Vik	Vcc = MIN.	lj = - 12 mA				- 1.5	1		- 1.5	V
VOH	· V _{CC} = MIN,	VIL = 0.8 V.	10H = - 0.4 mA	• 2.4	3.4		2.4	3.4		
VOL	VCC = MIN,	VIH = 2 V,	IOL = 16 mA		0.2	0.4	· · ·	0.2	0.4	V
1	VCC = MAX,	VI = 5.5 V				-1			1	mA
liH	VCC.= MAX,	Vj = 2.4 V				40			40	- µА
^I IL	V _{CC} = MAX,	`V = 0.4.V				- 1.6			- 1.6	mA
loss	VCC = MAX			- 20		- 55	- 18		- 55	mA
ICCH	V _{CC} = MAX,	V1=0V			• 4	8		4	8	mA
ICCL	VCC = MAX.	V1 = 4.5 V			12	ź2	· · ·	12	22	mA

I For conditions shown as MIN or MAX, use the appropriate value specified under recommanded operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TPLH	A				11	22	ns
tphL.	A or B	Ŷ	R _L = 400 Ω ₄ . CL = 15 pF		7	15.	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SDLS027

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIŻs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input-NOR gates.

The SN5402, SN54LS02, and SN54S02 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN7402, SN74LS02, and SN74S02 are characterized for operation from 0 °C to 70 °C.

annual data in channes		A.	
FUNCTI	or ta	BLE H	gate

ľ	INPUTS	OUTPUT
ſ	A B	Ŷ
Ī	нх	L
I	ХН	L /
	LL	H

logic symbol*

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and SEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)

PBODUCTEDII DATA deconvents contain i conten as of publication data. Products spacifications pay the terms of Tours is esta contaio infermation 13. Producta conform 19 specificator standard v . Predection provessi o tasting of all serve ty. Pr 18 S

SN5402, SN54LS02, SN54S02, SN7402, SN74LS02, SN74S02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES DECEMBER 1983-REVISED MARCH 1988

SN6402...J PACKAGE SN54LS02, SN54S02 ... J OR W PACKAGE SN7402 ... N PACKAGE SN74LSO2, SN74SO2 ... D OR N PACKAGE TOP VIEWI

1Y [F	1.4	Vcc
IA C		13	4Y
18 C		12	
2Y [111	
2A [2B [,	ци Пе	
GND	1	30	3A
the second se	L		

SN5402 ... W PACKAGE (TOP VIEW)

14	1	U1		4Y
18			30	
141	3		卆	4A
Vccl	4		_	GND
2Y (ф	
2A			Цe	3A
2B (77		вþ	3Y

SNE4LSO2, SNE4SO2 ... FK PACKAGE (TOP VIEW)

NC - No internal cosnection

TEXAS INSTRUMENTS POST OFFICE BOX 655012 - DALLAS. TEXAS 75265

SN54LS02, SN74LS02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

recom	imended operating conditions				
		SN54LS02	SN74LS02		
		MIN NOM MAX	MIN NOM MAX	UNIT	
VCC	Supply voltage	4.5 5 5.5	4.75 5 5.25	. V	
VIH	High-level input voltage	2	2	V	
VIL	Low-isvel input voltage	0.7	8.0	۷.	
юн	High-level output current	- 0.4	- 0.4	mA	
IOL	Low-level output current	F 4	8	mA	
TA	Operating free-sir temperature	- 55 125	0 70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS T			SN64L502			SN74LS02		
PANAMEICH		LEST CUNDI	nuns I	MIN	TYP#	MAX	MIN TYP:	Max	UNIT
Vik	VCC = MIN,	li = - 18 mA		.		- 1.5		- 1.5	. V
VOH	Vcc = MIN,	VIL - MAX,	10H = - 0.4 mA	2.5	3.4		, 2.7 3.4		V.
Mar	VCC - MIN,	VIH = 2 V.	loi = 4 mA		0.25	0.4	0.25	0.4	
VOL	VCC = MIN,	VIH - 2 V.	IOL = 8 mA				0.35	0.5	
<u> </u>	VCC = MAX,	VI = 7 V	<.	1		0.1		0.1	mA
IIH	VCC = MAX,	VI - 2.7.V				20		20	·μA
μL	VCC = MAX,	V; = 0,4 V	· · · ·			-0.4		-0,4	mA
los s ·	VCC - MAX			20	**************************************	- 100	- 20	- 100	mA
ICCH	VCC - MAX,	VI = 0 V			1.6	3.2	1.6	3.2	Ain
ICCL	VCC - MAX,	See Note 2			2.8	5.4	2.8	5.4	mA

† Por conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. 2 All typical values are at V_{CC} = 5 V, T_A = 25^oC § Nor more then one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
1PLH	A or B	Ý	RL=2kQ, CL=15pF		90	[.] 15	ns
TPHL .			RL=2kQ, CL=15pF		.10	15	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SDLS029

- Package Options Include Plastic "Small Outline" Packages, Caramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texes instruments Quality and Reliability

description

These devices contain six independent inverters.

The SN5404, SN54LS04, and SN54S04 are characterized for operation over the full military temperature range of =55 °C to 125 °C. The SN7404, SN74LS04, and SN74S04 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each inverter)

INPUTS	OUTPUT
	. Y
H	1 L 1
L L	. н

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)

PRODUCTION BATA comments contain information contrast or of publication data. Products conferen to apacifications por the teness of Tenze instruments standard understaty. Production proceeding door not accessarily function testing of all parameters. SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

DECEMBER 1983-REVISED MARCH 1988

SN5404... J PACKAGE SN54LS04, SN54S04... J OR W PACKAGE SN7404... N PACKAGE SN74LS04, SNJ4S04... D OR N PACKAGE (TOP VIEW)

	•
1 U 14	
2 13	6A
	5 6Y
	5 A
] [.] 5Y
6 9] 4A
7 8	5 4Y
	2 13 3 12 4 11 5 10 6 9

SN5404 ... W PACKAGE (TOP VIEW)

1A [T	U		
2Y [12		130	6A
2A [12印	6Y
Vcc [4			GND
3Å [15		10日	5Y
3Y [16			5A
4A [17		a 🛛	47

SN54LSO4, SN54SO4 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

Texas Instruments

POST-DEFICE-BOX-855012 . DALLAS. TEXAS 75265

SN54LS04, SN74LS04 HEX INVERTERS

recommended	manting	ronditione
10COMMISTUSU	operating	CONGICIONS

		SN54LS04			SN74LS04			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	6.25	. V .
VIH	High-level input voltage	2	and marked a		2	·		۷
VIL	Low-level input voltage			0.7			0.8	V
łoh	High-level output current			0.4			-0.4	mA
· IOL	Low-level output current	•		. 4			8	mΑ
TA	Operating free-eir temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDI			SN64LS	74	SN74LS04			
PARAMETER .	IESI CONDI	I CONDITIONS I	MIN	TYP‡	MAX	MIN	TYP ‡	MAX	UNIT	
VIK	VCC - MIN,	lj = - 18 mA				- 1.5	di.		-1.5	V
VOH	VCC = MIN,	VIL - MAX,	IOH = - 0,4 mA	2.5	3.4		2.7	3,4		Y
VOL	VCC - MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4			0.4	
VOL	VCC - MIN,	V _{IH} = 2V,	IOL = 8 mA					0.25	0.5	V
4	VCC - MAX,	Vi = 7 V	· · · · · · · · · · · · · · · · · · ·			0.1			0.1	mA
Чн	VCC - MAX,	V1 - 2.7 V				20			20	µА
hL	VCC - MAX,	VI = 0.4 V		1		- 0.4			-0.4	mA
los §	VCC - MAX	····.	· ·	- 20		- 100	- 20		-100	mA
ССН	VCC = MAX,	Vj=0V		1.1.2.2.1.1.1	1.2	24		1.2	24	mA
ICCL	VCC - MAX,	VI = 4.5 V			3.6	6.6	CHINESE CONTINUES	3.6	6.6	mA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not axceed one second.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	EDÓNA	TO (OUTPUT)	TEST CONDITIONS	MIN	тур	MAX	UNIT
PLH	Α.	· · · · · · · · · · · · · · · · · · ·	Fil=2kΩ, Cia 15 pF		9	15	ns
THE					10	15	. n t -

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN5408, SN54LS08, SN54S08 SN7408, SN74LS08, SN74S08 QUADRUPLE 2-INPUT POSITIVE-AND GATES SOLS033 - DECEMBER 1983 - REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input AND gates.

The SN5408, SN54LS08, and SN54S08 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7408, SN74LS08 and SN74S08 are characterized for operation from 0° to 70°C.

FUNCTION	TABLE	(esch	gate)
----------	-------	-------	-------

INPUTS	OUTPUT
A B	Y
нн	н
L X.	: L
XL	L

logic symbol[†]

1A(1)	(3) 1Y
2A <u>(4)</u> 2B <u>(5)</u>	<u>(6)</u> 2Y
3A (9) 38 (10)	<u>(8)</u> 3Y
4A (12)	(11) _{4Y}

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SN5408, SN54LS08, SN54S08...J OR W PACKAGE SN7408...J OR N PACKAGE SN74LS08, SN74S08...D, J OR N PACKAGE

(TOP VIEW)				
1AC	1	UNDVCC		
180	2	13] 4B		
1Y 🛛	3	12] 4A		
2A 🗌	4	11]] 4Y		
2B 🖸	5	10]] 3B		
2Y 🖸	6	9]] 3A		
	7	8 3Y		

SN54LS08, SN54S08 ... FK PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)

2ROENCIDE DATA-Information-is current-as-on-publication value. Products carbons to specifications per the terms of Texas Instruments standard warrang. Production processing does not necessarily include teaching of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75255

Courtesy of Texas Instruments

SN5408, SN54LS08, SN54S08 SN7408, SN74LS08, SN74S08 QUADRUPLE 2-INPUT POSITIVE-AND GATES SDLS033 - DECEMBER 1993 - REVISED MARCH 1988

recommended operating conditions

goli i aga an		Τ	SN5408		SN7408			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc. S	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
ويرابعهم يحتكمه البرابي	High-lavel input voltage	2			2			V
	Low-level input voltage	n na na serie de ser		8.0			0.8	V
	High-level output current			-0.8		والمحمد والمحمد	- 0.8	mA
and the second se	Low-level output current			16	<u> </u>	*****	16	mA
والمادي بالمراجع ويتها والمعاقر	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS T		SN5408	SN7408	UNIT
PARAMETER .			MIN TYPE MAX	MIN TYPE MAX	
ViK	VCC = MIN,	li = - 12 mA	- 1.5	- 1.5	V
VOH	VCC = MIN,	V _{IH} = 2 V, I _{OH} = - 0.8 mA	2.4 3.4	2.4 3.4	.V
VOL	Vcc = MIN,	VIL = 0.8 V, IOL = 16 mA	0.2 0.4	0.2 0.4	. V
lı ·	VCC - MAX,	V1 - 5.5 V		in a second s	mA
¹ ІН. ^т	VCC - MAX,	Vi=24V	. 40	40	μA
IL.	VCC - MAX.	V1 = 0.4 V	- 1.6	- 1.8	mA
105 5	V _{CC} = MAX		- 20 - 55	- 18 - 55	mA
Іссн	VCC - MAX,	V ₁ = 4,5 V	11 21	11 21	mA
CCL	V _{CC} = MAX,	VI=0V	20 33	20 33	mA

f For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\$ All typical values are at $V_{CC} = 5$ V, $T_A = 25^{\circ}$ C. § Not more than one output should be shorted at a time.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		түр	MAX	UNIT	
^t PLH					17,5	27	ns	
^t PHL	A or B	Y 4	R L=400 Ω, CL= 15 pF		12	19	715	

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input NAND gates.

The SN5410, SN54LS10, and SN54S10 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7410, SN74LS10, and SN74S10 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

INPUTS			OUTPUT
A	8	c	Y
H	H	н	L
L	X	X	н
x	L	x	H
X	X	L	H

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

positive logic

$$Y = \overline{A \cdot B \cdot C}$$
 or $Y = \overline{A} + \overline{B} + \overline{C}$

PRODUCTION DATA-listometics is carrent as of probleming order. Products contains to specifications partile taxes of Trans Instruments standard memory. Production processing does not necessarily include listing of all parameters.

SN54LS10, SN54S10 SN7410 SN74LS10, SN74S10	J PACKAGE D J OR W PACKAGE . N PACKAGE D D OR N PACKAGE P VIEW)
(10)	
1A []1	U14D VCC
1B 🖸 2	13D 1C
2A []3	125 11
28 4	110 30
2B U 4 2C U 5	10 3B
20 LJS 27 C6	90 3A
	8 3Y
GND [7	<u></u>
	. W PACKAGE
נדסו	P VIEW)
14 11	U1401C
18 02	13] 3Y
17 23	12 3C
Vcc C4	11D GND
2Y 5	10] 38

SN54LS10, SN54S10 ... FK PACKAGE (TOP VIEW)

2A 6 2B 7 90 3A

80 2C

			300	3	
2A	b 4			18	14
NC	[] 5				NC
2B	6	e def			3C
2B NC	07				NC
2C	٦a			14 [38
		9 10	11121	3/	
		Z Q S	2 2 4	ç	

NC - No internel connection

logic diagram (positive logic)

Copyright @ 1988, Texas instruments incorporated

1

Courtesy of Texas Instruments

SN54LS10, SN74LS10, TRIPLE 3-INPUT POSITIVE-NAND GATES

SDLSO35 -- DECEMBER 1983 -- REVISED MARCH 1988

recommended operating conditions

		SN54LS10			SN74LS10			
		MIN	NOM	MAX	MIN	NOM	MAX	1 UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	.v.
VIH	High-level input voltage	2		an i sin anang	2	• • • • • • • • •		v
VIL	Low-level input voltage			0.7		andra (no estanta	0.8	v
IOH.	High-level output current			-0.4	a da g		-0.4	mA
IOL.	Low-level output current	,	·····	4		····	8	mA
TA	Operating free-sir temperature	- 55	1	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS t			SN54LS10			SN74LS10			
			MIN	TYP‡	MAX	MIN	TYP\$	MAX	UNIT	
Vik	VCC = MIN,	ij = - 18 mA	· · ·		,	- 1.5	1		- 1.5	V
Voh	VCC = MIN,	VIL = MAX,	IOH = 0.4 mA	2.5	3.4		2.7	3.4		V
Vol.	VCC = MIN,	V _{IH} = 2 V,	loL = 4 mA	ŀ	0.25	0.4	ŀ		0.4	
*0L	Vcc = MIN,	VIH = 2 V,	loL=8mA				1 .	. 0,25	0.5	Y .
11	VCC = MAX,	Vj = 7 V				0.1	<u> </u>		0.1	mA
81H	VCC - MAX,	VI = 2.7 V				20		1.49.00 a 1 5 10 1	20	μа
IIL.	VCC = MAX,	Vj = 0.4 V				- 0.4			- 0.4	mA
los§	VCC = MAX			- 20		- 100	- 20		- 100	mA
ССН	VCC - MAX,	VI=0V			0,6	1.2		0.6	1,2	mA
ICCL	Vcc = MAX.	Vi = 4.5 V	·		1.8	3.3		1.8	3.3	mA

f For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \pm All typical values are at V_{CC} = 5 V, T_A = 25^oC,

§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second,

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM	то				-			1
	(INPUT)	(OUTPUT)	TEST CONDITIONS		МIN	TYP	MAX	UNIT	
tPLH.	A, B or C					9	15	<u>ns</u>	
^t PHL	A, 8 or C	Ŷ	ឝៃ្ម2kΩ, Cែ្ម15 pF			10	15		
	and the second se						14	•••	Ł

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54LS11, SN54S11, SN74LS11, SN74S11 **TRIPLE 3-INPUT POSITIVE-AND GATES** SDLS131 - APRIL 1985 - REVISED MARCH 1988

- Package Options Include Plastic "Small ۲ **Outline"** Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input AND gates.

The SN54LS11 and SN54S11 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS11 and SN74S11 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each gate)

11	IPUT	S	OUTPUT
A	8	C	. У
H	H	н	. N
L	Х	X	
х	L	·x	L
X	Х	L	L

logic symbol[†]

1A_(1) 1B_(2) 1C_(13)	- 8 2	<u>{12}</u> 1¥
2A (3) 2B (4) 2C (5)		<u>(6)</u> 2Y
3A(9) 3B(10) 3C(11)		<u>(8)</u> 3Y

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SN54LS11, SN74S11 ... J OR W PACKAGE SN74LS11, SN74S11 ... D OR N PACKAGE ITOP VIEWI

			-	
1A		U	4	VCC
1B			3	
2A	₫3	1	2 þ	1
2B	D4	1	D	3C
2C	ds	1	oD	3B
24	6			3A
GND	d	• •	8	3Y

SN54LS11, SN54S11 ... FX PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)

una instra and the trans of taxes in XX P

Copyright-© 1988, Texas Instruments Incorporated

SN54LS11, SN54S11, SN74LS11, SN74S11 TRIPLE 3-INPUT POSITIVE-AND GATES SDLS131 - APRIL 1985 - REVISED MARCH 1988

recommended operating conditions

	•	S	SN54LS11				1	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	CIAN F
vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2	*****		2			v
VIL	Low-level input voltage		an a	0.7			0.8	٧
10H	High-level output current		·.	-0.4	;		0.4	mA
OL.	Low-level output current			4		· .	8	mA
TA	Operating free-oir temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST COURS			SN54L8	11	5	N74LS1	1 .	1 bb sate
PARAMEICA	TEST CONDITIONS †		MIN	TYP‡	MAX	MIN	TYP \$	MAX	UNIT	
VIK	V _{CC} = MIN,	lj = - 18 mA				- 1.5		-	- 1.5	۷
VOH	VCC = MIN,	VIH = 2 V	IOH = - 0.4 mA	2.5	3.4	-	2.7	3.4		v
VOL	V _{CC} = MIN,	VIL - MAX,	IOL #4 mA		0.25	0.4	en e	0.25	0.4	
*OL	VCC = MIN,	VIL - MAX,	IOL = 8 mA					0.35	.0.5	V
1	VCC - MAX,	VI = 7 V			•	0.1			0.1	mA
Чн	VCC = MAX,	V1 = 2.7 V				20			20	μA
hr.	Vcc = MAX,	Ý₁ = 0.4 V				- 0.4			- 0.4	mA
los	VCC = MAX			- 20	•	- 100	- 20		- 100	mA
IĆCH	VCC = MAX.	VI = 4.5 V	•	-	1.8	3.6	in hitsen of a latera	1.8	3.6	mA
ICCL	VCC = MAX,	VI=OV			3.3	6.8		3:3	6.6	-mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 † All typical values are at V_{CC} = 5 V, T_A = 25°C.
 § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	түр	MAX	UNIT	1
tPLH	A, B or C	Y	$R_{L} = 2 k\Omega_{s}$	CL = 15 pF		. 8	15	ns	1
TPHL .						10	20	ns	

NOTE 2: Load circuits and voitage waveforms are shown in Section 1.

SDLS079

Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Hat Packages, and Plastic and Ceramic **DIPs**

Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent 4-input NAND gates.

The SN5420, SN54LS20, and SN54S20 are characterized for operation over the full military range of -55°C to 125°C. The SN7420, SN74LS20, and SN74520 are characterized for operation from 0 °C to 70°C.

FUNCTION TABLE (each gate)

•	INP	UTS		OUTPUT
A	8	· c	D	Y
H	H	H	H.	L
L	X	X	X	H H
x	L	X	X	H
X	X	L	X	н
X	х	х	L	н

logic symbol[†]

This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin members shown are for O, J. N, and W packages.

SN5420, SN54LS20, SN54S20, SN7420, SN74LS20, SN74S20 DUAL 4-INPUT POSITIVE-NAND GATES DECEMBER 1983-REVISED MARCH 1988

SN5420 ... J PACKAGE SN54LS20. SN54S20 ... J OR W PACKAGE SN7420 ... N PACKAGE SN74LS20, SN74S20 ... D OR N PACKAGE (TOP VIEW)

1A	d	U	14	Vcc
18	d	2		2D
NC	d	3		20
10				NĊ
1D	d	5		28
-1Y	_		_	2A
GND		7	8	2Y

SN5420 ... W PACKAGE (TOP VIEW)

1A	G	J	14	1D
1Y			ıзД	10
	ф		12P	
Vcc	4			GND
NG	Qs		10[]	
2A	<u>П</u> е			2D
2B	Q'		80	2C

SN54LS20, SN54S20 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram

positive logic Y = $\overline{A \cdot B \cdot C \cdot D}$ or Y = $\overline{A} + \overline{B} + \overline{C} + \overline{D}$

PROBUCTION DATA increases contain information correlat as of publication data. Products conform to specifications par the target of Target instruments standard warmady. Production processing does not soccassionily incident toting of all parameters.

IEXA INSTRUMENTS

5 POST OFFICE BOX 655012 . DALLAS. TEXAS 75285

SN54LS20, SN74LS20 **DUAL 4-INPUT POSITIVE-NAND GATES**

recommended operating conditions

		SN54LS20						
	· · · · · · · · · · · · · · · · · · ·	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4,75	5	5.25	V
VIH	High-level input voltage	2	and an and a second		2			V
VIL	Low-level input voltage	<u> </u>		0.7			. 0.8	V.
юн	High-level output current			- 0.4			-0.4	mA
'OĹ	Low-level output current			4		******	:8	mA
TA	Operating free sir temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS T		SN54LS20				520	1		
(KUNANGI BU			MIŃ	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	Vcc = MIN,	lj = — 18 mA.	- ·			-1.5			1.5	V
VOH	VCC = MIN,	VIL - MAX,	IOH = - 0.4 mA	25	3,4		2.7	3.4		v
Va	VCC = MIN,	VIH = 2 V,	IOL = 4 mA		0.25	0,4			0.4	
VOL	VCC = MIN,	<u> Ујн = 2 V,</u>	IOL = 8 mA					0.25	0.5	
11	VCC - MAX,	V1 = 7 V				0.1			0.1	mA
ін	VCC - MAX.	Vi = 2.7 V				20	i ·	******	20	MA
IL	VCC = MAX,	V1=0.4 V			ť	-0.4			-0.4	mA
1089	VCC - MAX			- 20		- 100	- 20	Alines systems	- 100	mA.
1ССН	VCC - MAX,	VITOV			0.4	8.0		0.4	0.8	mA
ICCL	VCC - MAX,	V(= 4.5 V		<u> </u>	1.2	2.2		1.2	2.2	mA

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ; All typical values are at V_{CC} = 5 V, T_A = 25° C. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

PÀRAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TY	P MAX	UNIT
ሞLH	`Any	¥	$R_{L} = 2 k\Omega$,	CL = 15 pF		9 15	na
^t PHL					1	0 15	715

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54LS21, SN74LS21 DUAL 4-INPUT POSITIVE-AND GATES

SDLS139 - APRIL 1985 - REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Caramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

- description

These devices contain two independent 4-input AND gates.

The SN54LS21 is characterized for operationover the full military temperature range of -55°C to 125°C. The SN74LS21 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each gate)

	INP	UTS	· .	OUTPUT
A	B	C	D	Ý
Н	н	H	H	н
L	X	х	X	L
X	L	x	X	L
x	X	Ľ	x	L.
X	X	X	L	lan Land

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SN54LS21 . . . FK PACKAGE ' (TOP VIEW)

NC-No Internal connection

logic diagram

(positive logic) Y = A-B-C-D or Y = $\overline{A} + \overline{B} + \overline{C} + \overline{D}$

PRODUCTION: DATA's information is a surrant, see of spinkticesion dates. Products conforms to expecifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include terming of all parameters.

POST OFFICE BOX 655903 • DALLAS, TEXAS 75265

Courtesy of Texas Instruments

Copyright @.1988, Texas Instruments Incorporated

SN54LS21, SN74LS21 DUAL 4-INPUT POSITIVE-AND GATES

SDLS139 - APRIL 1985 - REVISED MARCH 1988

recommended operating conditions

	· ·	SN54LS21				SN74LS21			
	· · · · · · · · · · · · · · · · · · ·	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	. 2	5.25	V	
VIH	High-level input voltage	2			2			.V	
VIL	Low-level input voltege	1		0.7		Andrean argentation Andrean argentation	0.8	٧	
юн	High-level output current	<u> </u>		- 0.4			-0.4	mA	
IOL	Low-level output current			4		Arana da Andreana	- 8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	METER TEST CONDITIONS T			SN54LS	121		SN74L	21		
				MIN	TYP‡	MAX .	MIN	TYP‡	MAX-	רואט
VIK	VCC - MIN,	II = - 18 mA		·.		- 1.5			- 1.5	v
VOH	VCC - MIN,	V _{IH} =2V,	OH = -0.4 mA	2.5	3.4		2.7	3.4		v
VOL	VCC = MIN,	VIL = MAX,	IOL=4mA		0.25	0.4	<u> </u>	0.25	0.4	1
- VL	VCC = MIN,	VIL = MAX,	IOL=8mA					0.35	0.5	in Va∦
lj -	VCC = MAX,	Vj = 7 V	-		·	0.1			0.1	miA
ήн	VCC - MAX,	VI = 2.7 V				20			20	μA
IL	V _{CC} = MAX,	V1=0.4 V	•			-0.4			- 0.4	mA
los§	VCC = MAX			- 20	an air Sallanna	- 100	20	·····	100	mA
Іссн	VCC - MAX,	Vj = 4.5 V			1.2	2.4		1.2	2.4	mA
ICCL	VCC = MAX,	VI=OV			2.2	4.4		2.2	4.4	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP M	AX UNIT
PLH	Алу	Y	RL = 2 kΩ, CL = 15 pF		15 ms
tphl	L			10	20 ns

NOTE 2: Load circuits and voltage wavaforms are shown in Section 1.

SN5430, SN54LS30, SN54S30 SN7430, SN74LS30, SN74S30 8-INPUT POSITIVE-NAND GATES SDL5099-DECEMBER 1983 - REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain a single 8-input NAND gate.

The SN5430, SN54LS30, and SN54S30 are characterized for operation over the full military range of -55 °C to 125 °C. The SN7430, SN74LS30, and SN74S30 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

INPUTS A THRU H	OUTPUT Y
All inputs H	L
One or more inputs L	H

logic dlagram

positive logic

$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H} \quad \text{or}$$
$$Y = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$$

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and JEC Publication 617-12.

-Fin-itumbers shown are for D, J. N, and W packages.

PRODUCTION DATA internation is current as of publication data. Products conforms to specifications per the terms of Terms instruments statistical warranty. Production processing does not necessarily lackeds testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN5430... J PACKAGE SN54LS30, SN54S30... J OR W PACKAGE SN7430... N PACKAGE SN74LS30, SN74S30... D OR N PACKAGE (TOP VIEW)

AC	iU	14	Vcc
BC		13	NC
СЦ	3		H
D,Q	4		G
E	5		NC
	5	ᅫ	NC
gnd 🖸			•

SN5430 . . . W PACKAGE (TOP VIEW)

NC DI	
A C 2	13] NC
в С з	12] Y
Vcc Q4	11 GND
СЦБ	10] H
DCG	9 ∏ G
Е []?	80 F

SN54LS30, SN54S30 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

Copyright @ 1988, Texas Instruments Incorporated

49

Courtesy of Texas Instruments

SN5430, SN54LS30, SN54S30 SN7430, SN74LS30, SN74S30 **8-INPUT PÓSITIVE-NAND GATES** SDLS099-DECEMBER 1983-REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage	
Operating free-air temperature range: SN5430	
SN7430	0°C to 70°C
Storage temperature range	-65 °C to 150 °C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

•			SN5430			SN7430			
		-MIN-	NOM	MAX	MIN	NOM	MAX	UNIT	
Vçc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2		•	2			V	
VIL	Low-level input voltage			0.8			0.8	V	
ЮН	High-level output current			-0.4			- 0.4	mA	
10L	Low-level output current		1.9	16			16	mA	
TA	Operating free-sir temperature	- 55		125	Ö		70	°C-	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST.CONDITIONS T			SN5430			SN7430			
		1601.001101	HUNS I	MIN	TYP#	MAX	MIN	түр‡	MAX	UNIT
VIK	V _{CC} = MIN,	lj = - 12 mA	·	•		-1.5			- 1.5	v
VOH	VCC = MIN,	VIL = 0.8 V,	10H = - 0.4 mA	2.4	3.4		2.4	3.4		V
VOL	Vċc = MIN,	V _{IH} = 2 V,	IOL = 16 mA		0.2	0.4		0.2	0.4	v
4	VCC - MAX,	Vj = 5.5 V		-		1		Linke Hillinne, en bei	1.	mA
UH	VCC = MAX,	V1 = 2.4 V				40		•	40	μA
'nι	VCC = MAX,	Vi = 0.4 V				- 1.6		Since Control Specific and	- 1.6	mA
loss	VCC = MAX			20		- 55	- 18		- 55	mA
ICCH	VCC = MAX,	V1 = 0'			. 1	2		1	2	mA
ICCL	VCC = MAX,	Vi = 4.5 V			3	6		3	8	mA

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommanded operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM	TO					
PARAMETER	(INPUT)	(OUTPUT)	test conditions	MIN	түр	MAX	UNIT
. ^t PLH	Any				13	22	- 75
ΨHL	1-first	Ť	RL=400 B, CL=15 pF	8	15	r18 '	

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SDLS100

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriersand Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input OR gates.

The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of -55°C to 125°C. The SN7432, SN74LS32 and SN74S32 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each gate)

	•		2
INP	บ้าร	OUTPUT	ĺ
A	8	*** Y	
H	X	Н	
X	н	н	
L	L	E.	

logic symbol[†]

1A [1]	>1	121
1B_(2)		(3) 1Y
2A-(4)		(6) 27
28 (5)		2¥
3A(9)		(8) 3Y
38 (10)		
4A (12)		(11) AY
4B (13)	. ·	. 41

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D. J. N. or W packages.

SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES DECEMBER 1983-REVISED MARCH 1988

SN5432, SN54LS32, SN54S32 ... J OR W PACKAGE SN7432 ... N PACKAGE SN74LS32, SN74S32 ... D OR N PACKAGE

(TOP VIEW)

1ACT	U14	Dvcc
1B 2] 4B
1Y C3] 4A
2A []4] 4Y
2B 5] 3B
2Y 6]-3A
	8] 3Y

SN54LS32, SN54S32 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram

positive logic

$$Y = A + B \text{ or } Y = \overline{A \cdot B}$$

PRODUCTION CATA documents contain information surrent as a publication data. Products contains to specifications pay the terms of Tence Instruments simulars warnany. Production processing data not necessarily include testing of all parameters.

TEXAS INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, "EXAS 75265

SN54LS32, SN74LS32 **QUADRUPLE 2-INPUT POSITIVE-OR GATES**

recommended operating conditions

		SN54LS3Z		SN74LS32			113117	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V V
VIH	High-level input voltage	2				eren der Servige	m esteren a	. V .
VIL	Low-level input voitege		•	0.7		·	0.8	V
OH	High-level output current			-0.4			- 0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	55	•	125	0		. 70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise-noted)-

PARAMETER		TEST CONDI			SN54LS	i32	·	32	UNIT	
PARAMETER			i i una t	MIN	TYP‡	MAX MIN		TYP‡	MAX	T UNIT
VIK	VCC - MIN.	I1 = - 18 mA				- 1.5		*******	-1.5	V
VOH	VCC = MIN,	VIH = 2 V,	10H = -0.4 mA	2.5	3.4		· 2.7	3.4		V
VOL	VCC - MIN.	VIL - MAX.	IOL = 4 mA	1	0.25	0.4		0.25	0.4	
*OL	VCC = MIN,	VIL - MAX.	IOL = 8 mA		•.			0,35	0,5	Y
1	VCC - MAX,	V1=7 V		·. 1		0.1		na maranti Maranta sa ang	0.1	mA
IIH	VCC = MAX,	VI = 2.7 V		1.1		20			20	μA
46	VCC - MAX,	V1=0.4 V				-0.4			-0.4	mA
1055	VCC = MAX		•	-20		- 100	-20		- 100	mA
ICCH	VCC - MAX,	See Note 2			3.1	6.2		3,1	6.2	mA
ICCL	VCC - MAX,	VI=OV			4.9	9.8		4.9	9.8	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

	PARAMETER	From (Input)	TD (OUTPUT)	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
	tPLH tPHL	A or B	· • •	$R_L = 2 k\Omega_s$	Ci.'* 15 pp		14	22	ns
4	PHL				1		14	22	ns .

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS SDLS111 - MARCH 1974 - REVISED MARCH 1988

'46A, '47A, 1S47 feature

'48, 'LS48 feature

'LS49 feature

Open-Collector Outputs
 Drive Indicators Directly

Lamp-Test Provision

- Leading/Trailing Zero
 Suppression
- Internal Pull-Ups Eliminate Need for External Resistors

Lamp-Test Provision

Leading/Trailing Zero

Suppression

- Open-Collector Outputs
- Blanking Input

SN5448A, SN5447A, SN54LS47, SN5448, SN54LS48...J PACKAGE SN7448A, SN7447A, SN7448...N PACKAGE SN74LS47, SN74LS48...D OR N PACKAGE (TOP VIEW)

вС	٦.	U_{16}		cc
c	2	15	∏f	
נד[3	14] g	
BI/RBO	4	13	a	
RBI	5	12	Пъ	
D]6	. 11] c	
A	7	10	D d	
GND []8	9	9	

SN54LS49 ... J OR W PACKAGE SN74LS49 ... D OR N PACKAGE (TCP VIEW)

	-			-
вС	fr.	U14	þ	Vcc
CC	12	13	þ	f
BI C	3	12	þ	g
DE	4	11	þ	8
AE	5	10	b	b
e C	6	. 9	b	C
GND C	7	. 8	D	d
	.	No. of Concession, Name	-	

SN54LS47, SN54LS48 ... FK PACKAGE

SN54LS49 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

PRODUCTION DATA intermediate in current as of publication data. Products conform to appendications per the terms of Texas instruments standard warrardy. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75

1

Copyright @ 1968, Texas Instruments Incorporated

EXAS

	• • •	QRIVER O	UTPUTS		TYPICAL	· •
TYPE	ACTIVE LEVEL	OUTPUT CONFIGURATION	SINK CURRENT	MAX VOLTAGE	POWER DISSIPATION	PACKAGES
SN5448A	low	open-collector	40 mA	30 V	320 mW	J, W
SN5447A	low	open-collector	40 mA	15 V	320 mW	J, W .
SN5448	high	2-kû pull-up	6.4 mA	5.5 V	265 mW	J,W
SN54LS47	low	open-collector	12 mA	15 V	35 mW	J, W
SN54LS48	high	2-kû pull-up	2 mA	5.5 V	125 mW	1 J, W
SN54LS49	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN7448A	· · low	open-collector	40 mA	30 V -	320 mW	J, N ·
SN7447A	low	open-collector	40 mA	15 V	320 mW	. J. N
SN7448	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J. N
SN74LS47	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS48	high	2-kΩ puil-up	6 mA '	5.5 V	125 mW	J, N
SN74LS49	high	open-collector	.8 mA	5.5 V	40 mW	J, N

All Circuit Types Feature Lamp Intensity Modulation Capability

logic symbols t

Pin numbers shown are for D, J, N, and W packages.

description

The '46A, '47A, and 'LS47 feature active-low outputs designed for driving common-anode LEDs or incandescent Indicators directly. The '48, 'LS48, and 'LS49 feature active-high outputs for driving lamp buffers or common-cathode LEDs. All of the circuits except 'LS49 have-full ripple-blanking input/output controls and a lamp test input. The 'LS49 circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

The '46A, '47A, '48, 'LS47, and 'LS48 circuits incorporate automatic leading and/or trailing edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types (including the '49 and 'LS49) contain an overriding blanking input (BI), which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL logic outputs.

The SN54246/SN74246 and /247 and the SN54LS247/SN74LS247 and LS248 compose the 6-and the 9-with tails and were designed to offer the designer a choice between two indicator fonts.

012		56		8	Pr			E	
0 1 2	3 4	5 6	7.	8	9 10	11	12 13	14	15
	UMERICA	L DESIGN	TIONS	AND	RESULTA	NT DIS	PLAYS		

SEGMENT

DECIMAL			INP	UTS			BI/RBO†	18 B.		0	UTPUT	rs		2010 2010 2010	NOTE	
FUNCTION	LT	RBI	D	C	8	A		a	. b	C	d		f	g	and the second secon	ļ
0	H	н	L	L	L	Ĺ	H S	ON "	ON	ON	ON	ON	ON	OFF		
1	н	X	L	L	L	н	н	OFF	ON	ON	OFF	OFF	OFF	OFF		ŀ
2	н	X	L	L	H	L	н	ON	ON	OFF	ON	ON	OFF	ON		ľ
3	н	X	L	L	н	н	, ^с Н – с	ON	ON	ON	ON	OFF	OFF	ON		
4	н	X	Ľ	Н	L	L	H	OFF	ON	ON	OFF	OFF	ON	ON	. •	Į
5	н	X	L	н	L.	H	н	ON	OFF	ON	ON	OFF	ON	ON		I
6	н	X	L	H	н	L	. н	OFF	OFF	ON	ON	ON	ON	ON		
7	н	×	L	Н	н	н	н	ON	ON	ON	OFF	OFF	OFF	OFF	4	l
. 8	н	. X	H	L	L	L.	н	ON	ON	ON	ON	ON	ON	ON	·	I
9 .	H I	X	, н	. L .	L	н	8	ON	ON	ON	OFF	OFF	ON	ON		I
10	н	X	н	L	н	£	н	OFF	OFF	OFF	ON	ON	OFF	ÖN		ł
11.	H :	X	. н	L	H	H.	н	OFF	ÓFF	ON	ON	OFF	OFF	ON]	1
12 .	н	X	. H	Н	L	. L	Н	OFF	ON	OFF	OFF	OFF	ON	ON		I
13	È н	X	н∙	H	L	Н	н	ON	OFF	OFF	ON	OFF	ON	ON		
14	н	X	н	H	н	L	H H H	OFF	OFF	OFF	ON	ON.	ON	ON	 • •	I
15	H	x	Н	H	н	H	н	OFF	OFF	OFF	OFF	OFF	OFF	OFF		l
· 81	X	X	X	X	X	X	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2	1
881	H	L	L	L	L	Ľ	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3	1
LT	L	×	X	x	X	X	н	ON	ON	ON	ON	ON	ON	ON	4	

'46A, '47A, 'LS47 FUNCTION TABLE (T1)

H = high lavel, L = low level, X = irrelevant

NOTES: 1. The blanking input (31) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.

2. When a low logic level is applied directly to the blanking input (GI), all segment outputs are off regardless of the level of any other lout.

3.-When ripple-blanking input (RBI) and inputs A, B; C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).

4. When the blanking input/ripple blanking output (BI/RSO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

BI/REO is wire AND logic serving as blanking input (BI) and/or ripple blanking output (REO).

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SÉGMENT DÉCODERS/DRIVERS** SDLS111 - MARCH 1974 - REVISED MARCH 1988

			•			FUN	'48, 'LS48 CTION TABL		3	_					
DECIMAL			INP	UTS			BI/RBOT			0	UTPU	ITS.			NOTE
FUNCTION	17	RBI	D	C	B	A	1	8	b	Ì C	đ		f	ø	
0	H	H	L	L	L	Ľ	H	Н	Ĥ	Н	Н	Н	H	۲ L	
1	н	X	L	Ł	L	H	н	L	• H	H	L	L	L	L	
2	H	X	L	L	H		H	. н.	Н.	L	н.	H		H	
3	H	X	L	L	H	H	н	н	H	H	H	L	L	H	
4 -	H	X	L	H	L	L		L	Н	н	L	L	Ĥ	Н	
5	н	X	L	н	L	H	н	н	L	H	H	L	H	• H (
6	H	х	L	H	H	L	н	L		н	н	н	H	·H	
. 7	H	X	L	. H	H	H	н	н	H	H	· L	L	L	L	
8.	H	X	H	L	L	L	Н	H	H	Н	H	H-	Н	H	1
9	H	X	н	Ł	L	H	·H	H	H	н	L	L	Н	H	
10	H	X	H	L	H	L	H	L	L	L	н	H	L	H	
11	н	X	H	L	Н	н	н	L	L	н	н	L	. L.	H	
12	Η.	X	Ή	H	L	L	H	L	H	L	L	L	Ĥ	H	
13	H	X	Н	H	L	н	н	H	L	L	H	L	н	H	
14	н	Х	H	. H .	H	1	H H	L	L.	L	H	Н	Н	H	
15	H	X	.H	H	Н	н	н	L	L	L	L	L	L	· L :	
Bł	X	X	Х	X.	X	X	L	L	L	L	L	Ł	L!!	L	2 `
881	н	L	L	L	L	L	L	L	· L. ·	L	L	L	L	L	3
LT	L	X	X	X	X	X	H H	H	.н	H.	н	н	`н́	н	4

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or hald at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (3381) must be open or high, if blanking of a decimal zero is not desired. 2. When a low logic level is applied directly to the blanking input (31), all segment outputs are low regardless of the level of any

other input.

3. When ripple-blanking input (ABI) and inputs A, B, C, and D are at a low level with the lamo-test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).

4. When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are high.

1 +181/830 is wire AND logic serving as blanking input (BI) and/or ripple-blanking output (RBD).

		_		FU	NCTIC	DN T	ABLE	(T3)					
DECIMAL OR		I	NPUT	rs.		Ι		0	UTPU	ITS			NOTE
FUNCTION	Q	С	8	A .	BĨ		b	c	d		f	g	
0	L .	L	L	L	H	H	Н	·H	H	H	Н	L	
1 1	L	L	L	H	H	L	H	: H -	L	Ł	Ļ	٤,	
2	L-	L	Н	L	H I	н	н	·L	- H	H	4	H	
3	LL	L	H	H	Н	Н	H	H	Н	L	L	Н	
F 4	L	H	L	L	Н	L	H	Н	L	L	Н	H	
5	L	H	L	H	H	H	L	' H -	H	L	Н	H	
6	L.	H	н	L	н	L	L	H	Н	H	Н	н	
7	1	<u> </u>	Н	H	Н	н	H	H	L	L	L	L	
8.	H	· L.	L	L	Н	H	Н	Н	Н	H	Н	H	•
9	H	L	L	Н	н	н	H	H	L	L	н	H	
10	H	L	Н	L	H	L	L	E.	н	н	L	H	
11	H.	L	Н	Н	Н	L	L.	H	Н	L	L	H	
. 12	H	H	L	L	H	L	Н	L	L	L	Н	H	
13	H	H	L	H	н	H	L	L	Н	Ĺ	н	н	
14	H	H	Н	L	H	L	L	L	H	H	н	H	
15	H	н	Н	н	H	L	· L	L	L	Ł	L	L	
BI	X	Х	Х	Х	L	Ļ	L	L	L	L	L	L	2

'LS49

H = high level, L = low level, X = isrelevant

NOTES: 1. The blanking input (Bi) must be open or held at a high logic level when output functions 0 through 15 are desired.

2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any. other input.

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS** SDLS111 - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

			. 7V
Supply voltage, VCC (see Note 1)			. 5.5 V
Input voltage			
	CHEAACA CNEAA7A	 	. 10 129 0
	014147017 01414717	 	to 150°C

Storage temperature range . . .

NOTE 1: Voltage values are with respect to network ground terminal. recommended operating conditions

		1 5	N5446	A	5	N5447/	4		N744§/		· · · · · ·	N7447		UNIT
		MIN	NOM	MAX	MIN-	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	متعبة
Supply voltage, VCC		4.5	5	5.5	4.5	5		4:75	5	5.25	4.75	5	. 5.25	." V
Off-state output voltage, VO(off)	a thru g			30			15			30			15	
On-state output current, IQ(on)	a thru g	1		. 40			40			40				mA
High-level output current, IOH	BI/RBO	-		200			-200			-200			200	1
Lowievel output current, IOL	BI/RBO			8		·	- 8	·		- 8			Contraction of the local division of the loc	mA
Operating free-sir temperature, T	•	-65		125	-55		125	0	1	70	0		70	• °C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDIT	rionst	MIN	TYP#	MAX	and the second se
VIH	High-level input voltage				2			V.
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		VCC=MIN, II=				-1.5	V
VOH .	Figh-level output voltage	BI/RBO	V _{CC} = MIN, V _I V _{IL} = 0.8 V, IOH		2.4	3.7		V
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, VIH			0.27	0.4	v
IO(off)	Off-state output current	a thru g	VCC=MAX, VII-			•	250	µА
V _{O(on)}	On-stata output voltaga	a thru g	VCC = MIN, VII- VIL = 0.8 V, 10(0.3	0,4	V
h	Input current at maximum input voltage	Any input except BI/RBO	VCC=MAX, VI	= 5.5 V	-	. ·	.1	-mA
- hH * <	High-level input current	Any input except BI/RBO	VCC=MAX, VI	= 2.4 V		an a state poor for the	40	ųА
IIL.	Low-level input current	Any input except BI/RBO	VCC=MAX, VI	= 0.4 V		•	-1.6	mA
		BT/RBO					-4	
los	Short-circuit output current	BI/RBO	VCC=MAX				-4	mA
8	Swale guard	·······	VCC=MAX,	SN54'	·	64	85	mA
1CO	Supply current		See Note 2	SN74'		64	103	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at $V_{CC} = 5 V$, $T_A = 25°C$. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching	characteristics,	$V_{\rm CC} = 5$	$V, T_A = 25^{\circ}$	'C
-----------	------------------	------------------	-----------------------	----

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	ns
- ton	Turn-on time from A input	$C_{L} = 15 pF$, $R_{L} = 120 \Omega$,			100.	
	Turn-off time from RBI input	See Note 3			100	ns
ton	Turn-on time from RBI input				100	L

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SDLS118-DECEMBER 1983-REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The '73, and 'H73, contain two independent J-K filp-flops with individual J-K, clock, and direct clear inputs. The '73, and 'H73, are positive pulse-triggered filp-flops. J-K input is loaded into the master while the clock is high and transferred to the slave on the high-to-low transition. For these devices the J and K inputs must be stable while the clock is high.

The 'LS73A contains two independent negativeedge-triggered flip-flops. The J and K inputs must be stable one setup time prior to the highto-low clock transition for predictable operation. When the clear is low, it overrides the clock and data inputs forcing the Q output low and the \overline{Q} output high.

The SN5473, SN54H73, and the SN54LS73A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7473, and the SN74LS73A are characterized for operation from 0 °C to 70 °C.

SN5473, SN54LS73A...J OR W PACKAGE SN7473...N PACKAGE SN74LS73A...D OR N PACKAGE (TOP VIEWD

		** / ·
1CLKC		D 1J
	2 13	
140	3 12	110
Vcc	4 11	
2CLK	5 10	[]2K ∶
	6 9	<u>]</u> 20
21	7 8	j2ā
•		

73 FUNCTION TABLE

INPUTS				OUT	UTS
CLR	CLK	1	K	0	Q
L	X	X	X	L	Н
н	л ;	L	L	00	ão
H.	л	н	L	н	L
н	n.	L	H	L	H ·
, н	n	н	H	TOG	GLE

'LS73A FUNCTION TABLE

	INPUT	OUT	UTS		
CLA	CLK	J	ĸ	0	Δ
L	x	X	X	L	н
н	4	L	L	00	ão
н	Ŧ	н	L	Н	L
н	· •	L	н	L	н
н	Ŧ	н	Н	TOG	GLE
н	н	Ϋ́.	X	-00	ão

FOR CHIP CARRIER INFORMATION, CONTACT THE FACTORY

PRODUCTION DATA information is current as of publication data, Products conform to specifications per the terms of Taxae Instruments tandard anamaty, Production processing does not necessarily include listing of all perspecter.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright @ 1988, Texas Instruments Incorporated

SN5473, SN54LS73A, SN7473, SN74LS73A DUAL J-K FLIP-FLOPS WITH CLEAR

SDLS118 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

	JISSESICITIES & Charles		•						
				SN547	N5473		SN7473		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
		and a standard distance of the standard state of the state	4,5	5	5,5	4.75	5	5.25	V
Vcc	Supply voltage		2			- 2			- V
VIH	High-lavel Input voltage		<u>_</u>		0.8			0.8	V
VIL	Low-level input voltage				-0.4			-0.4	mA
IOH-	High-level output current				16			16	mÀ
101	Low-level output current					20			
IOL		CLK high	20			the second s			ns
	Pulse distation	CLK low	47			47	•		1.19
L ve	CLR low		25	•		25		ويفتحي ومقاربته الانتيار	
	Input setup time bafore CLK1	a second a second s	0	-		9			ns.
tsu		۵ ۱۹۹۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۱۹۹۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵	- 0			0	.		- M -
4	Input field time data after CLK1		- 55		125	ő		70	°C
TA	Operating free-oir temperature					lasining.			

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN6473	SN7473	UNIT
PA	RAMETER	TEST CONDITIONS [†]	MIN TYPE MAX	MIN TYPE MAX	
VIK	i	$V_{CC} = MIN, \qquad l_J = -12 \text{ mA}$	- 1,5	- 1.5	V
VOH		V _{CC} = MIN, V _{IH} = 2V, V _{IL} = 0 I _{OH} = - 0.4 mA	2.T UT	2.4 3.4	. V.
VOL	•	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 1 I _{OL} = 16 mA	0.8 V. 0.2 0.4	0.2 0.4	. V .
1		Vcc = MAX, Vi = 5.5 V	1	1	mA
. h H	Jor K	• V _{CC} = MAX, V _I = 2.4 V	40	.40	μA
	Jor K		- 1.6	- 1.6	
III.	CLR	VCC - MAX, V1 = 0.4 V	- 3,2	-3.2	mA
	CLK		-3.2	-3.2	mA
losi		VCC=MAX	- 20 - 57	- 18 - 57	
ICC 9		VCC = MAX, See Note 2	10 20	10 20	mA

-- 1 For conditions shown as MIN or MAX; use the appropriate value specified under recommended operating conditions.

. I All typical values are at VCC = 5 V, TA = 25°C.

⁵ Not more than one output should be shorted at a time.

I Average per flip-flop.

ant material and the time of measurement, the clock input is grounded.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM	TO (TUTTUO)	TEST CONDITIONS	MIN	тур	MAX	UNIT
finax.				15	20		MHz
tPLH	CLR	ā,	RL = 400 Ω, CL = 15 pF	<u> </u>	16	25	ns
^t PHL	CLH	Q			25	40	- 18
¹ PLH		QorQ		L	16	25	ns
tPHL	CLK	Uaru		L	25	40	n s

""fmax = maximum clock frequency: tptH = propagation delay time; low-to-high-level output; tpHL = propagation delay time, high-love low-level output.

NOTE 3: Losd circuits and voltage waveforms are shown in Section 1.

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119-DECEMBER 1983-REVISED MARCH 1988

- Package Options Include Plastic "Small **Outline"** Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent D-type positive-edge-triggered filp-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the satup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggaring occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

The SN54' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74' family is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

	INPUTS			OUTP	UTS
PRE	CLR	CLK	D	a	ā
۰ L	H	x	X	·H	L
H	L	×	X	L	H
L	L	X	x	н	Ht.
н	H	t -	H.	H	L
H	н	T	L	L	H.
н	н	Ľ	x	Q ₀ .	00

The corput levels in this configuration are not guaranteed to meet the minimum levels in V_{OH} if the lows at preset and clear are near VIL maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

logic symbol[‡]

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

PRODUCTION DATA information is r 13 -Clarifi 123 : Of publics 13 per the terms of Terms in iina cuia orm to specially. Produ

SN5474 ... J PACKAGE SN54LS74A, SN54S74 ... J OR W PACKAGE SN7474 ... N PACKAGE SN74LS74A, SN74S74 ... D OR N PACKAGE **MOP VIEWI**

ICLAL	FU	IAD VCC
10		13]2亿1月
ICLKC		¹² D2D
1PREC	4 1	12CLK
10[-	0]2PRE
		9]]20
GND	7	8]]20

SN5474 ... W PACKAGE (TOP VIEW)

1CLKC	1 U 14	
100		010
1CLAC	3 12	DIQ
VccC		GND
2CLR		12 0
20		
2CLK	78	2PRE

SN54LS74A, SN64S74 ... FX PACKAGE (TOP VIEW)

NC - No internel connection

logic diagram (positive logic)

Copyright @ 1988, Texas Instruments Incorporated

INSTRUMENTS POST OFFICE BOX 655303 @ DALLAS, TEXAS 75265

FXAS

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

ommended operating conditions

	etined observing conditions		SN54LS	74A		SN74LS	74A .	UNIT
			MIN NON	Contraction of the local division of the loc	MIN	NOM	MAX	Citer
	an and a Random construction of the second		4.5	5 5.5	4.75	5	5.25	V
Vcc.	Supply voltage		2		2		1 - 1 - 14 Av	V
VIH	High-level input voltege		+	0.7			0.8	Y
VIL	Low-level input voltage			A COMPANY OF THE OWNER OF	<u> </u>		-0.4	. mA
OH	High-level output current			-0.4	ļ			mA
IOL	Low-level output current		1	4	ļ		25	MH
felock	Clock frequency		0	25	. 0		40	- MILI
anothe		CLK high	25		25			ns
L _{WF.}	Pulse duration	PRE or CLR low	25		25			
		High-level date	20		20			ins
¹ sui	Setup time before CLK1	Low-ievel data	20		20		بر میں محمد میں ا	<u> </u>
**	Hold time-data after CLK1		5		.5	a a factorial and the		ns
TA TA	Operating free air temperature		- 55	125	0		70	<u>°c</u>

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54LS74	A	SN74L87	\$A	UNIT
P	ARAMETER	Te	ST CONDITIONS	;,	MIN TYPE	MAX	MIN TYP\$	MAX	
VIK		Vcc = MIN,	. 11 = - 18 mA	•		-1.5		-1.5	V
VOH		V _{CC} = MIN, 1 _{OH} = - 0.4 mA	VIH = 2 V,	VIL = MAX,	2.5 3.4		2.7 3.4		
		VCC = MIN, IOL = 4.mA	VIL = MAX,	V _{IH} = 2 V,	0,25	0.4	0.25	0.4	
VOL		V _{CC} = MIN, I _{OL} = 8 mA	VIL = MAX,	V _{IH} = 2 V,		n Start	0.35	9.5	
	D or CLK					0.1		0.1	mA
4	CLR or PRE	VCC = MAX,	V1 = 7 V			0.2	en e	0.2	
	DorCLK				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	20		20	μА
4H -	CLR or PRE	VCC = MAX,	V1 = 2.7 V			40		40	μ
						-0.4		-0.4	
4L	D or CLK	VCC - MAX,	Vj = 0.4 V			-0.8		- 0.8	mA
	I CLIN OF PHE	VCC - MAX,	See Note 4		1	- 100	- 20	- 100	mA
loss lee (T	otal)	VCC = MAX,	See Note 2	•	4	8	4	8	mA

For conditions shown as MIN or MAX, use the appropriate value spacified under recommended operating conditions.

 \ddagger All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than ane output should be shorted at a time; and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with Vo = 2.28 V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
fmax				25 33	MHz
PLH		Q or Q	$R_L = 2 k\Omega$, $C_L = 15 pF$	13 25	
PHL	CLR, PRE or CLK	u or u		25 40	ns

Note 3: Losd circuits and voltage waveforms are shown in Section 1.

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES SDLS124 – DECEMBER 1972 – REVISED MARCH 1968

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

	TYPICAL AVERAGE	TYPICAL
TYPE	PROPAGATION	TOTAL POWER
	DELAY TIME	DISSIPATION
*86	14 ns	150 mW
'LS86A	10 ns	30:5 mW
'S86	7'n s	~250 mW*

description

These devices contain four independent 2-input Exclusive-OR gates. They perform the Boolean functions $Y = A \oplus B = \overline{AB} + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN5486, 54LS88A, and the SN54S86 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7486, SN74LS86A, and the SN74S86 are characterized for operation from 0 °C to 70 °C.

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

These are five equivalent Exclusive-OR symbols valid for an '86 or 'LS86A gate in positive logic; negation may be shown at any two ports.

LOGIC IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same logic lavel (i.e., A=B).

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is scrive (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

PRODUCTION DATA 'Information "is' carrient' ins' of 'publication' data. -Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include totins of it aparenetse.

- Copyright @ 1988, Texas Instruments Incorporated

------ 2k+1

Te output is active likely i

SN5486, SN54LS86A, SN54S86 . . . J OR W PACKAGE SN7486 . . . N PACKAGE SN74LS86A, SN74S86 . . . D OR N PACKAGE

	(TC	op vie	(W)	
1A	d.		山	Vcc
18		1	3	48
1Y		1	2	4A
2A	D.	arr 5 mm 1	巾	4γ
28	۵	1	山	3B
_2Y		5	De	3A
GND	d7	· 1	80	3Y
	•	Constantings into	.	

"SN54LS86A, SN54S86 ____FK.PACKAGE

NC - No Internel connection

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES SDLS124 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

																										~	
Supply voltage, VCC (see Note 1)					• .						•	•	.• 1	•	•		· 🖕	a	٠	٠	•	•	•	• •	•	1	V
Input voltage		•													_								•			5.5	iV
Iniput vonage		• •	•	٠	•	•	٠	•	•	•	•	•	•	÷.	-		-	-		-				5°C	to	125	°C
Operating free-air temperature rang	e: SN5486	ю. —	•	•	•	•	` •	٠	٠	٠	•	•	•	• • • •	•	•	٠	•	•	•	٠				~~		
	SN7486	Ι.											•	٠			• • •	٠	٠	٠	٠	•	. .	0	. u		v
Storage temperature range																									to	150	°C.

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5480	\$		SN7486	3	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH		-	-800		•	-800	μA
Low-level output current, IQ			16			16	mA
Operating free sir temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN548			SN748		UNIT	
	PARAMETER	TEST CONDITIONS [†]	MIN	TYP	MAX	MÎN	TYP	MAX		
VIH	High-level input voltage		2		1.	2			V	
VIL	Low-level input voltage		1.		0.8			0.8	1	
VIK	Input clamp voltage	Vcc = MIN, II = -8 mA	1		-1.5		. •	-1.5	V	
VOH	High-level output voltage	VCC = MIN, VIH = 2 V, VIL = 0.8 V, IOH = -800 #A	2.4	3.4		2.4	3.4		v	
VOL	Low-level output voltage	$V_{CC} = MIN, V_{1H} = 2 V$ $V_{1L} = 0.8 V, I_{0L} = 16 mA$		0,2	0.4		0.2	0.4	v	
1,	Input current at maximum input voltage	VCC = MAX, V1 = 5.5 V			1			1	mA	
t _{1H}	High-level input current	VCC = MAX, V1 = 2.4 V			40			40	μA	
11L	Low-level input current	VCC = MAX, VI = 0.4 V			-1.6			1.6	mA	
los	Short-circuit output current	VCC = MAX	20	<u>с</u>	55	-18		55	mA	
ICC	Supply current	VCC = MAX, See Note 2	1	30	43		30	50	mA	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

‡All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. §Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with the inputs grounded and the outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER 1	FROM (INPUT)	TEST CON	DITIONS	MIN	тұр	мах	UNIT
tPLH	· A or B	Oshen in sub low	C1 # 15 oF		15	23	05
¹ PHL	A018 .	Other input low	CL = 15 pF, RL = 400 Ω,		11	17	
^t PLH	A or B	Out and in such that	See Note 3		18	30 .	ins
PHL.		Other input high			13	22	

ItpLH = propagation datay time, low-to-high-level output

ton = propagation delay time, high-to-low-level output -

NOTE 3: Losd circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, "PERSONAL" INJURY," OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL" APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright @ 1999, Texas Instruments Incorporated

description/ordering information

These devices contain two independent J- \overline{K} positive-edge-triggered flip-flops. A low level at the preset (\overline{PRE}) or clear (\overline{CLR}) inputs sets or resets the outputs, regardless of the levels of the other inputs. When \overline{PRE} and \overline{CLR} are inactive (high), data at the J and \overline{K} inputs meeting the setup-time requirements are transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the J and \overline{K} inputs can be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by grounding \overline{K} and tying J high. They also can perform as D-type flip-flops if J and \overline{K} are tied together.

	0	RDERING INF	ORMATION	100 C. 100 C.
TA	PACK	AGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube of 25	SN74HC109N	SN74HC109N
		Tube of 40	SN74HC109D	a sta
-40°C to 85°C	SOIC - D	Reel of 2500	SN74HC109DR	HC109
		Reel of 250	SN74HC109DT	and the second second
	SOP - NS	Reel of 2000	SN74HC109NSR	HC109
	CDIP - J	Tube of 25	SNJ54HC109J	SNJ54HC109J
-55°C to 125°C	CFP - W	Tube of 150	SNJ54HC109W	SNJ54HC109W
	LCCC - FK	Tube of 55	SNJ54HC109FK	SNJ54HC109FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

			OUTF	PUTS		
PRE	CLR	CLK	J	ĸ	Q	ā
L	Н	X	x	Х	н	L
н	L	х	х	X	L	н
L	L	х	х	х	Ht.	нt
н	н	Ť	L	L	L	н
н	н	Ť	н	L	Tog	gle
н	н	Ť	L	н	Q0	āo
Н	н	Ť	н	н	н	L
н	н	L	х	х	00	ão .

[†]This configuration is nonstable; that is, it does not persist when either PRE or CLR returns to its inactive (high) level.

logic diagram, each flip-flop (positive logic)

AR HAR	
	AZOA MARCH 2003 REVISED OCTORER 2003

3

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

2	Supply voltage range, V _{CC}
	Input clamp current, I_{IK} (V _I < 0 or V _I > V _{CC}) ± 20 mA
	Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC}) ± 20 mA
	Continuous output current, Io (Vo = 0 to Vcc)
	Continuous current through Voc or GND ±/0 mA
	Package thermal impedance, 0JA (see Note 1): D package
	N package 67°C/W
	NS package 64°C/W
	Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: FK, J, or W packages 300°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or NS packages 260°C
	Storage temperature range, T _{stg}

T Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

		SN54HC109			SN74HC109			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC Supply voltage		2	5	6	2	5	6	٧
VIH High-level input voltage	V _{CC} = 2 V	1.5			1.5			
	V _{CC} = 4.5 V	3.15		1	3.15	4		v
	V _{CC} = 6 V	4.2	· .		4.2			
	V _{CC} = 2 V			0.3			0.5	v
VIL Low-level input voltage	V _{CC} = 4.5 V			0.9		1	1.35	
	V _{CC} = 6 V			1.2		2	1.8	
V ₁ Input voltage		0		Vcc	· · · 0		Vcc	۷
VO Output voltage		0		Vcc	0	1	Vcc	V
	V _{CC} = 2 V			1000		· .	1000	
Δt/Δy Input transition rise/fall time	V _{CC} = 4.5 V			500			500	ns
	V _{CC} = 6 V			400			400	
TA Operating free-air temperature		-55		125	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

CELETER CELETER CELETER CELETER CELETER CELETER CELETER CELETER CELETER SCL5470A - MARCH 2003 - REVISED OCTOBER 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		Vcc	T _A = 25℃			SN54HC109		SN74HC109		
PARAMETER				MIN	ТҮР	МАХ	MIN	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		1.9		
		IOH = -20 μA	4.5 V	4.4	4.499		4.4		4.4	MAX 0.1 0.1 0.33 0.33	
Vон	VI = VIH or VIL		6 V	5.9	5.999		5.9		5.9		v
		IOH = -4 mA	4.5 V	3.98	4.3		3.7		3.84		
	[IOH = -5.2 mA	6 V	5.48	5.8		5.2		5.34		
		l _{OL} = 20 μΑ	2 V		0.002	0.1		0.1		0.1	
			4.5 V		0.001	0.1	1. S.	0.1		0.1	
VOL	VI = VIH or VIL		6 V -		0.001	0.1		0.1		0.1	٧
		IOL = 4 mA	4.5 V	and a second	0.17	0.26	an a	0.4	2 TO 100	0.33	
		IOL = 5.2 mA	6 V		0.15	0.26	-	0.4		0.33	
Settin La Company	VI = VCC or 0		6 V		±0.1	±100		±1000		±1000	nA
lco	$V_{I} = V_{CC} \text{ or } 0,$	IO = 0	- 6 V			4		80		40	μA
Cj			2 V to 6 V		3	10		10		10	рF

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		Vcc	T _A = 25°C		SN54HC109		SN74HC109		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
				6		4.2	· .	5	
fclock Clock frequency		4.5 V		31		21		25	MHz
		6 V		36		25		29	
	1	2 V	100		150		125		
		4.5 V	20		30		25		
tw Pulse duration		6 V	17		25	• •	21		
tw Pulse duration		2 V	80		120		100		ns
	CLK high or low	4.5 V	16		24		20		
		6 V	14		20		17		
		2 V	100		150		125		
	Data (J, K)	4.5 V	20		30		25		
Detries Kennels derme Olikie		6 V	17		25		21		
t _{su} Setup time before CLK1		2 V	25		40		30		ns
	PRE or CLR inactive	4.5 V	5		8		6		
		6 V	4		7		5		
		2 V	0		0		0		
th Hold time	Data after CLK †	4.5 V	0		0	w.,	0		ns
n na standar († 1997) 1997 - Carl Maria, se standar († 1997) 1997 - Carl Maria, se standar († 1997)		6 V	0		0		. 0		-

.

TEXAS INSTRUMENTS POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

INCOMPANY AND A MARCH 2003 - REVISED OCTOBER 2003

5

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

		FROM		N.	T,	д = 25°C	5	SN54H	IC109	SN74H	C109	115177
PA	RAMETER	(INPUT)		MAX	MIN	MAX	MIN	MAX	UNIT			
				2 V	6	10		4.2		5		
	fmax	*		4.5 V	31	50		21		25		ns
				6 V	36	60		25		29		
				2 V		60	230		345		290	
		PRE or CLR	QorQ	4.5 V		15	46		69	·	58	
				6 V		12	39		59		49	
	lpd			2 V		50	175	1 A	250		220	ns
		CLK	Q or Q	4.5 V		15	35		50	12	44	¥.,
	nazio (Contexe en contexe en contexe en contexe en cont	and a second second second	w	6 V		12	30	1.725.721	42	~	37	
			2	2 V.		28	75		110		95	
	ų		Q to Q	4.5 V		8	15		22		19	ns
				6 V		6	13	-	19		16	

operating characteristics, $T_A = 25$ °C

I	PARAMETER	TEST CONDITIONS	TYP	UNIT
	Cpd Power dissipation capacitance per buffer/driver	No load	35	pF

