
IEEE Std 1076™-2002
(Revision of IEEE Std 1076, 2000 Edition)

IE
E

E
 S

ta
n

d
ar

d
s 1076TM

IEEE Standard VHDL
Language Reference Manual

Published by
The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

17 May 2002

IEEE Computer Society

Sponsored by the
Design Automation Standards Committee

IE
E

E
 S

ta
n

d
ar

d
s

Print: SH94983
PDF: SS94983

Recognized as an

American National Standard (ANSI)

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2002 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 17 May 2002. Printed in the United States of America.

Print:

 ISBN 0-7381-3247-0 SH94983

PDF:

 ISBN 0-7381-3248-9 SS94983

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1076

™

-2002

(Revision of
IEEE Std 1076, 2000 Edition)

IEEE Standard VHDL
Language Reference Manual

Sponsor

Design Automation Standards Committee

of the

IEEE Computer Society

Approved 26 July 2002

American National Standards Institute

Approved 21 March 2002

IEEE-SA Standards Board

Abstract:

 VHSIC Hardware Description Language (VHDL) is defined. VHDL is a formal notation
intended for use in all phases of the creation of electronic systems. Because it is both machine read-
able and human readable, it supports the development, verification, synthesis, and testing of hard-
ware designs; the communication of hardware design data; and the maintenance, modification, and
procurement of hardware. Its primary audiences are the implementors of tools supporting the lan-
guage and the advanced users of the language.

Keywords:

 computer languages, electronic systems, hardware, hardware design, VHDL

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus develop-
ment process, approved by the American National Standards Institute, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve with-
out compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus devel-
opment process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained
in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other dam-
age, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting
from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that
the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “

AS IS

.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market,
or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revi-
sion or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude
that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check
to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a com-
petent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its soci-
eties and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive,
Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require use of subject mat-
ter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents
for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or
scope of those patents that are brought to its attention.

Copyright © 2002 IEEE. All rights reserved.

iii

Introduction

(This introduction is not part of IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual.)

The VHSIC Hardware Description Language (VHDL) is a formal notation intended for use in all phases of
the creation of electronic systems. Because it is both machine readable and human readable, it supports the
development, verification, synthesis, and testing of hardware designs; the communication of hardware
design data; and the maintenance, modification, and procurement of hardware.

This document specifies IEEE Std 1076-2002, which is a revision of IEEE Std 1076, 2000 Edition. This
revision incorporates the addition of protected types and enhancements to the specification of shared vari-
ables which were completed in IEEE Std 1076, 2000 Edition. As VHDL is now in wide use throughout the
world, the 1076 Working Group endeavored to maintain a high level of stability with this revision. Although
this revision does not provide significant changes to VHDL, it does enhance and clarify the language specifi-
cation in several areas. Most notable is the improvement in the specification of default binding rules, buffer
ports, scope and visibility, allowance of multi-byte characters in comments and other areas which will
increase the portability of descriptions.

The maintenance of the VHDL language standard is an ongoing process. The chair of the VHDL Analysis
and Standardization Group (VASG), otherwise known as the 1076 Working Group, extends his gratitude to
all who have participated in this revision and encourages the participation of all interested parties in future
language revisions. If interested in participating, please contact the VASG at stds-vasg@ieee.org or visit the
following website: http://www.eda.org/pub/vasg.

Participants

The following individuals participated in the development of this standard:

Stephen A. Bailey,

Chair

The following members of the balloting committee voted on this standard. Balloters may have voted for
approval, disapproval, or abstention.

Peter J. Ashenden
J. Bhasker
Dennis Brophy
Patrick K. Bryant
Ernst Christen

Wolfgang Ecker
Masamichi Kawarabayashi
Robert H. Klenke
Satoshi Kojima
Jim Lewis
Paul J. Menchini

Jean P. Mermet
Gregory D. Peterson
Lance G. Thompson
Alain Vachoux
John Willis

Peter J. Ashenden
Stephen A. Bailey
James A. Barby
Victor Berman
J. Bhasker
Patrick K. Bryant
Ernst Christen
Timothy R. Davis
Douglas D. Dunlop
Robert A. Flatt
Andrew Guyler
William A. Hanna
Donald F. Hanson
Randolph E. Harr

M. M. Kamal Hashmi
Jim Heaton
Masaharu Imai
Jake Karrfalt
Masamichi Kawarabayashi
Robert H. Klenke
Satoshi Kojima
Evan M. Lavelle
Gunther Lehmann
Dale E. Martin
Timothy McBrayer
Paul J. Menchini
Jean P. Mermet

Egbert Molenkamp
John T. Montague
Jaun Manuel Moreno
Robert J. Myers
Gregory D. Peterson
Quentin G. Schmierer
J. Dennis Soderberg
Scott Thibault
Lance G. Thompson
Eugenio Villar
Ronald Waxman
Ron Werner
John Willis
Mark Zwolinski

iv

Copyright © 2002 IEEE. All rights reserved.

When the IEEE-SA Standards Board approved this standard on 21 March 2002, it had the following
membership:

James T. Carlo,

 Chair

James H. Gurney,

Vice Chair

Judith Gorman,

Secretary

*Member Emeritus

Also included is the following nonvoting IEEE-SA Standards Board liaison:

Alan Cookson,

NIST Representative

Satish K. Aggarwal,

NRC Representative

Andrew D. Ickowicz

IEEE Standards Project Editor

Sid Bennett
H. Stephen Berger
Clyde R. Camp
Richard DeBlasio
Harold E. Epstein
Julian Forster*
Howard M. Frazier

Toshio Fukuda
Arnold M. Greenspan
Raymond Hapeman
Donald M. Heirman
Richard H. Hulett
Lowell G. Johnson
Joseph L. Koepfinger*
Peter H. Lips

Nader Mehravari
Daleep C. Mohla
Willaim J. Moylan
Malcolm V. Thaden
Geoffrey O. Thompson
Howard L. Wolfman
Don Wright

Copyright © 2002 IEEE. All rights reserved.

v

Contents

0. Overview of this standard .. 1

0.1 Intent and scope of this standard.. 1
0.2 Structure and terminology of this standard.. 1

1. Design entities and configurations... 5

1.1 Entity declarations ... 5
1.2 Architecture bodies .. 9
1.3 Configuration declarations... 12

2. Subprograms and packages.. 19

2.1 Subprogram declarations ... 19
2.2 Subprogram bodies .. 22
2.3 Subprogram overloading.. 25
2.4 Resolution functions .. 27
2.5 Package declarations.. 28
2.6 Package bodies... 29
2.7 Conformance rules ... 31

3. Types.. 33

3.1 Scalar types .. 34
3.2 Composite types... 40
3.3 Access types... 45
3.4 File types.. 48
3.5 Protected types ... 50

4. Declarations ... 55

4.1 Type declarations ... 55
4.2 Subtype declarations .. 56
4.3 Objects ... 57
4.4 Attribute declarations... 71
4.5 Component declarations... 72
4.6 Group template declarations .. 72
4.7 Group declarations ... 73

5. Specifications... 75

5.1 Attribute specification.. 75
5.2 Configuration specification.. 77
5.3 Disconnection specification ... 85

6. Names .. 89

6.1 Names .. 89
6.2 Simple names ... 90
6.3 Selected names... 91
6.4 Indexed names ... 93

vi

Copyright © 2002 IEEE. All rights reserved.

6.5 Slice names .. 94
6.6 Attribute names.. 94

7. Expressions .. 97

7.1 Expressions .. 97
7.2 Operators.. 98
7.3 Operands .. 106
7.4 Static expressions... 113
7.5 Universal expressions .. 115

8. Sequential statements... 117

8.1 Wait statement ... 117
8.2 Assertion statement.. 119
8.3 Report statement .. 120
8.4 Signal assignment statement .. 120
8.5 Variable assignment statement .. 125
8.6 Procedure call statement .. 126
8.7 If statement... 127
8.8 Case statement ... 127
8.9 Loop statement... 128
8.10 Next statement .. 129
8.11 Exit statement.. 130
8.12 Return statement ... 130
8.13 Null statement ... 130

9. Concurrent statements.. 133

9.1 Block statement.. 133
9.2 Process statement ... 134
9.3 Concurrent procedure call statements.. 135
9.4 Concurrent assertion statements .. 136
9.5 Concurrent signal assignment statements .. 137
9.6 Component instantiation statements .. 142
9.7 Generate statements ... 148

10. Scope and visibility.. 149

10.1 Declarative region... 149
10.2 Scope of declarations .. 150
10.3 Visibility ... 151
10.4 Use clauses.. 154
10.5 The context of overload resolution ... 155

11. Design units and their analysis .. 157

11.1 Design units .. 157
11.2 Design libraries ... 157
11.3 Context clauses ... 158
11.4 Order of analysis ... 159

Copyright © 2002 IEEE. All rights reserved.

vii

12. Elaboration and execution.. 161

12.1 Elaboration of a design hierarchy ... 161

12.2 Elaboration of a block header ... 163

12.3 Elaboration of a declarative part ... 164

12.4 Elaboration of a statement part ... 168

12.5 Dynamic elaboration... 171

12.6 Execution of a model .. 171

13. Lexical elements .. 179

13.1 Character set.. 179

13.2 Lexical elements, separators, and delimiters .. 182

13.3 Identifiers .. 183

13.4 Abstract literals ... 183

13.5 Character literals ... 185

13.6 String literals... 185

13.7 Bit string literals.. 186

13.8 Comments ... 187

13.9 Reserved words... 188

13.10 Allowable replacements of characters .. 189

14. Predefined language environment.. 191

14.1 Predefined attributes ... 191

14.2 Package STANDARD .. 205

14.3 Package TEXTIO.. 212

Annex A (informative) Syntax summary ... 217

Annex B (informative) Glossary .. 237

Annex C (informative) Potentially nonportable constructs .. 257

Annex D (informative) Changes from IEEE Std 1076, 2000 Edition .. 259

Annex E (informative) Features under consideration for removal ... 261

Annex F (informative) Bibliography .. 263

Index .. 265

nguage

ly. Its
r of the
 learn the
 use the

e, it
cations
publica-
revised.

nguage.

x of the

 follow.

n-

ll

com-

es.
 if the
IEEE Standard VHDL
Language Reference Manual

0. Overview of this standard

This clause describes the purpose and organization of this standard, the IEEE Standard VHDL La
Reference Manual.

0.1 Intent and scope of this standard

The intent of this standard is to define VHSIC Hardware Description Language (VHDL) accurate
primary audiences are the implementor of tools supporting the language and the advanced use
language. Other users are encouraged to use commercially available books, tutorials, and classes to
language in some detail prior to reading this standard. These resources generally focus on how to
language, rather than how a VHDL-compliant tool is required to behave.

At the time of its publication, this document was the authoritative definition of VHDL. From time to tim
may become necessary to correct and/or clarify portions of this standard. Such corrections and clarifi
may be published in separate documents. Such documents modify this standard at the time of their
tion and remain in effect until superseded by subsequent documents or until the standard is officially

0.2 Structure and terminology of this standard

This standard is organized into clauses, each of which focuses on some particular area of the la
Within each clause, individual constructs or concepts are discussed in each subclause.

Each subclause describing a specific construct begins with an introductory paragraph. Next, the synta
construct is described using one or more grammatical productions.

A set of paragraphs describing the meaning and restrictions of the construct in narrative form then
Unlike many other IEEE standards, which use the verb shall to indicate mandatory requirements of the sta
dard and may to indicate optional features, the verb is is used uniformly throughout this document. In a
cases, is is to be interpreted as having mandatory weight.

Additionally, the word must is used to indicate mandatory weight. This word is preferred over the more
mon shall, as must denotes a different meaning to different readers of this standard.

a) To the developer of tools that process VHDL, must denotes a requirement that the standard impos
The resulting implementation is required to enforce the requirement and to issue an error
requirement is not met by some VHDL source text.
Copyright © 2002 IEEE. All rights reserved. 1

IEEE
Std 1076-2002 IEEE STANDARD VHDL

se-
nstraint

nse-
e model

 of the

yntactic

, spaces
when

”),

ight-
le: any

occurs

t.” In
ee item

llowing

uction
re right-

s may
ursive
b) To the VHDL model developer, must denotes that the characteristics of VHDL are natural con
quences of the language definition. The model developer is required to adhere to the co
implied by the characteristic.

c) To the VHDL model user, must denotes that the characteristics of the models are natural co
quences of the language definition. The model user can depend on the characteristics of th
implied by its VHDL source text.

Finally, each clause may end with examples, notes, and references to other pertinent clauses.

0.2.1 Syntactic description

The form of a VHDL description is described by means of context-free syntax using a simple variant
backus naur form; in particular:

a) Lowercase words in roman font, some containing embedded underlines, are used to denote s
categories, for example:

formal_port_list

Whenever the name of a syntactic category is used, apart from the syntax rules themselves
take the place of underlines (thus, “formal port list” would appear in the narrative description
referring to the above syntactic category).

b) Boldface words are used to denote reserved words, for example:

array

Reserved words must be used only in those places indicated by the syntax.

c) A production consists of a left-hand side, the symbol “::=” (which is read as “can be replaced by
and a right-hand side. The left-hand side of a production is always a syntactic category; the r
hand side is a replacement rule. The meaning of a production is a textual-replacement ru
occurrence of the left-hand side may be replaced by an instance of the right-hand side.

d) A vertical bar (|) separates alternative items on the right-hand side of a production unless it
immediately after an opening brace, in which case it stands for itself, as follows:

letter_or_digit ::= letter | digit

choices ::= choice { | choice }

In the first instance, an occurrence of “letter_or_digit” can be replaced by either “letter” or “digi
the second case, “choices” can be replaced by a list of “choice,” separated by vertical bars [s
f) for the meaning of braces].

e) Square brackets [] enclose optional items on the right-hand side of a production; thus, the fo
two productions are equivalent:

return_statement ::= return [expression] ;

return_statement ::= return ; | return expression ;

Note, however, that the initial and terminal square brackets in the right-hand side of the prod
for signatures (see 2.3.2) are part of the syntax of signatures and do not indicate that the enti
hand side is optional.

f) Braces { } enclose a repeated item or items on the right-hand side of a production. The item
appear zero or more times; the repetitions occur from left to right as with an equivalent left-rec
rule. Thus, the following two productions are equivalent:

term ::= factor { multiplying_operator factor }

term ::= factor | term multiplying_operator factor
2 Copyright © 2002 IEEE. All rights reserved.

IEEE

LANGUAGE REFERENCE MANUAL Std 1076-2002

tegory
orma-

.

eclared

ediately
m and
.2).

re not
sible in

 detect

xes and
dard, but

 standard;
ms of the
 the rules
 of this

references
eferences
g) If the name of any syntactic category starts with an italicized part, it is equivalent to the ca
name without the italicized part. The italicized part is intended to convey some semantic inf
tion. For example, type_name and subtype_name are both syntactically equivalent to name alone

h) The term simple_name is used for any occurrence of an identifier that already denotes some d
entity.

0.2.2 Semantic description

The meaning and restrictions of a particular construct are described with a set of narrative rules imm
following the syntactic productions. In these rules, an italicized term indicates the definition of that ter
identifiers appearing entirely in uppercase letters refer to definitions in package STANDARD (see 14

The following terms are used in these semantic descriptions with the following meanings:

erroneous: The condition described represents an ill-formed description; however, implementations a
required to detect and report this condition. Conditions are deemed erroneous only when it is impos
general to detect the condition during the processing of the language.

error: The condition described represents an ill-formed description; implementations are required to
the condition and report an error to the user of the tool.

illegal: A synonym for “error.”

legal: The condition described represents a well-formed description.

0.2.3 Front matter, examples, notes, references, and annexes

Prior to this subclause are several pieces of introductory material; following Clause 14 are some anne
an index. The front matter, annexes, and index serve to orient and otherwise aid the user of this stan
are not part of the definition of VHDL.

Some clauses of this standard contain examples, notes, and cross-references to other clauses of the
these parts always appear at the end of a clause. Examples are meant to illustrate the possible for
construct described. Illegal examples are italicized. Notes are meant to emphasize consequences of
described in the clause or elsewhere. In order to distinguish notes from the other narrative portions
standard, notes are set as enumerated paragraphs in a font smaller than the rest of the text. Cross-
are meant to guide the user to other relevant clauses of the standard. Examples, notes, and cross-r
are not part of the definition of the language.
Copyright © 2002 IEEE. All rights reserved. 3

IEEE
Std 1076-2002 IEEE STANDARD VHDL

4 Copyright © 2002 IEEE. All rights reserved.

IEEE

LANGUAGE REFERENCE MANUAL Std 1076-2002

esign
present
ction in

plete

e

e hierar-

a design
f that
nents to
entities

ntity in

ntity is

ich it is
 entity

hus, an

n entity
ists of

 entity

ent.

1. Design entities and configurations

The design entity is the primary hardware abstraction in VHDL. It represents a portion of a hardware d
that has well-defined inputs and outputs and performs a well-defined function. A design entity may re
an entire system, a subsystem, a board, a chip, a macro-cell, a logic gate, or any level of abstra
between. A configuration can be used to describe how design entities are put together to form a com
design.

A design entity may be described in terms of a hierarchy of blocks, each of which represents a portion of th
whole design. The top-level block in such a hierarchy is the design entity itself; such a block is an external
block that resides in a library and may be used as a component of other designs. Nested blocks in th
chy are internal blocks, defined by block statements (see 9.1).

A design entity may also be described in terms of interconnected components. Each component of
entity may be bound to a lower-level design entity in order to define the structure or behavior o
component. Successive decomposition of a design entity into components, and binding those compo
other design entities that may be decomposed in like manner, results in a hierarchy of design
representing a complete design. Such a collection of design entities is called a design hierarchy. The
bindings necessary to identify a design hierarchy can be specified in a configuration of the top-level e
the hierarchy.

This clause describes the way in which design entities and configurations are defined. A design e
defined by an entity declaration together with a corresponding architecture body. A configuration is defined
by a configuration declaration.

1.1 Entity declarations

An entity declaration defines the interface between a given design entity and the environment in wh
used. It may also specify declarations and statements that are part of the design entity. A given
declaration may be shared by many design entities, each of which has a different architecture. T
entity declaration can potentially represent a class of design entities, each with the same interface.

entity_declaration ::=
entity identifier is

entity_header
entity_declarative_part

 [begin
entity_statement_part]

end [entity] [entity_simple_name] ;

The entity header and entity declarative part consist of declarative items that pertain to each desig
whose interface is defined by the entity declaration. The entity statement part, if present, cons
concurrent statements that are present in each such design entity.

If a simple name appears at the end of an entity declaration, it must repeat the identifier of the
declaration.

1.1.1 Entity header

The entity header declares objects used for communication between a design entity and its environm

entity_header ::=
[formal_generic_clause]
[formal_port_clause]
Copyright © 2002 IEEE. All rights reserved. 5

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ined by
 entity.

 become

t. The
 block

1. Each

n list. If
iated or

pres-
 default
nts of a

ply be
ponents

erature,
generic_clause ::=
generic (generic_list) ;

port_clause ::=
port (port_list) ;

The generic list in the formal generic clause defines generic constants whose values may be determ
the environment. The port list in the formal port clause defines the input and output ports of the design

In certain circumstances, the names of generic constants and ports declared in the entity header
visible outside of the design entity (see 10.2 and 10.3).

Examples:

— An entity declaration with port declarations only:

entity Full_Adder is
port (X, Y, Cin: in Bit; Cout, Sum: out Bit) ;

end Full_Adder ;

— An entity declaration with generic declarations also:

entity AndGate is
generic
 (N: Natural := 2);
port
 (Inputs: in Bit_Vector (1 to N);
 Result: out Bit) ;

end entity AndGate ;

— An entity declaration with neither:

entity TestBench is
end TestBench ;

1.1.1.1 Generics

Generics provide a channel for static information to be communicated to a block from its environmen
following applies to both external blocks defined by design entities and to internal blocks defined by
statements.

generic_list ::= generic_interface_list

The generics of a block are defined by a generic interface list; interface lists are described in 4.3.2.
interface element in such a generic interface list declares a formal generic.

The value of a generic constant may be specified by the corresponding actual in a generic associatio
no such actual is specified for a given formal generic (either because the formal generic is unassoc
because the actual is open), and if a default expression is specified for that generic, the value of this ex
sion is the value of the generic. It is an error if no actual is specified for a given formal generic and no
expression is present in the corresponding interface element. It is an error if some of the subeleme
composite formal generic are connected and others are either unconnected or unassociated.

NOTE—Generics may be used to control structural, dataflow, or behavioral characteristics of a block, or may sim
used as documentation. In particular, generics may be used to specify the size of ports; the number of subcom
within a block; the timing characteristics of a block; or even the physical characteristics of a design such as temp
capacitance, or location.
6 Copyright © 2002 IEEE. All rights reserved.

IEEE

LANGUAGE REFERENCE MANUAL Std 1076-2002

lowing
ements,
.

terface

ment in
rder to

r block.
g to the
.1). The

ith an
) of the

 to be

ecla-

ments of

 entities
1.1.1.2 Ports

Ports provide channels for dynamic communication between a block and its environment. The fol
applies to both external blocks defined by design entities and to internal blocks defined by block stat
including those equivalent to component instantiation statements and generate statements (see 9.7)

port_list ::= port_interface_list

The ports of a block are defined by a port interface list; interface lists are described in 4.3.2.1. Each in
element in the port interface list declares a formal port.

To communicate with other blocks, the ports of a block can be associated with signals in the environ
which the block is used. Moreover, the ports of a block may be associated with an expression in o
provide these ports with constant driving values; such ports must be of mode in. A port is itself a signal (see
4.3.1.2); thus, a formal port of a block may be associated as an actual with a formal port of an inne
The port, signal, or expression associated with a given formal port is called the actual correspondin
formal port (see 4.3.2.2). The actual, if a port or signal, must be denoted by a static name (see 6
actual, if an expression, must be a globally static expression (see 7.4).

After a given description is completely elaborated (see Clause 12), if a formal port is associated w
actual that is itself a port, then the following restrictions apply depending upon the mode (see 4.3.2
formal port:

a) For a formal port of mode in, the associated actual must be a port of mode in, inout, or buffer.
b) For a formal port of mode out, the associated actual must be a port of mode out, inout, or buffer.
c) For a formal port of mode inout, the associated actual must be a port of mode inout, or buffer.
d) For a formal port of mode buffer, the associated actual must be a port of mode out, inout, or buffer.
e) For a formal port of mode linkage, the associated actual may be a port of any mode.

If a formal port is associated with an actual port, signal, or expression, then the formal port is said
connected. If a formal port is instead associated with the reserved word open, then the formal is said to be
unconnected. It is an error if a port of mode in is unconnected or unassociated (see 4.3.2.2) unless its d
ration includes a default expression (see 4.3.2). It is an error if a port of any mode other than in is uncon-
nected or unassociated and its type is an unconstrained array type. It is an error if some of the subele
a composite formal port are connected and others are either unconnected or unassociated.

NOTE—Ports of mode linkage may be removed from a future version of the language (see Annex F).

1.1.2 Entity declarative part

The entity declarative part of a given entity declaration declares items that are common to all design
whose interfaces are defined by the given entity declaration.

entity_declarative_part ::=
{ entity_declarative_item }
Copyright © 2002 IEEE. All rights reserved. 7

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 visible
onding

ion are
lock, is

REIGN
entity_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

Names declared by declarative items in the entity declarative part of a given entity declaration are
within the bodies of corresponding design entities, as well as within certain portions of a corresp
configuration declaration.

The various kinds of declaration are described in Clause 4, and the various kinds of specificat
described in Clause 5. The use clause, which makes externally defined names visible within the b
described in Clause 10.

Example:

— An entity declaration with entity declarative items:

entity ROM is
port (Addr: in Word;

Data: out Word;
Sel: in Bit);

type Instruction is array (1 to 5) of Natural;
type Program is array (Natural range <>) of Instruction;
use Work.OpCodes.all, Work.RegisterNames.all;
constant ROM_Code: Program :=
 (

(STM, R14, R12, 12, R13) ,
(LD, R7, 32, 0, R1) ,
(BAL, R14, 0, 0, R7) ,

•
• -- etc.
•

) ;
end ROM;

NOTE—The entity declarative part of a design entity whose corresponding architecture is decorated with the 'FO
attribute is subject to special elaboration rules. See 12.3.
8 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

with this

all state-
sive (see
 entity.

REIGN

uts and
pecifica-

itecture
ibility of
declar-
1.1.3 Entity statement part

The entity statement part contains concurrent statements that are common to each design entity
interface.

entity_statement_part ::=
{ entity_statement }

entity_statement ::=
 concurrent_assertion_statement
| passive_concurrent_procedure_call
| passive_process_statement

It is an error if any statements other than concurrent assertion statements, concurrent procedure c
ments, or process statements appear in the entity statement part. All entity statements must be pas
9.2). Such statements may be used to monitor the operating conditions or characteristics of a design

Example:

— An entity declaration with statements:

entity Latch is
port (Din: in Word;

Dout: out Word;
Load: in Bit;
Clk: in Bit);

constant Setup: Time := 12 ns;
constant PulseWidth: Time := 50 ns;
use Work.TimingMonitors.all;

begin
assert Clk='1' or Clk'Delayed'Stable (PulseWidth);
CheckTiming (Setup, Din, Load, Clk);

end ;

NOTE—The entity statement part of a design entity whose corresponding architecture is decorated with the 'FO
attribute is subject to special elaboration rules. See 12.4.

1.2 Architecture bodies

An architecture body defines the body of a design entity. It specifies the relationships between the inp
outputs of a design entity and may be expressed in terms of structure, dataflow, or behavior. Such s
tions may be partial or complete.

architecture_body ::=
architecture identifier of entity_name is

architecture_declarative_part
begin

architecture_statement_part
end [architecture] [architecture_simple_name] ;

The identifier defines the simple name of the architecture body; this simple name distinguishes arch
bodies associated with the same entity declaration. For the purpose of interpreting the scope and vis
the identifier (see 10.2 and 10.3), the declaration of the identifier is considered to occur after the final
ative item of the entity declarative part of the corresponding entity declaration.
Copyright © 2002 IEEE. All rights reserved. 9

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 entity.
e in the

itecture

lares a
ifferent

le name,

e block

ion are
lock, is

oration

peration
The entity name identifies the name of the entity declaration that defines the interface of this design
For a given design entity, both the entity declaration and the associated architecture body must resid
same library.

If a simple name appears at the end of an architecture body, it must repeat the identifier of the arch
body.

More than one architecture body may exist corresponding to a given entity declaration. Each dec
different body with the same interface; thus, each together with the entity declaration represents a d
design entity with the same interface.

NOTE—Two architecture bodies that are associated with different entity declarations may have the same simp
even if both architecture bodies (and the corresponding entity declarations) reside in the same library.

1.2.1 Architecture declarative part

The architecture declarative part contains declarations of items that are available for use within th
defined by the design entity.

architecture_declarative_part ::=
{ block_declarative_item }

block_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| configuration_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

The various kinds of declaration are described in Clause 4, and the various kinds of specificat
described in Clause 5. The use clause, which makes externally defined names visible within the b
described in Clause 10.

NOTE—The declarative part of an architecture decorated with the 'FOREIGN attribute is subject to special elab
rules. (See 12.3).

1.2.2 Architecture statement part

The architecture statement part contains statements that describe the internal organization and/or o
of the block defined by the design entity.

architecture_statement_part ::=
{ concurrent_statement }
10 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

synchro-
se 9.

oration
All of the statements in the architecture statement part are concurrent statements, which execute a
nously with respect to one another. The various kinds of concurrent statements are described in Clau

Examples:

— A body of entity Full_Adder:

architecture DataFlow of Full_Adder is
signal A,B: Bit;

begin
A <= X xor Y;
B <= A and Cin;
Sum <= A xor Cin;
Cout <= B or (X and Y);

end architecture DataFlow ;

— A body of entity TestBench:

library Test;
use Test.Components.all;
architecture Structure of TestBench is

component Full_Adder port (X, Y, Cin: Bit; Cout, Sum: out Bit);
end component;
signal A,B,C,D,E,F,G: Bit;
signal OK: Boolean;

begin
UUT: Full_Adder port map (A,B,C,D,E);
Generator: AdderTest port map (A,B,C,F,G);
Comparator: AdderCheckport map (D,E,F,G,OK);

end Structure;

— A body of entity AndGate:

architecture Behavior of AndGate is
begin

process (Inputs)
 variable Temp: Bit;
begin
 Temp := '1';
 for i in Inputs'Range loop
 if Inputs(i) = '0' then

Temp := '0';
exit;

 end if;
 end loop;
 Result <= Temp after 10 ns;
end process;

end Behavior;

NOTE—The statement part of an architecture decorated with the 'FOREIGN attribute is subject to special elab
rules. See 12.4.
Copyright © 2002 IEEE. All rights reserved. 11

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ee 5.2);
ponent
inding of
aration

x of the
nd the

 of the

havioral
1.3 Configuration declarations

The binding of component instances to design entities is performed by configuration specifications (s
such specifications appear in the declarative part of the block in which the corresponding com
instances are created. In certain cases, however, it may be appropriate to leave unspecified the b
component instances in a given block and to defer such specification until later. A configuration decl
provides the mechanism for specifying such deferred bindings.

configuration_declaration ::=
configuration identifier of entity_name is

configuration_declarative_part
block_configuration

end [configuration] [configuration_simple_name] ;

configuration_declarative_part ::=
{ configuration_declarative_item }

configuration_declarative_item ::=
 use_clause
| attribute_specification
| group_declaration

The entity name identifies the name of the entity declaration that defines the design entity at the ape
design hierarchy. For a configuration of a given design entity, both the configuration declaration a
corresponding entity declaration must reside in the same library.

If a simple name appears at the end of a configuration declaration, it must repeat the identifier
configuration declaration.

NOTES

1—A configuration declaration achieves its effect entirely through elaboration (see Clause 12). There are no be
semantics associated with a configuration declaration.

2—A given configuration may be used in the definition of another, more complex configuration.

Examples:

— An architecture of a microprocessor:

architecture Structure_View of Processor is
component ALU port (•••); end component;
component MUX port (•••); end component;
component Latch port (•••); end component;

begin
A1: ALU port map (•••) ;
M1: MUX port map (•••) ;
M2: MUX port map (•••) ;
M3: MUX port map (•••) ;
L1: Latch port map (•••) ;
L2: Latch port map (•••) ;

end Structure_View ;
12 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

efined
ck, the
 itself

s.

cation
a design
closing

nding
t be an
hich the
— A configuration of the microprocessor:

library TTL, Work ;
configuration V4_27_87 of Processor is

use Work.all ;
for Structure_View
 for A1: ALU

use configuration TTL.SN74LS181 ;
 end for ;
 for M1,M2,M3: MUX

use entity Multiplex4 (Behavior) ;
 end for ;
 for all : Latch

— use defaults
 end for ;
end for ;

end configuration V4_27_87 ;

1.3.1 Block configuration

A block configuration defines the configuration of a block. Such a block is either an internal block d
by a block statement or an external block defined by a design entity. If the block is an internal blo
defining block statement is either an explicit block statement or an implicit block statement that is
defined by a generate statement.

block_configuration ::=
for block_specification

{ use_clause }
{ configuration_item }

end for ;

block_specification ::=
 architecture_name
| block_statement_label
| generate_statement_label [(index_specification)]

index_specification ::=
 discrete_range
| static_expression

configuration_item ::=
 block_configuration
| component_configuration

The block specification identifies the internal or external block to which this block configuration applie

If a block configuration appears immediately within a configuration declaration, then the block specifi
of that block configuration must be an architecture name, and that architecture name must denote
entity body whose interface is defined by the entity declaration denoted by the entity name of the en
configuration declaration.

If a block configuration appears immediately within a component configuration, then the correspo
components must be fully bound (see 5.2.1.1), the block specification of that block configuration mus
architecture name, and that architecture name must denote the same architecture body as that to w
corresponding components are bound.
Copyright © 2002 IEEE. All rights reserved. 13

IEEE
Std 1076-2002 IEEE STANDARD VHDL

lock
bel, and

he block

ing to a
ined in
ilarly,
block
 item

ternal
 block
block

ock, a
nfigu-
e same

n may
lock.

e corre-
ration
t gen-

 then the
nge of

 to define
guration
 to the
r. If no
g sets

if the

spond-

ration
SE.

 label
oes not

med
 block
plicit
he block
r that
 items
If a block configuration appears immediately within another block configuration, then the b
specification of the contained block configuration must be a block statement or generate statement la
the label must denote a block statement or generate statement that is contained immediately within t
denoted by the block specification of the containing block configuration.

If the scope of a declaration (see 10.2) includes the end of the declarative part of a block correspond
given block configuration, then the scope of that declaration extends to each configuration item conta
that block configuration, with the exception of block configurations that configure external blocks. Sim
if a declaration is visible (either directly or by selection) at the end of the declarative part of a
corresponding to a given block configuration, then the declaration is visible in each configuration
contained in that block configuration, with the exception of block configurations that configure ex
blocks. Additionally, if a given declaration is a homograph of a declaration that a use clause in the
configuration makes potentially directly visible, then the given declaration is not directly visible in the
configuration or any of its configuration items. See 10.3.

For any name that is the label of a block statement appearing immediately within a given bl
corresponding block configuration may appear as a configuration item immediately within a block co
ration corresponding to the given block. For any collection of names that are labels of instances of th
component appearing immediately within a given block, a corresponding component configuratio
appear as a configuration item immediately within a block configuration corresponding to the given b

For any name that is the label of a generate statement immediately within a given block, one or mor
sponding block configurations may appear as configuration items immediately within a block configu
corresponding to the given block. Such block configurations apply to implicit blocks generated by tha
erate statement. If such a block configuration contains an index specification that is a discrete range,
block configuration applies to those implicit block statements that are generated for the specified ra
values of the corresponding generate parameter; the discrete range has no significance other than
the set of generate statement parameter values implied by the discrete range. If such a block confi
contains an index specification that is a static expression, then the block configuration applies only
implicit block statement generated for the specified value of the corresponding generate paramete
index specification appears in such a block configuration, then it applies to exactly one of the followin
of blocks:

— All implicit blocks (if any) generated by the corresponding generate statement, if and only
corresponding generate statement has a generation scheme including the reserved word for

— The implicit block generated by the corresponding generate statement, if and only if the corre
ing generate statement has a generation scheme including the reserved word if and if the condition in
the generate scheme evaluates to TRUE

— No implicit or explicit blocks, if and only if the corresponding generate statement has a gene
scheme including the reserved word if and the condition in the generate scheme evaluates to FAL

If the block specification of a block configuration contains a generate statement label, and if this
contains an index specification, then it is an error if the generate statement denoted by the label d
have a generation scheme including the reserved word for.

Within a given block configuration, whether implicit or explicit, an implicit block configuration is assu
to appear for any block statement that appears within the block corresponding to the given
configuration, if no explicit block configuration appears for that block statement. Similarly, an im
component configuration is assumed to appear for each component instance that appears within t
corresponding to the given block configuration, if no explicit component configuration appears fo
instance. Such implicit configuration items are assumed to appear following all explicit configuration
in the block configuration.
14 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 same

isible by
n item
eclara-
fferent
f that use
e directly
nal use

 item

tains an
o signifi-
es denoted

clara-
more, the

 in a
It is an error if, in a given block configuration, more than one configuration item is defined for the
block or component instance.

NOTES

1—As a result of the rules described in the preceding paragraphs and in Clause 10, a simple name that is v
selection at the end of the declarative part of a given block is also visible by selection within any configuratio
contained in a corresponding block configuration. If such a name is directly visible at the end of the given block d
tive part, it will likewise be directly visible in the corresponding configuration items, unless a use clause for a di
declaration with the same simple name appears in the corresponding configuration declaration, and the scope o
clause encompasses all or part of those configuration items. If such a use clause appears, then the name will b
visible within the corresponding configuration items except at those places that fall within the scope of the additio
clause (at which places neither name will be directly visible).

2—If an implicit configuration item is assumed to appear within a block configuration, that implicit configuration
will never contain explicit configuration items.

3—If the block specification in a block configuration specifies a generate statement label, and if this label con
index specification that is a discrete range, then the direction specified or implied by the discrete range has n
cance other than to define, together with the bounds of the range, the set of generate statement parameter valu
by the range. Thus, the following two block configurations are equivalent:

for Adders(31 downto 0) ••• end for;

for Adders(0 to 31) ••• end for;

4—A block configuration is allowed to appear immediately within a configuration declaration only if the entity de
tion denoted by the entity name of the enclosing configuration declaration has associated architectures. Further
block specification of the block configuration must denote one of these architectures.

Examples:

— A block configuration for a design entity:

for ShiftRegStruct -- An architecture name.
-- Configuration items
-- for blocks and components
-- within ShiftRegStruct.

end for ;

— A block configuration for a block statement:

for B1 -- A block label.
-- Configuration items
-- for blocks and components
-- within block B1.

end for ;

1.3.2 Component configuration

A component configuration defines the configuration of one or more component instances
corresponding block.

component_configuration ::=
for component_specification

[binding_indication ;]
[block_configuration]

end for ;
Copyright © 2002 IEEE. All rights reserved. 15

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ponent
block
k.

uration
plicit
 of the

onfigu-
fault
nding
ding

onent

n is
it block
The component specification (see 5.2) identifies the component instances to which this com
configuration applies. A component configuration that appears immediately within a given
configuration applies to component instances that appear immediately within the corresponding bloc

It is an error if two component configurations apply to the same component instance.

If the component configuration contains a binding indication (see 5.2.1), then the component config
implies a configuration specification for the component instances to which it applies. This im
configuration specification has the same component specification and binding indication as that
component configuration.

If a given component instance is unbound in the corresponding block, then any explicit component c
ration for that instance that does not contain an explicit binding indication will contain an implicit, de
binding indication (see 5.2.2). Similarly, if a given component instance is unbound in the correspo
block, then any implicit component configuration for that instance will contain an implicit, default bin
indication.

It is an error if a component configuration contains an explicit block configuration and the comp
configuration does not bind all identified component instances to the same design entity.

Within a given component configuration, whether implicit or explicit, an implicit block configuratio
assumed for the design entity to which the corresponding component instance is bound, if no explic
configuration appears and if the corresponding component instance is fully bound.

Examples:

— A component configuration with binding indication:

for all : IOPort
use entity StdCells.PadTriState4 (DataFlow)
 port map (Pout=>A, Pin=>B, IO=>Dir, Vdd=>Pwr, Gnd=>Gnd) ;

end for ;

— A component configuration containing block configurations:

for D1: DSP
for DSP_STRUCTURE
 -- Binding specified in design entity or else defaults.
 for Filterer

-- Configuration items for filtering components.
 end for ;
 for Processor

-- Configuration items for processing components.
 end for ;

end for ;
end for ;
16 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e same
NOTE—The requirement that all component instances corresponding to a block configuration be bound to th
design entity makes the following configuration illegal:

architecture A of E is
component C is end component C;
for L1: C use entity E1(X);
for L2: C use entity E2(X);

begin
L1: C;
L2: C;

end architecture A;

configuration Illegal of Work.E is
for A

for all: C
for X -- Does not apply to the same design entity in all instances of C.

•••
end for; -- X

end for; -- C
end for; -- A

end configuration Illegal ;
Copyright © 2002 IEEE. All rights reserved. 17

IEEE
Std 1076-2002 IEEE STANDARD VHDL
18 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

mputa-
 driving
nd other

function
e

rameter
der class
rogram

package;
 subpro-

ed word.

ification
ue (the

A
mbol is
 operator
s are not

t is, pure
ediately
 whose

e referenc-
2. Subprograms and packages

Subprograms define algorithms for computing values or exhibiting behavior. They may be used as co
tional resources to convert between values of different types, to define the resolution of output values
a common signal, or to define portions of a process. Packages provide a means of defining these a
resources in a way that allows different design units to share the same declarations.

There are two forms of subprograms: procedures and functions. A procedure call is a statement; a
call is an expression and returns a value. Certain functions, designated pure functions, return the same valu
each time they are called with the same values as actual parameters; the remainder, impure functions, may
return a different value each time they are called, even when multiple calls have the same actual pa
values. In addition, impure functions can update objects outside of their scope and can access a broa
of values than can pure functions. The definition of a subprogram can be given in two parts: a subp
declaration defining its calling conventions, and a subprogram body defining its execution.

Packages may also be defined in two parts. A package declaration defines the visible contents of a
a package body provides hidden details. In particular, a package body contains the bodies of any
grams declared in the package declaration.

2.1 Subprogram declarations

A subprogram declaration declares a procedure or a function, as indicated by the appropriate reserv

subprogram_declaration ::=
subprogram_specification ;

subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
| [pure | impure] function designator [(formal_parameter_list)]

return type_mark

designator ::= identifier | operator_symbol

operator_symbol ::= string_literal

The specification of a procedure specifies its designator and its formal parameters (if any). The spec
of a function specifies its designator, its formal parameters (if any), the subtype of the returned val
result subtype), and whether or not the function is pure. A function is impure if its specification contains the
reserved word impure; otherwise, it is said to be pure. A procedure designator is always an identifier.
function designator is either an identifier or an operator symbol. A designator that is an operator sy
used for the overloading of an operator (see 2.3.1). The sequence of characters represented by an
symbol must be an operator belonging to one of the classes of operators defined in 7.2. Extra space
allowed in an operator symbol, and the case of letters is not significant.

NOTES

1—All subprograms can be called recursively.

2—The restrictions on pure functions are enforced even when the function appears within a protected type. Tha
functions whose body appears in the protected type body must not directly reference variables declared imm
within the declarative region associated with the protected type. However, impure functions and procedures
bodies appear in the protected type body may make such references. Such references are made only when th
ing subprogram has exclusive access to the declarative region associated with the protected type.
Copyright © 2002 IEEE. All rights reserved. 19

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ram.

ases, the
he mode
e fourth

dure are

n is the

s

meter are
with the

 or
 that are

 is passed
to
ersion
arameter
 of the
so-

ersion
oes not

ion may

r slices.
ery use
arameter

 mecha-
re to use
chanism
2.1.1 Formal parameters

The formal parameter list in a subprogram specification defines the formal parameters of the subprog

formal_parameter_list ::= parameter_interface_list

Formal parameters of subprograms may be constants, variables, signals, or files. In the first three c
mode of a parameter determines how a given formal parameter is accessed within the subprogram. T
of a formal parameter, together with its class, also determines how such access is implemented. In th
case, that of files, the parameters have no mode.

For those parameters with modes, the only modes that are allowed for formal parameters of a proce
in, inout, and out. If the mode is in and no object class is explicitly specified, constant is assumed. If the
mode is inout or out, and no object class is explicitly specified, variable is assumed.

For those parameters with modes, the only mode that is allowed for formal parameters of a functio
mode in (whether this mode is specified explicitly or implicitly). The object class must be constant, signal,
or file. If no object class is explicitly given, constant is assumed.

In a subprogram call, the actual designator (see 4.3.2.2) associated with a formal parameter of classignal
must be a name denoting a signal. The actual designator associated with a formal of class variable must be a
name denoting a variable. The actual designator associated with a formal of class constant must be an
expression. The actual designator associated with a formal of class file must be a name denoting a file.

NOTE—Attributes of an actual are never passed into a subprogram. References to an attribute of a formal para
legal only if that formal has such an attribute. Such references retrieve the value of the attribute associated
formal.

2.1.1.1 Constant and variable parameters

For parameters of class constant or variable, only the values of the actual or formal are transferred into
out of the subprogram call. The manner of such transfers, and the accompanying access privileges
granted for constant and variable parameters, are described in this subclause.

For a nonforeign subprogram having a parameter of a scalar type or an access type, the parameter
by copy. At the start of each call, if the mode is in or inout, the value of the actual parameter is copied in
the associated formal parameter; it is an error if, after applying any conversion function or type conv
present in the actual part of the applicable association element (see 4.3.2.2), the value of the actual p
does not belong to the subtype denoted by the subtype indication of the formal. After completion
subprogram body, if the mode is inout or out, the value of the formal parameter is copied back into the as
ciated actual parameter; it is similarly an error if, after applying any conversion function or type conv
present in the formal part of the applicable association element, the value of the formal parameter d
belong to the subtype denoted by the subtype indication of the actual.

For a nonforeign subprogram having a parameter whose type is an array or record, an implementat
pass parameter values by copy, as for scalar types. If a parameter of mode out is passed by copy, then the
range of each index position of the actual parameter is copied in, and likewise for its subelements o
Alternatively, an implementation may achieve these effects by reference; that is, by arranging that ev
of the formal parameter (to read or update its value) be treated as a use of the associated actual p
throughout the execution of the subprogram call. The language does not define which of these two
nisms is to be adopted for parameter passing, nor whether different calls to the same subprogram a
the same mechanism. The execution of a subprogram is erroneous if its effect depends on which me
is selected by the implementation.
20 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

erence. It

t in the
rameter
e of the
 to the
pplying

 subtype
o-
ersion

r of such
mplemen-
 example,
ned after
.

ssed

sig-
eference

ig-

eter of
ignal

nd-
 of the
ment to

y a static
t or the

a scalar
 of the
 of the

d array
 formal.
subtype
rmal in
rogram.
For a subprogram having a parameter whose type is a protected type, the parameter is passed by ref
is an error if the mode of the parameter is other than inout.

For a formal parameter of a constrained array subtype of mode in or inout, it is an error if the value of the
associated actual parameter (after application of any conversion function or type conversion presen
actual part) does not contain a matching element for each element of the formal. For a formal pa
whose declaration contains a subtype indication denoting an unconstrained array type, the subtyp
formal in any call to the subprogram is taken from the actual associated with that formal in the call
subprogram. It is also an error if, in either case, the value of each element of the actual array (after a
any conversion function or type conversion present in the actual part) does not belong to the element
of the formal. If the formal parameter is of mode out or inout, it is also an error if, at the end of the subpr
gram call, the value of each element of the formal (after applying any conversion function or type conv
present in the formal part) does not belong to the element subtype of the actual.

NOTE—For parameters of array and record types, the parameter passing rules imply that if no actual paramete
a type is accessible by more than one path, then the effect of a subprogram call is the same whether or not the i
tation uses copying for parameter passing. If, however, there are multiple access paths to such a parameter (for
if another formal parameter is associated with the same actual parameter), then the value of the formal is undefi
updating the actual other than by updating the formal. A description using such an undefined value is erroneous

2.1.1.2 Signal parameter

For a formal parameter of class signal, references to the signal, the driver of the signal, or both, are pa
into the subprogram call.

For a signal parameter of mode in or inout, the actual signal is associated with the corresponding formal
nal parameter at the start of each call. Thereafter, during the execution of the subprogram body, a r
to the formal signal parameter within an expression is equivalent to a reference to the actual signal.

It is an error if signal-valued attributes 'STABLE, 'QUIET, 'TRANSACTION, and 'DELAYED of formal s
nal parameters of any mode are read within a subprogram.

A process statement contains a driver for each actual signal associated with a formal signal param
mode out or inout in a subprogram call. Similarly, a subprogram contains a driver for each formal s
parameter of mode out or inout declared in its subprogram specification.

For a signal parameter of mode inout or out, the driver of an actual signal is associated with the correspo
ing driver of the formal signal parameter at the start of each call. Thereafter, during the execution
subprogram body, an assignment to the driver of a formal signal parameter is equivalent to an assign
the driver of the actual signal.

If an actual signal is associated with a signal parameter of any mode, the actual must be denoted b
signal name. It is an error if a conversion function or type conversion appears in either the formal par
actual part of an association element that associates an actual signal with a formal signal parameter.

If an actual signal is associated with a signal parameter of any mode, and if the type of the formal is
type, then it is an error if the bounds and direction of the subtype denoted by the subtype indication
formal are not identical to the bounds and direction of the subtype denoted by the subtype indication
actual.

If an actual signal is associated with a formal signal parameter, and if the formal is of a constraine
subtype, then it is an error if the actual does not contain a matching element for each element of the
If an actual signal is associated with a formal signal parameter, and if the subtype denoted by the
indication of the declaration of the formal is an unconstrained array type, then the subtype of the fo
any call to the subprogram is taken from the actual associated with that formal in the call to the subp
Copyright © 2002 IEEE. All rights reserved. 21

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ay

at is a
ord

e to take
al driver

icular
 must be
an actual
or type
ype.

ual file
 begin-
.4.1) an
d with the

 given
of the

en actual
f and the
It is also an error if the mode of the formal is in or inout and if the value of each element of the actual arr
does not belong to the element subtype of the formal.

A formal signal parameter is a guarded signal if and only if it is associated with an actual signal th
guarded signal. It is an error if the declaration of a formal signal parameter includes the reserved wbus
(see 4.3.2).

NOTE—It is a consequence of the preceding rules that a procedure with an out or inout signal parameter called by a
process does not have to complete in order for any assignments to that signal parameter within the procedur
effect. Assignments to the driver of a formal signal parameter are equivalent to assignments directly to the actu
contained in the process calling the procedure.

2.1.1.3 File parameters

For parameters of class file, references to the actual file are passed into the subprogram. No part
parameter-passing mechanism is defined by the language, but a reference to the formal parameter
equivalent to a reference to the actual parameter. It is an error if an association element associates
with a formal parameter of a file type and that association element contains a conversion function
conversion. It is also an error if a formal of a file type is associated with an actual that is not of a file t

At the beginning of a given subprogram call, a file parameter is open (see 3.4.1) if and only if the act
object associated with the given parameter in a given subprogram call is also open. Similarly, at the
ning of a given subprogram call, both the access mode of and external file associated with (see 3
open file parameter are the same as, respectively, the access mode of and the external file associate
actual file object associated with the given parameter in the subprogram call.

At the completion of the execution of a given subprogram call, the actual file object associated with a
file parameter is open if and only if the formal parameter is also open. Similarly, at the completion
execution of a given subprogram call, the access mode of and the external file associated with an op
file object associated with a given file parameter are the same as, respectively, the access mode o
external file associated with the associated formal parameter.

2.2 Subprogram bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body ::=
subprogram_specification is

subprogram_declarative_part
begin

subprogram_statement_part
end [subprogram_kind] [designator] ;

subprogram_declarative_part ::=
{ subprogram_declarative_item }
22 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

rogram
 shall be
e body
laration

en in the
eat the

e 4.3.1.3

age
infor-

ns. An
ameters
r of the

ence of
lgorithm

lishing
 executed
. Upon
otected
ccess is

rameters

am
subprogram_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

subprogram_statement_part ::=
{ sequential_statement }

subprogram_kind ::= procedure | function

The declaration of a subprogram is optional. In the absence of such a declaration, the subp
specification of the subprogram body acts as the declaration. For each subprogram declaration, there
a corresponding body. If both a declaration and a body are given, the subprogram specification of th
shall conform (see 2.7) to the subprogram specification of the declaration. Furthermore, both the dec
and the body must occur immediately within the same declarative region (see 10.1).

If a subprogram kind appears at the end of a subprogram body, it must repeat the reserved word giv
subprogram specification. If a designator appears at the end of a subprogram body, it must rep
designator of the subprogram.

It is an error if a variable declaration in a subprogram declarative part declares a shared variable. (Se
and 8.1.4.)

A foreign subprogram is one that is decorated with the attribute 'FOREIGN, defined in pack
STANDARD (see 14.2). The STRING value of the attribute may specify implementation-dependent
mation about the foreign subprogram. Foreign subprograms may have non-VHDL implementatio
implementation may place restrictions on the allowable modes, classes, and types of the formal par
to a foreign subprogram; such restrictions may include restrictions on the number and allowable orde
parameters.

Excepting foreign subprograms, the algorithm performed by a subprogram is defined by the sequ
statements that appears in the subprogram statement part. For a foreign subprogram, the a
performed is implementation defined.

The execution of a subprogram body is invoked by a subprogram call. For this execution, after estab
the association between the formal and actual parameters, the sequence of statements of the body is
if the subprogram is not a foreign subprogram; otherwise, an implementation-defined action occurs
completion of the body or implementation-dependent action, if exclusive access to an object of a pr
type was granted during elaboration of the declaration of the subprogram (see 12.5), the exclusive a
rescinded. Then, return is made to the caller (and any necessary copying back of formal to actual pa
occurs).

A process or a subprogram is said to be a parent of a given subprogram S if that process or subprogr
contains a procedure call or function call for S or for a parent of S.
Copyright © 2002 IEEE. All rights reserved. 23

IEEE
Std 1076-2002 IEEE STANDARD VHDL

nals

. An
T, or
refix
 explicit
efined
fix

rence to
xplicit
0.1) or

any, of
roce-
.4) or to

riable
eclared
ny, of
ce to

ons that
tations
rams, a

ccurs

 must be
re func-
lation

ubject to

 variable
d outside
An explicit signal is a signal other than an implicit signal GUARD or other than one of the implicit sig
defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION. The explicit
ancestor of an implicit signal is found as follows. The implicit signal GUARD has no explicit ancestor
explicit ancestor of an implicit signal defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIE
'TRANSACTION is the signal found by recursively examining the prefix of the attribute. If the p
denotes an explicit signal, a slice, or a member (see Clause 3) of an explicit signal, then that is the
ancestor of the implicit signal. Otherwise, if the prefix is one of the implicit signals defined by the pred
attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION, this rule is recursively applied. If the pre
is an implicit signal GUARD, then the signal has no explicit ancestor.

If a pure function subprogram is a parent of a given procedure and if that procedure contains a refe
an explicitly declared signal or variable object, or a slice or subelement (or slice thereof) of an e
signal, then that object must be declared within the declarative region formed by the function (see 1
within the declarative region formed by the procedure; this rule also holds for the explicit ancestor, if
an implicit signal and also for the implicit signal GUARD. If a pure function is the parent of a given p
dure, then that procedure must not contain a reference to an explicitly declared file object (see 4.3.1
a shared variable (see 4.3.1.3).

Similarly, if a pure function subprogram contains a reference to an explicitly declared signal or va
object, or a slice or subelement (or slice thereof) of an explicit signal, then that object must be d
within the declarative region formed by the function; this rule also holds for the explicit ancestor, if a
an implicit signal and also for the implicit signal GUARD. A pure function must not contain a referen
an explicitly declared file object.

A pure function must not be the parent of an impure function.

The rules of the preceding three paragraphs apply to all pure function subprograms. For pure functi
are not foreign subprograms, violations of any of these rules are errors. However, since implemen
cannot in general check that such rules hold for pure function subprograms that are foreign subprog
description calling pure foreign function subprograms not adhering to these rules is erroneous.

Example:

— The declaration of a foreign function subprogram:

package P is
function F return INTEGER;
attribute FOREIGN of F: function is "implementation-dependent information";

end package P;

NOTES

1—It follows from the visibility rules that a subprogram declaration must be given if a call of the subprogram o
textually before the subprogram body, and that such a declaration must occur before the call itself.

2—The preceding rules concerning pure function subprograms, together with the fact that function parameters
of mode in, imply that a pure function has no effect other than the computation of the returned value. Thus, a pu
tion invoked explicitly as part of the elaboration of a declaration, or one invoked implicitly as part of the simu
cycle, is guaranteed to have no effect on other objects in the description.

3—VHDL does not define the parameter-passing mechanisms for foreign subprograms.

4—The declarative parts and statement parts of subprograms decorated with the 'FOREIGN attribute are s
special elaboration rules. See 12.3 and 12.4.5.

5—A pure function subprogram must not reference a shared variable. This prohibition exists because a shared
cannot be declared in a subprogram declarative part and a pure function cannot reference any variable declare
of its declarative region.
24 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 either a

ame base

either of

signator
 overload
rograms

rogram,
he formal
 identify

 (and is
he rela-
ufficient

arameter

am are
 several
d in two

e of the
6—A subprogram containing a wait statement must not have an ancestor that is a subprogram declared within
protected type declaration or a protected type body.

2.3 Subprogram overloading

Two formal parameter lists are said to have the same parameter type profile if and only if they have the same
number of parameters, and if at each parameter position the corresponding parameters have the s
type. Two subprograms are said to have the same parameter and result type profile if and only if both have
the same parameter type profile, and if either both are functions with the same result base type or n
the two is a function.

A given subprogram designator can be used to designate multiple subprograms. The subprogram de
is then said to be overloaded; the designated subprograms are also said to be overloaded and to
each other. If two subprograms overload each other, one of them can hide the other only if both subp
have the same parameter and result type profile.

A call to an overloaded subprogram is ambiguous (and therefore is an error) if the name of the subp
the number of parameter associations, the types and order of the actual parameters, the names of t
parameters (if named associations are used), and the result type (for functions) are not sufficient to
exactly one (overloaded) subprogram.

Similarly, a reference to an overloaded resolution function name in a subtype indication is ambiguous
therefore an error) if the name of the function, the number of formal parameters, the result type, and t
tionships between the result type and the types of the formal parameters (as defined in 2.4) are not s
to identify exactly one (overloaded) subprogram specification.

Examples:

— Declarations of overloaded subprograms:

procedure Dump(F: inout Text; Value: Integer);
procedure Dump(F: inout Text; Value: String);

procedure Check (Setup: Time; signal D: Data; signal C: Clock);
procedure Check (Hold: Time; signal C: Clock; signal D: Data);

— Calls to overloaded subprograms:

Dump (Sys_Output, 12);
Dump (Sys_Error, "Actual output does not match expected output");

Check (Setup=>10 ns, D=>DataBus, C=>Clk1);
Check (Hold=>5 ns, D=>DataBus, C=>Clk2);
Check (15 ns, DataBus, Clk) ;

-- Ambiguous if the base type of DataBus is the same type as the base type of Clk.

NOTES

1—The notion of parameter and result type profile does not include parameter names, parameter classes, p
modes, parameter subtypes, or default expressions or their presence or absence.

2—Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogr
themselves overloaded function calls, literals, or aggregates. Ambiguities may also (but need not) arise when
overloaded subprograms belonging to different packages are visible. These ambiguities can usually be solve
ways: qualified expressions can be used for some or all actual parameters and for the result, if any; or the nam
subprogram can be expressed more explicitly as an expanded name (see 6.3).
Copyright © 2002 IEEE. All rights reserved. 25

IEEE
Std 1076-2002 IEEE STANDARD VHDL

tor. The
defined in

am spec-
n must
nless the
on must
for each
r is asso-

 binary

ed signal

rator that
d oper-

perator

ased on
nator, or

that the
e result

l

2.3.1 Operator overloading

The declaration of a function whose designator is an operator symbol is used to overload an opera
sequence of characters of the operator symbol must be one of the operators in the operator classes
7.2.

The subprogram specification of a unary operator must have a single parameter, unless the subprogr
ification is a method (see 3.5.1) of a protected type. In this latter case, the subprogram specificatio
have no parameters. The subprogram specification of a binary operator must have two parameters; u
subprogram specification is a method of a protected type, in which case, the subprogram specificati
have a single parameter. If the subprogram specification of a binary operator has two parameters,
use of this operator, the first parameter is associated with the left operand, and the second paramete
ciated with the right operand.

For each of the operators “+” and “–”, overloading is allowed both as a unary operator and as a
operator.

NOTES

1—Overloading of the equality operator does not affect the selection of choices in a case statement in a select
assignment statement, nor does it affect the propagation of signal values.

2—A user-defined operator that has the same designator as a short-circuit operator (i.e., a user-defined ope
overloads the short-circuit operator) is not invoked in a short-circuit manner. Specifically, calls to the user-define
ator always evaluate both arguments prior to the execution of the function.

3—Functions that overload operator symbols may also be called using function call notation rather than o
notation. This statement is also true of the predefined operators themselves.

Examples:

type MVL is ('0', '1', 'Z', 'X') ;
function "and" (Left, Right: MVL) return MVL ;
function "or" (Left, Right: MVL) return MVL ;
function "not" (Value: MVL) return MVL ;

signal Q,R,S: MVL ;

Q <= 'X' or '1';
R <= "or" ('0','Z');
S <= (Q and R) or not S;

2.3.2 Signatures

A signature distinguishes between overloaded subprograms and overloaded enumeration literals b
their parameter and result type profiles. A signature can be used in an attribute name, entity desig
alias declaration.

signature ::= [[type_mark { , type_mark }] [return type_mark]]

(Note that the initial and terminal brackets are part of the syntax of signatures and do not indicate
entire right-hand side of the production is optional.) A signature is said to match the parameter and th
type profile of a given subprogram if, and only if, all of the following conditions hold:

— The number of type marks prior to the reserved word return , if any, matches the number of forma
parameters of the subprogram.
26 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e as the

 type
type of

iteral if
meration

e to be
require
clara-
 signal

eter of
solved
place of
.2).

e, and
o effect
s more
 used to

olved
ue, each
 those
re said to
clared
 null
solution
— At each parameter position, the base type denoted by the type mark of the signature is the sam
base type of the corresponding formal parameter of the subprogram.

— If the reserved word return is present, the subprogram is a function and the base type of the
mark following the reserved word in the signature is the same as the base type of the return
the function, or the reserved word return is absent and the subprogram is a procedure.

Similarly, a signature is said to match the parameter and result type profile of a given enumeration l
the signature matches the parameter and result type profile of the subprogram equivalent to the enu
literal defined in 3.1.1.

Example:

attribute BuiltIn of "or" [MVL, MVL return MVL]: function is TRUE;
-- Because of the presence of the signature, this attribute specification
-- decorates only the "or" function defined in 2.3.1.

attribute Mapping of JMP [return OpCode] : literal is "001";

2.4 Resolution functions

A resolution function is a function that defines how the values of multiple sources of a given signal ar
resolved into a single value for that signal. Resolution functions are associated with signals that
resolution by including the name of the resolution function in the declaration of the signal or in the de
tion of the subtype of the signal. A signal with an associated resolution function is called a resolved
(see 4.3.1.2).

A resolution function must be a pure function (see 2.1); moreover, it must have a single input param
class constant that is a one-dimensional, unconstrained array whose element type is that of the re
signal. The type of the return value of the function must also be that of the signal. Errors occur at the
the subtype indication containing the name of the resolution function if any of these checks fail (see 4

The resolution function associated with a resolved signal determines the resolved value of the signal as a
function of the collection of inputs from its multiple sources. If a resolved signal is of a composite typ
if subelements of that type also have associated resolution functions, such resolution functions have n
on the process of determining the resolved value of the signal. It is an error if a resolved signal ha
connected sources than the number of elements in the index type of the unconstrained array type
define the parameter of the corresponding resolution function.

Resolution functions are implicitly invoked during each simulation cycle in which corresponding res
signals are active (see 12.6.1). Each time a resolution function is invoked, it is passed an array val
element of which is determined by a corresponding source of the resolved signal, but excluding
sources that are drivers whose values are determined by null transactions (see 8.4.1). Such drivers a
be off. For certain invocations (specifically, those involving the resolution of sources of a signal de
with the signal kind bus), a resolution function may thus be invoked with an input parameter that is a
array; this occurs when all sources of the bus are drivers, and they are all off. In such a case, the re
function returns a value representing the value of the bus when no source is driving it.
Copyright © 2002 IEEE. All rights reserved. 27

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e can be

package

 a pro-
Example:

function WIRED_OR (Inputs: BIT_VECTOR) return BIT is
constant FloatValue: BIT := '0';

begin
if Inputs'Length = 0 then

-- This is a bus whose drivers are all off.
return FloatValue;

else
for I in Inputs'Range loop
 if Inputs(I) = '1' then
 return '1';
 end if;
end loop;
return '0';

end if;
end function WIRED_OR;

2.5 Package declarations

A package declaration defines the interface to a package. The scope of a declaration within a packag
extended to other design units.

package_declaration ::=
package identifier is

package_declarative_part
end [package] [package_simple_name] ;

package_declarative_part ::=
{ package_declarative_item }

package_declarative_item ::=
 subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

If a simple name appears at the end of the package declaration, it must repeat the identifier of the
declaration.

If a package declarative item is a type declaration (i.e., a full type declaration whose type definition is
tected type definition), then that protected type definition must not be a protected type body.
28 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

design
directly

ograms,

d in the
Items declared immediately within a package declaration become visible by selection within a given
unit wherever the name of that package is visible in the given unit. Such items may also be made
visible by an appropriate use clause (see 10.4).

NOTE—Not all packages will have a package body. In particular, a package body is unnecessary if no subpr
deferred constants, or protected type definitions are declared in the package declaration.

Examples:

— A package declaration that needs no package body:

package TimeConstants is
constant tPLH : Time := 10 ns;
constant tPHL : Time := 12 ns;
constant tPLZ : Time := 7 ns;
constant tPZL : Time := 8 ns;
constant tPHZ : Time := 8 ns;
constant tPZH : Time := 9 ns;

end TimeConstants ;

— A package declaration that needs a package body:

package TriState is
type Tri is ('0', '1', 'Z', 'E');
function BitVal (Value: Tri) return Bit ;
function TriVal (Value: Bit) return Tri;
type TriVector is array (Natural range <>) of Tri ;
function Resolve (Sources: TriVector) return Tri ;

end package TriState ;

2.6 Package bodies

A package body defines the bodies of subprograms and the values of deferred constants declare
interface to the package.

package_body ::=
package body package_simple_name is

package_body_declarative_part
end [package body] [package_simple_name] ;

package_body_declarative_part ::=
{ package_body_declarative_item }

package_body_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| use_clause
| group_template_declaration
| group_declaration
Copyright © 2002 IEEE. All rights reserved. 29

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 appears

in other
. Items

t declara-
y. This
 the

y of that
deferred
r. The
e corre-
The simple name at the start of a package body must repeat the package identifier. If a simple name
at the end of the package body, it must be the same as the identifier in the package declaration.

In addition to subprogram body and constant declarative items, a package body may contain certa
declarative items to facilitate the definition of the bodies of subprograms declared in the interface
declared in the body of a package cannot be made visible outside of the package body.

If a given package declaration contains a deferred constant declaration (see 4.3.1.1), then a constan
tion with the same identifier must appear as a declarative item in the corresponding package bod
object declaration is called the full declaration of the deferred constant. The subtype indication given in
full declaration must conform to that given in the deferred constant declaration.

Within a package declaration that contains the declaration of a deferred constant, and within the bod
package (before the end of the corresponding full declaration), the use of a name that denotes the
constant is only allowed in the default expression for a local generic, local port, or formal paramete
result of evaluating an expression that references a deferred constant before the elaboration of th
sponding full declaration is not defined by the language.

Example:

package body TriState is

function BitVal (Value: Tri) return Bit is
constant Bits : Bit_Vector := "0100";

begin
return Bits(Tri'Pos(Value));

end;

function TriVal (Value: Bit) return Tri is
begin

return Tri'Val(Bit'Pos(Value));
end;

function Resolve (Sources: TriVector) return Tri is
variable V: Tri := 'Z';

begin
for i in Sources'Range loop
 if Sources(i) /= 'Z' then
 if V = 'Z' then
 V := Sources(i);
 else
 return 'E';
 end if;
 end if;
end loop;
return V;

end;

end package body TriState ;
30 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

rovided

same

ector if,

ia-
g lexical

ed name.

 a pure

ents:
2.7 Conformance rules

Whenever the language rules either require or allow the specification of a given subprogram to be p
in more than one place, the following variations are allowed at each place:

— A numeric literal can be replaced by a different numeric literal if and only if both have the
value.

— A simple name can be replaced by an expanded name in which this simple name is the sel
and only if, at both places the meaning of the simple name is given by the same declaration.

Two subprogram specifications are said to conform if, apart from comments and the above allowed var
tions, both specifications are formed by the same sequence of lexical elements and if correspondin
elements are given the same meaning by the visibility rules.

Conformance is likewise defined for subtype indications in deferred constant declarations.

NOTES

1—A simple name can be replaced by an expanded name even if the simple name is itself the prefix of a select
For example, Q.R can be replaced by P.Q.R if Q is declared immediately within P.

2—The subprogram specification of an impure function is never conformant to a subprogram specification of
function.

3—The following specifications do not conform since they are not formed by the same sequence of lexical elem

procedure P (X,Y : INTEGER)
procedure P (X: INTEGER; Y : INTEGER)
procedure P (X,Y : in INTEGER)
Copyright © 2002 IEEE. All rights reserved. 31

IEEE
Std 1076-2002 IEEE STANDARD VHDL
32 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

hose spe-
ackage

ludes the
ns of a
implicitly

explicit

in the

g

ypes

 a

alled a
atisfy a
is
 type

e type;
ng to the
d by a

, or an
3. Types

This clause describes the various categories of types that are provided by the language as well as t
cific types that are predefined. The declarations of all predefined types are contained in p
STANDARD, the declaration of which appears in Clause 14.

A type is characterized by a set of values and a set of operations. The set of operations of a type inc
explicitly declared subprograms that have a parameter or result of the type. The remaining operatio
type are the basic operations and the predefined operators (see 7.2). These operations are each
declared for a given type declaration immediately after the type declaration and before the next
declaration, if any.

A basic operation is an operation that is inherent in one of the following:

— An assignment (in assignment statements and initializations)

— An allocator

— A selected name, an indexed name, or a slice name

— A qualification (in a qualified expression), an explicit type conversion, a formal or actual part
form of a type conversion, or an implicit type conversion of a value of type universal_integer or
universal_real to the corresponding value of another numeric type

— A numeric literal (for a universal type), the literal null (for an access type), a string literal, a bit strin
literal, an aggregate, or a predefined attribute

There are five classes of types. Scalar types are integer types, floating point types, physical types, and t
defined by an enumeration of their values; values of these types have no elements. Composite types are array
and record types; values of these types consist of element values. Access types provide access to objects of
given type. File types provide access to objects that contain a sequence of values of a given type. Protected
types provide atomic and exclusive access to variables accessible to multiple processes.

The set of possible values for an object of a given type can be subjected to a condition that is c
constraint (the case where the constraint imposes no restriction is also included); a value is said to s
constraint if it satisfies the corresponding condition. A subtype is a type together with a constraint. A value
said to belong to a subtype of a given type if it belongs to the type and satisfies the constraint; the given
is called the base type of the subtype. A type is a subtype of itself; such a subtype is said to be unconstrained
(it corresponds to a condition that imposes no restriction). The base type of a type is the type itself.

The set of operations defined for a subtype of a given type includes the operations defined for th
however, the assignment operation to an object having a given subtype only assigns values that belo
subtype. Additional operations, such as qualification (in a qualified expression) are implicitly define
subtype declaration.

The term subelement is used in this standard in place of the term element to indicate either an element
element of another element or subelement. Where other subelements are excluded, the term element is used
instead.

A given type must not have a subelement whose type is the given type itself.

A member of an object is one of the following:

— A slice of the object

— A subelement of the object

— A slice of a subelement of the object
Copyright © 2002 IEEE. All rights reserved. 33

IEEE
Std 1076-2002 IEEE STANDARD VHDL

a type or
n

er subset.

-
pes
r their

t

d the

he
lar type.

essor of
nge is in
t for

nds of a
A range
 con-
The name of a class of types is used in this standard as a qualifier for objects and values that have
nature of the class considered. For example, the term array object is used for an object whose type is a
array type; similarly, the term access value is used for a value of an access type.

NOTE—The set of values of a subtype is a subset of the values of the base type. This subset need not be a prop

3.1 Scalar types

Scalar types consist of enumeration types, integer types, physical types, and floating point types. Enumera
tion types and integer types are called discrete types. Integer types, floating point types, and physical ty
are called numeric types. All scalar types are ordered; that is, all relational operators are predefined fo
values. Each value of a discrete or physical type has a position number that is an integer value.

scalar_type_definition ::=
enumeration_type_definition | integer_type_definition

| floating_type_definition | physical_type_definition

range_constraint ::= range range

range ::=
range_attribute_name

| simple_expression direction simple_expression

direction ::= to | downto

A range specifies a subset of values of a scalar type. A range is said to be a null range if the specified subse
is empty.

The range L to R is called an ascending range; if L > R, then the range is a null range. The range L downto
R is called a descending range; if L < R, then the range is a null range. The smaller of L and R is calle
lower bound, and the larger, the upper bound, of the range. The value V is said to belong to the range if the
relations (lower bound <= V) and (V <= upper bound) are both true and the range is not a null range. T
operators >, <, and <= in the preceding definitions are the predefined operators of the applicable sca

For values of discrete or physical types, a value V1 is said to be to the left of a value V2 within a given range
if both V1 and V2 belong to the range and either the range is an ascending range and V2 is the succ
V1, or the range is a descending range and V2 is the predecessor of V1. A list of values of a given ra
left to right order if each value in the list is to the left of the next value in the list within that range, excep
the last value in the list.

If a range constraint is used in a subtype indication, the type of the expressions (likewise, of the bou
range attribute) must be the same as the base type of the type mark of the subtype indication.
constraint is compatible with a subtype if each bound of the range belongs to the subtype or if the range
straint defines a null range. Otherwise, the range constraint is not compatible with the subtype.

The direction of a range constraint is the same as the direction of its range.

NOTE—Indexing and iteration rules use values of discrete types.

3.1.1 Enumeration types

An enumeration type definition defines an enumeration type.

enumeration_type_definition ::=
(enumeration_literal { , enumeration_literal })

enumeration_literal ::= identifier | character_literal
34 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

in the
eration
al, this
e as the

ter

etween
alue of
 is one

 corre-
s in
rloaded

L,

he ISO
ted by

L,

SCII
mes are
 also not

version
The identifiers and character literals listed by an enumeration type definition must be distinct with
enumeration type definition. Each enumeration literal is the declaration of the corresponding enum
literal; for the purpose of determining the parameter and result type profile of an enumeration liter
declaration is equivalent to the declaration of a parameterless function whose designator is the sam
enumeration literal and whose result type is the same as the enumeration type.

An enumeration type is said to be a character type if at least one of its enumeration literals is a charac
literal.

Each enumeration literal yields a different enumeration value. The predefined order relations b
enumeration values follow the order of corresponding position numbers. The position number of the v
the first listed enumeration literal is zero; the position number for each additional enumeration literal
more than that of its predecessor in the list.

If the same identifier or character literal is specified in more than one enumeration type definition, the
sponding literals are said to be overloaded. At any place where an overloaded enumeration literal occur
the text of a program, the type of the enumeration literal is determined according to the rules for ove
subprograms (see 2.3).

Each enumeration type definition defines an ascending range.

Examples:

type MULTI_LEVEL_LOGIC is (LOW, HIGH, RISING, FALLING, AMBIGUOUS) ;

type BIT is ('0','1') ;

type SWITCH_LEVEL is ('0','1','X') ; -- Overloads '0' and '1'

3.1.1.1 Predefined enumeration types

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, SEVERITY_LEVE
FILE_OPEN_KIND, and FILE_OPEN_STATUS.

The predefined type CHARACTER is a character type whose values are the 256 characters of t
8859-1: 1987 [B4]1 character set. Each of the 191 graphic characters of this character set is deno
the corresponding character literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, SEVERITY_LEVE
FILE_OPEN_KIND, and FILE_OPEN_STATUS appear in package STANDARD in Clause 14.

NOTES

1—The first 33 nongraphic elements of the predefined type CHARACTER (from NUL through DEL) are the A
abbreviations for the nonprinting characters in the ASCII set (except for those noted in Clause 14). The ASCII na
chosen as ISO 8859-1: 1987 [B11] does not assign them abbreviations. The next 32 (C128 through C159) are
assigned abbreviations, so names unique to VHDL are assigned.

2—Type BOOLEAN can be used to model either active high or active low logic depending on the particular con
functions chosen to and from type BIT.

1The numbers in brackets correspond to those of the bibliography in Annex D.
Copyright © 2002 IEEE. All rights reserved. 35

IEEE
Std 1076-2002 IEEE STANDARD VHDL

range.

ype, the
e range
here the
pe is the

ression
nds are

version
ee

ution of
 value

n type
range

epen-
cending

HIGH

e is an
3.1.2 Integer types

An integer type definition defines an integer type whose set of values includes those of the specified

integer_type_definition ::= range_constraint

An integer type definition defines both a type and a subtype of that type. The type is an anonymous t
range of which is selected by the implementation; this range must be such that it wholly contains th
given in the integer type definition. The subtype is a named subtype of this anonymous base type, w
name of the subtype is that given by the corresponding type declaration and the range of the subty
given range.

Each bound of a range constraint that is used in an integer type definition must be a locally static exp
of some integer type, but the two bounds need not have the same integer type. (Negative bou
allowed.)

Integer literals are the literals of an anonymous predefined type that is called universal_integer in this stan-
dard. Other integer types have no literals. However, for each integer type there exists an implicit con
that converts a value of type universal_integer into the corresponding value (if any) of the integer type (s
7.3.5).

The position number of an integer value is the corresponding value of the type universal_integer.

The same arithmetic operators are predefined for all integer types (see 7.2). It is an error if the exec
such an operation (in particular, an implicit conversion) cannot deliver the correct result (that is, if the
corresponding to the mathematical result is not a value of the integer type).

An implementation may restrict the bounds of the range constraint of integer types other tha
universal_integer. However, an implementation must allow the declaration of any integer type whose
is wholly contained within the bounds –2147483647 and +2147483647 inclusive.

Examples:

type TWOS_COMPLEMENT_INTEGER is range –32768 to 32767;

type BYTE_LENGTH_INTEGER is range 0 to 255;

type WORD_INDEX is range 31 downto 0;

subtype HIGH_BIT_LOW is BYTE_LENGTH_INTEGER range 0 to 127;

3.1.2.1 Predefined integer types

The only predefined integer type is the type INTEGER. The range of INTEGER is implementation d
dent, but it is guaranteed to include the range –2147483647 to +2147483647. It is defined with an as
range.

NOTE—The range of INTEGER in a particular implementation is determinable from the values of its 'LOW and '
attributes.

3.1.3 Physical types

Values of a physical type represent measurements of some quantity. Any value of a physical typ
integral multiple of the primary unit of measurement for that type.
36 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ype, the
e range
here the
pe is the

ression
nds are

 a
rms of
ers of

he type

ust be

me.

e value
osition
er that
mpany-

ution of
al result

 imple-
in the
physical_type_definition ::=
range_constraint

units
 primary_unit_declaration
 { secondary_unit_declaration }
end units [physical_type_simple_name]

primary_unit_declaration ::= identifier ;

secondary_unit_declaration ::= identifier = physical_literal ;

physical_literal ::= [abstract_literal] unit_name

A physical type definition defines both a type and a subtype of that type. The type is an anonymous t
range of which is selected by the implementation; this range must be such that it wholly contains th
given in the physical type definition. The subtype is a named subtype of this anonymous base type, w
name of the subtype is that given by the corresponding type declaration and the range of the subty
given range.

Each bound of a range constraint that is used in a physical type definition must be a locally static exp
of some integer type, but the two bounds need not have the same integer type. (Negative bou
allowed.)

Each unit declaration (either the primary unit declaration or a secondary unit declaration) definesunit
name. Unit names declared in secondary unit declarations must be directly or indirectly defined in te
integral multiples of the primary unit of the type declaration in which they appear. The position numb
unit names need not lie within the range specified by the range constraint.

If a simple name appears at the end of a physical type declaration, it must repeat the identifier of t
declaration in which the physical type definition is included.

The abstract literal portion (if present) of a physical literal appearing in a secondary unit declaration m
an integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the unit na

There is a position number corresponding to each value of a physical type. The position number of th
corresponding to a unit name is the number of primary units represented by that unit name. The p
number of the value corresponding to a physical literal with an abstract literal part is the largest integ
is not greater than the product of the value of the abstract literal and the position number of the acco
ing unit name.

The same arithmetic operators are predefined for all physical types (see 7.2). It is an error if the exec
such an operation cannot deliver the correct result (i.e., if the value corresponding to the mathematic
is not a value of the physical type).

An implementation may restrict the bounds of the range constraint of a physical type. However, an
mentation must allow the declaration of any physical type whose range is wholly contained with
bounds –2147483647 and +2147483647 inclusive.
Copyright © 2002 IEEE. All rights reserved. 37

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e zero,

ut it is
nge. All
Examples:

type DURATION is range –1E18 to 1E18
units

fs; -- femtosecond
ps = 1000 fs; -- picosecond
ns = 1000 ps; -- nanosecond
us = 1000 ns; -- microsecond
ms = 1000 us; -- millisecond
sec = 1000 ms; -- second
min = 60 sec; -- minute

end units;

type DISTANCE is range 0 to 1E16
units
-- primary unit:

Å; -- angstrom

-- metric lengths:
nm = 10 Å; -- nanometer
um = 1000 nm; -- micrometer (or micron)
mm = 1000 um; -- millimeter
cm = 10 mm; -- centimeter
m = 1000 mm; -- meter
km = 1000 m; -- kilometer

-- English lengths:
mil = 254000 Å; -- mil
inch = 1000 mil; -- inch
ft = 12 inch; -- foot
yd = 3 ft; -- yard
fm = 6 ft; -- fathom
mi = 5280 ft; -- mile
lg = 3 mi; -- league

end units DISTANCE;

variable x: distance; variable y: duration; variable z: integer;

x := 5 Å + 13 ft – 27 inch;
y := 3 ns + 5 min;
z := ns / ps;
x := z * mi;
y := y/10;
z := 39.34 inch / m;

NOTES

1— The 'POS and 'VAL attributes may be used to convert between abstract values and physical values.

2— The value of a physical literal, whose abstract literal is either the integer value zero or the floating point valu
is the same value (specifically zero primary units) no matter what unit name follows the abstract literal.

3.1.3.1 Predefined physical types

The only predefined physical type is type TIME. The range of TIME is implementation dependent, b
guaranteed to include the range –2147483647 to +2147483647. It is defined with an ascending ra
38 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

TIME

ntation
olution
f type

mit are
within
han that
 unless
-point

simu-
shorter

arded
2 and
n, 8.1;

pe, the
e range
here the
pe is the

ression
 bounds

ists an
e

eous if
g to the

 64 bits
specifications of delays and pulse rejection limits must be of type TIME. The declaration of type
appears in package STANDARD in Clause 14.

By default, the primary unit of type TIME (1 femtosecond) is the resolution limit for type TIME. Any TIME
value whose absolute value is smaller than this limit is truncated to zero (0) time units. An impleme
may allow a given execution of a model (see 12.6) to select a secondary unit of type TIME as the res
limit. Furthermore, an implementation may restrict the precision of the representation of values o
TIME and the results of expressions of type TIME, provided that values as small as the resolution li
representable within those restrictions. It is an error if a given unit of type TIME appears anywhere
the design hierarchy defining a model to be executed, and if the position number of that unit is less t
of the secondary unit selected as the resolution limit for type TIME during the execution of the model,
that unit is part of a physical literal whose abstract literal is either the integer value zero or the floating
value zero.

NOTE—By selecting a secondary unit of type TIME as the resolution limit for type TIME, it may be possible to
late for a longer period of simulated time, with reduced accuracy, or to simulate with greater accuracy for a
period of simulated time.

Cross-references: Delay and rejection limit in a signal assignment, 8.4; disconnection, delay of a gu
signal, 5.3; function NOW, 14.2; predefined attributes, functions of TIME, 14.1; simulation time, 12.6.
12.6.3; type TIME, 14.2; Updating a projected waveform, 8.4.1; wait statements, timeout clause i
Elaboration of a declarative part, 12.3.

3.1.4 Floating point types

Floating point types provide approximations to the real numbers.

floating_type_definition ::= range_constraint

A floating type definition defines both a type and a subtype of that type. The type is an anonymous ty
range of which is selected by the implementation; this range must be such that it wholly contains th
given in the floating type definition. The subtype is a named subtype of this anonymous base type, w
name of the subtype is that given by the corresponding type declaration and the range of the subty
given range.

Each bound of a range constraint that is used in a floating type definition must be a locally static exp
of some floating point type, but the two bounds need not have the same floating point type. (Negative
are allowed.)

Floating point literals are the literals of an anonymous predefined type that is called universal_real in this
standard. Other floating point types have no literals. However, for each floating point type there ex
implicit conversion that converts a value of type universal_real into the corresponding value (if any) of th
floating point type (see 7.3.5).

The same arithmetic operations are predefined for all floating point types (see 7.2). A design is erron
the execution of such an operation cannot deliver the correct result (that is, if the value correspondin
mathematical result is not a value of the floating point type).

An implementation must choose a representation for all floating-point types except for universal_real that
conforms either to IEEE Std 754 or to IEEE Std 854; in either case, a minimum representation size of
is required for this chosen representation.
Copyright © 2002 IEEE. All rights reserved. 39

IEEE
Std 1076-2002 IEEE STANDARD VHDL

n type
hose

hmetic
shed on

ut it is
nge.

IGH

tions of
eneous

posite
bject of
noncom-

e for an
ue of an
An implementation may restrict the bounds of the range constraint of floating point types other tha
universal_real. However, an implementation must allow the declaration of any floating point type w
range is wholly contained within the bounds allowed by the chosen representation.

NOTE—An implementation is not required to detect errors in the execution of a predefined floating point arit
operation, since the detection of overflow conditions resulting from such operations might not be easily accompli
many host systems.

3.1.4.1 Predefined floating point types

The only predefined floating point type is the type REAL. The range of REAL is host-dependent, b
guaranteed to be the largest allowed by the chosen representation. It is defined with an ascending ra

NOTE—The range of REAL in a particular implementation is determinable from the values of its 'LOW and 'H
attributes.

3.2 Composite types

Composite types are used to define collections of values. These include both arrays of values (collec
values of a homogeneous type) and records of values (collections of values of potentially heterog
types).

composite_type_definition ::=
array_type_definition

| record_type_definition

An object of a composite type represents a collection of objects, one for each element of the com
object. It is an error if a composite type contains elements of file types or protected types. Thus an o
a composite type ultimately represents a collection of objects of scalar or access types, one for each
posite subelement of the composite object.

3.2.1 Array types

An array object is a composite object consisting of elements that have the same subtype. The nam
element of an array uses one or more index values belonging to specified discrete types. The val
array object is a composite value consisting of the values of its elements.

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array (index_subtype_definition { , index_subtype_definition })

of element_subtype_indication

constrained_array_definition ::=
array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint ::= (discrete_range { , discrete_range })

discrete_range ::= discrete_subtype_indication | range
40 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

, posi-
e indices

ray has
value for
 the cor-

ject that
 of the
-
d right
imilarly,

ction).

ncon-
 array
efined

pe.

laration

dication
ndication
An array object is characterized by the number of indices (the dimensionality of the array); the type
tion, and range of each index; and the type and possible constraints of the elements. The order of th
is significant.

A one-dimensional array has a distinct element for each possible index value. A multidimensional ar
a distinct element for each possible sequence of index values that can be formed by selecting one
each index (in the given order). The possible values for a given index are all the values that belong to
responding range; this range of values is called the index range.

An unconstrained array definition defines an array type and a name denoting that type. For each ob
has the array type, the number of indices, the type and position of each index, and the subtype
elements are as in the type definition. The index subtype for a given index position is, by definition, the sub
type denoted by the type mark of the corresponding index subtype definition. The values of the left an
bounds of each index range are not defined, but must belong to the corresponding index subtype; s
the direction of each index range is not defined. The symbol <> (called a box) in an index subtype definition
stands for an undefined range (different objects of the type need not have the same bounds and dire

A constrained array definition defines both an array type and a subtype of this type:

— The array type is an implicitly declared anonymous type; this type is defined by an (implicit) u
strained array definition, in which the element subtype indication is that of the constrained
definition and in which the type mark of each index subtype definition denotes the subtype d
by the corresponding discrete range.

— The array subtype is the subtype obtained by imposition of the index constraint on the array ty

If a constrained array definition is given for a type declaration, the simple name declared by this dec
denotes the array subtype.

The direction of a discrete range is the same as the direction of the range or the discrete subtype in
that defines the discrete range. If a subtype indication appears as a discrete range, the subtype i
must not contain a resolution function.

Examples:

— Examples of constrained array declarations:

type MY_WORD is array (0 to 31) of BIT ;
-- A memory word type with an ascending range.

type DATA_IN is array (7 downto 0) of FIVE_LEVEL_LOGIC ;
-- An input port type with a descending range.

— Example of unconstrained array declarations:

type MEMORY is array (INTEGER range <>) of MY_WORD ;
-- A memory array type.

— Examples of array object declarations:

signal DATA_LINE : DATA_IN ;
-- Defines a data input line.

variable MY_MEMORY : MEMORY (0 to 2**n–1) ;

-- Defines a memory of 2n 32-bit words.
Copyright © 2002 IEEE. All rights reserved. 41

IEEE
Std 1076-2002 IEEE STANDARD VHDL

d array

bjects

y, the

on to the
he type
t
he
pe. These
ee 9.7).

oted by

the index
e range

int
iscrete

e
e same
implicit

onding
or each
eclara-
 of an

alue, if
 which

fined by
rwise,

mplicit

ator that
NOTE—The rules concerning constrained type declarations mean that a type declaration with a constraine
definition such as

type T is array (POSITIVE range MINIMUM to MAX) of ELEMENT;

is equivalent to the sequence of declarations

subtype index_subtype is POSITIVE range MINIMUM to MAX;

type array_type is array (index_subtype range <>) of ELEMENT;

subtype T is array_type (index_subtype);

where index_subtype and array_type are both anonymous. Consequently, T is the name of a subtype and all o
declared with this type mark are arrays that have the same index range.

3.2.1.1 Index constraints and discrete ranges

An index constraint determines the index range for every index of an array type and, thereb
corresponding array bounds.

For a discrete range used in a constrained array definition and defined by a range, an implicit conversi
predefined type INTEGER is assumed if each bound is either a numeric literal or an attribute, and if t
of both bounds (prior to the implicit conversion) is the type universal_integer. Otherwise, both bounds mus
be of the same discrete type, other than universal_integer; this type must be determined independently of t
context, but using the fact that the type must be discrete and that both bounds must have the same ty
rules apply also to a discrete range used in an iteration scheme (see 8.9) or a generation scheme (s

If an index constraint appears after a type mark in a subtype indication, then the type or subtype den
the type mark must not already impose an index constraint. The type mark must denote either an uncon-
strained array type or an access type whose designated type is such an array type. In either case,
constraint must provide a discrete range for each index of the array type, and the type of each discret
must be the same as that of the corresponding index.

An index constraint is compatible with the type denoted by the type mark if, and only if, the constra
defined by each discrete range is compatible with the corresponding index subtype. If any of the d
ranges defines a null range, any array thus constrained is a null array, having no elements. An array valu
satisfies an index constraint if at each index position the array value and the index constraint have th
index range. (Note, however, that assignment and certain other operations on arrays involve an
subtype conversion.)

The index range for each index of an array object is determined as follows:

— For a variable or signal declared by an object declaration, the subtype indication of the corresp
object declaration must define a constrained array subtype (and thereby, the index range f
index of the object). The same requirement exists for the subtype indication of an element d
tion, if the type of the record element is an array type, and for the element subtype indication
array type definition, if the type of the array element is itself an array type.

— For a constant declared by an object declaration, the index ranges are defined by the initial v
the subtype of the constant is unconstrained; otherwise, they are defined by this subtype (in
case the initial value is the result of an implicit subtype conversion).

— For an attribute whose value is specified by an attribute specification, the index ranges are de
the expression given in the specification, if the subtype of the attribute is unconstrained; othe
they are defined by this subtype (in which case the value of the attribute is the result of an i
subtype conversion).

— For an array object designated by an access value, the index ranges are defined by the alloc
creates the array object (see 7.3.6).
42 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ubtype,

sociated
ment in

whose
ws: The
al; the
 mini-

of an
rom the
) or port
n.

ncon-
obtained
of the
rmined
spond-

 that is
nt in the
 port) of

 whose
tions of
igh and
values

 corre-
y), then
ent(s),

tion or
ges are

bject or

meter
ubtype,
ges are

be
— For an interface object declared with a subtype indication that defines a constrained array s
the index ranges are defined by that subtype or subnature.

— For a formal parameter of a subprogram that is of an unconstrained array type and that is as
in whole (see 4.3.2.2), the index ranges are obtained from the corresponding association ele
the applicable subprogram call.

— For a formal parameter of a subprogram that is of an unconstrained array type and
subelements are associated individually (see 4.3.2.2), the index ranges are obtained as follo
directions of the index ranges of the formal parameter are those of the base type of the form
high and low bounds of the index ranges are respectively determined from the maximum and
mum values of the indices given in the association elements corresponding to the formal.

— For a formal generic or a formal port of a design entity or of a block statement that is
unconstrained array type and that is associated in whole, the index ranges are obtained f
corresponding association element in the generic map aspect (in the case of a formal generic
map aspect (in the case of a formal port) of the applicable (implicit or explicit) binding indicatio

— For a formal generic or a formal port of a design entity or of a block statement that is of an u
strained array type and whose subelements are associated individually, the index ranges are
as follows: The directions of the index ranges of the formal generic or formal port are those
base type of the formal; the high and low bounds of the index ranges are respectively dete
from the maximum and minimum values of the indices given in the association elements corre
ing to the formal.

— For a local generic or a local port of a component that is of an unconstrained array type and
associated in whole, the index ranges are obtained from the corresponding association eleme
generic map aspect (in the case of a local generic) or port map aspect (in the case of a local
the applicable component instantiation statement.

— For a local generic or a local port of a component that is of an unconstrained array type and
subelements are associated individually, the index ranges are obtained as follows: The direc
the index ranges of the local generic or local port are those of the base type of the local; the h
low bounds of the index ranges are respectively determined from the maximum and minimum
of the indices given in the association elements corresponding to the local.

If the index ranges for an interface object or member of an interface object are obtained from the
sponding association element (when associating in whole) or elements (when associating individuall
they are determined either by the actual part(s) or by the formal part(s) of the association elem
depending upon the mode of the interface object, as follows:

— For an interface object or member of an interface object whose mode is in, inout, or linkage, if the
actual part includes a conversion function or a type conversion, then the result type of that func
the type mark of the type conversion must be a constrained array subtype, and the index ran
obtained from this constrained subtype; otherwise, the index ranges are obtained from the o
value denoted by the actual designator(s).

— For an interface object or member of an interface object whose mode is out, buffer, inout, or
linkage, if the formal part includes a conversion function or a type conversion, then the para
subtype of that function or the type mark of the type conversion must be a constrained array s
and the index ranges are obtained from this constrained subtype; otherwise, the index ran
obtained from the object denoted by the actual designator(s).

For an interface object of mode inout or linkage, the index ranges determined by the first rule must
identical to the index ranges determined by the second rule.
Copyright © 2002 IEEE. All rights reserved. 43

IEEE
Std 1076-2002 IEEE STANDARD VHDL

se 14.

 type

e BIT,

d object
Examples:

type Word is array (NATURAL range <>) of BIT;
type Memory is array (NATURAL range <>) of Word (31 downto 0);

constant A_Word: Word := "10011";
-- The index range of A_Word is 0 to 4

entity E is
generic (ROM: Memory);
port (Op1, Op2: in Word; Result: out Word);

end entity E;
-- The index ranges of the generic and the ports are defined by the actuals associated
-- with an instance bound to E; these index ranges are accessible via the predefined
-- array attributes (see 14.1).

signal A, B: Word (1 to 4);
signal C: Word (5 downto 0);

Instance: entity E
generic map (1 to 2 => (others => '0'))
port map (A, Op2(3 to 4) => B (1 to 2), Op2(2) => B (3), Result => C (3 downto 1));

-- In this instance, the index range of ROM is 1 to 2 (matching that of the actual),
-- The index range of Op1 is 1 to 4 (matching the index range of A), the index range
-- of Op2 is 2 to 4, and the index range of Result is (3 downto 1)
-- (again matching the index range of the actual).

3.2.1.2 Predefined array types

The predefined array types are STRING and BIT_VECTOR, defined in package STANDARD in Clau

The values of the predefined type STRING are one-dimensional arrays of the predefined
CHARACTER, indexed by values of the predefined subtype POSITIVE:

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH ;

type STRING is array (POSITIVE range <>) of CHARACTER ;

The values of the predefined type BIT_VECTOR are one-dimensional arrays of the predefined typ
indexed by values of the predefined subtype NATURAL:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH ;

type BIT_VECTOR is array (NATURAL range <>) of BIT ;

Examples:

variable MESSAGE : STRING(1 to 17) := "THIS IS A MESSAGE" ;

signal LOW_BYTE : BIT_VECTOR (0 to 7) ;

3.2.2 Record types

A record type is a composite type, objects of which consist of named elements. The value of a recor
is a composite value consisting of the values of its elements.
44 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

a record
ord type

rations.
t subtype

he type

 which

 and is
e evalu-

 null
ained by
ject
lled the
t
rotected
record_type_definition ::=
record

element_declaration
{ element_declaration }

end record [record_type_simple_name]

element_declaration ::=
identifier_list : element_subtype_definition ;

identifier_list ::= identifier { , identifier }

element_subtype_definition ::= subtype_indication

Each element declaration declares an element of the record type. The identifiers of all elements of
type must be distinct. The use of a name that denotes a record element is not allowed within the rec
definition that declares the element.

An element declaration with several identifiers is equivalent to a sequence of single element decla
Each single element declaration declares a record element whose subtype is specified by the elemen
definition.

If a simple name appears at the end of a record type declaration, it must repeat the identifier of t
declaration in which the record type definition is included.

A record type definition creates a record type; it consists of the element declarations in the order in
they appear in the type definition.

Example:

type DATE is
record

DAY : INTEGER range 1 to 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range 0 to 4000;

end record;

3.3 Access types

An object declared by an object declaration is created by the elaboration of the object declaration
denoted by a simple name or by some other form of name. In contrast, objects that are created by th
ation of allocators (see 7.3.6) have no simple name. Access to such an object is achieved by an access value
returned by an allocator; the access value is said to designate the object.

access_type_definition ::= access subtype_indication

For each access type, there is a literal null that has a null access value designating no object at all. The
value of an access type is the default initial value of the type. Other values of an access type are obt
evaluation of a special operation of the type, called an allocator. Each such access value designates an ob
of the subtype defined by the subtype indication of the access type definition. This subtype is ca
designated subtype and the base type of this subtype is called the designated type. The designated type mus
not be a file type or a protected type; moreover, it must not have a subelement that is a file type or a p
type.
Copyright © 2002 IEEE. All rights reserved. 45

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ed by an

n is an
e access

ess type.
ess type.

t declared

he array

e 3.3). In
e access

e a prior

e iden-
as the

s a type
ss type
An object declared to be of an access type must be an object of class variable. An object designat
access value is always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype indicatio
index constraint. An access value belongs to a corresponding subtype of an access type either if th
value is the null value or if the value of the designated object satisfies the constraint.

Examples:

type ADDRESS is access MEMORY;

type BUFFER_PTR is access TEMP_BUFFER;

NOTES

1—An access value delivered by an allocator can be assigned to several variables of the corresponding acc
Hence, it is possible for an object created by an allocator to be designated by more than one variable of the acc
An access value can only designate an object created by an allocator; in particular, it cannot designate an objec
by an object declaration.

2—If the type of the object designated by the access value is an array type, this object is constrained with t
bounds supplied implicitly or explicitly for the corresponding allocator.

3.3.1 Incomplete type declarations

The designated type of an access type can be of any type except a file type or a protected type (se
particular, the type of an element of the designated type can be another access type or even the sam
type. This permits mutually dependent and recursive access types. Declarations of such types requir
incomplete type declaration for one or more types.

incomplete_type_declaration ::= type identifier ;

For each incomplete type declaration there must be a corresponding full type declaration with the sam
tifier. This full type declaration must occur later and immediately within the same declarative part
incomplete type declaration to which it corresponds.

Prior to the end of the corresponding full type declaration, the only allowed use of a name that denote
declared by an incomplete type declaration is as the type mark in the subtype indication of an acce
definition; no constraints are allowed in this subtype indication.

Example of a recursive type:

type CELL; -- An incomplete type declaration.

type LINK is access CELL;

type CELL is
record

VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;

end record CELL;
variable HEAD : LINK := new CELL'(0, null , null);
variable \NEXT\ : LINK := HEAD.SUCC;
46 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

primary
s implic-
akes

e value
value of
turned to
ator. The
Examples of mutually dependent access types:

type PART; -- Incomplete type declarations.
type WIRE;

type PART_PTR is access PART;
type WIRE_PTR is access WIRE;

type PART_LIST is array (POSITIVE range <>) of PART_PTR;
type WIRE_LIST is array (POSITIVE range <>) of WIRE_PTR;

type PART_LIST_PTR is access PART_LIST;
type WIRE_LIST_PTR is access WIRE_LIST;

type PART is
record

PART_NAME : STRING (1 to MAX_STRING_LEN);
CONNECTIONS : WIRE_LIST_PTR;

end record;

type WIRE is
record

WIRE_NAME : STRING (1 to MAX_STRING_LEN);
CONNECTS : PART_LIST_PTR;

end record;

3.3.2 Allocation and deallocation of objects

An object designated by an access value is allocated by an allocator for that type. An allocator is a
of an expression; allocators are described in 7.3.6. For each access type, a deallocation operation i
itly declared immediately following the full type declaration for the type. This deallocation operation m
it possible to deallocate explicitly the storage occupied by a designated object.

Given the following access type declaration:

type AT is access T;

the following operation is implicitly declared immediately following the access type declaration:

procedure DEALLOCATE (P: inout AT) ;

Procedure DEALLOCATE takes as its single parameter a variable of the specified access type. If th
of that variable is the null value for the specified access type, then the operation has no effect. If the
that variable is an access value that designates an object, the storage occupied by that object is re
the system and may then be reused for subsequent object creation through the invocation of an alloc
access parameter P is set to the null value for the specified type.

NOTE—If an access value is copied to a second variable and is then deallocated, the second variable is not set to null
and thus references invalid storage.
Copyright © 2002 IEEE. All rights reserved. 47

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e host
 file.

e mark
t be a file
ntain a
ust be a

type

llowing

ssociate

(see

e file
 the
3.4 File types

A file type definition defines a file type. File types are used to define objects representing files in th
system environment. The value of a file object is the sequence of values contained in the host system

file_type_definition ::= file of type_mark

The type mark in a file type definition defines the subtype of the values contained in the file. The typ
may denote either a constrained or an unconstrained subtype. The base type of this subtype must no
type, an access type, or a protected type. If the base type is a composite type, it must not co
subelement of an access type, a file type, or a protected type. If the base type is an array type, it m
one-dimensional array type.

Examples:

file of STRING -- Defines a file type that can contain
-- an indefinite number of strings of arbitrary length.

file of NATURAL -- Defines a file type that can contain
-- only nonnegative integer values.

3.4.1 File operations

The language implicitly defines the operations for objects of a file type. Given the following file
declaration:

type FT is file of TM;

where type mark TM denotes a scalar type, a record type, or a constrained array subtype, the fo
operations are implicitly declared immediately following the file type declaration:

procedure FILE_OPEN (file F: FT;
 External_Name: in STRING;
 Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_OPEN (Status: out FILE_OPEN_STATUS;
 file F: FT;
 External_Name: in STRING;
 Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_CLOSE (file F: FT);

procedure READ (file F: FT; VALUE: out TM);

procedure WRITE (file F: FT; VALUE: in TM);

function ENDFILE (file F: FT) return BOOLEAN;

The FILE_OPEN procedures open an external file specified by the External_Name parameter and a
it with the file object F. If the call to FILE_OPEN is successful (see below), the file object is said to beopen
and the file object has an access mode dependent on the value supplied to the Open_Kind parameter
14.2).

— If the value supplied to the Open_Kind parameter is READ_MODE, the access mode of th
object is read-only. In addition, the file object is initialized so that a subsequent READ will return
48 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 in the

e file
file

he file
ed

sults of

ll to
access

ciated

mpt to
rite or

nnot be

ested

called

ur.
lue of

xternal
, then
E that

 the
 formal

ject is
 error
ALSE
 another
n file
open.

erations
first value in the external file. Values are read from the file object in the order that they appear
external file.

— If the value supplied to the Open_Kind parameter is WRITE_MODE, the access mode of th
object is write-only. In addition, the external file is made initially empty. Values written to the
object are placed in the external file in the order in which they are written.

— If the value supplied to the Open_Kind parameter is APPEND_MODE, the access mode of t
object is write-only. In addition, the file object is initialized so that values written to it will be add
to the end of the external file in the order in which they are written.

In the second form of FILE_OPEN, the value returned through the Status parameter indicates the re
the procedure call:

— A value of OPEN_OK indicates that the call to FILE_OPEN was successful. If the ca
FILE_OPEN specifies an external file that does not exist at the beginning of the call, and if the
mode of the file object passed to the call is write-only, then the external file is created.

— A value of STATUS_ERROR indicates that the file object already has an external file asso
with it.

— A value of NAME_ERROR indicates that the external file does not exist (in the case of an atte
read from the external file) or the external file cannot be created (in the case of an attempt to w
append to an external file that does not exist). This value is also returned if the external file ca
associated with the file object for any reason.

— A value of MODE_ERROR indicates that the external file cannot be opened with the requ
Open_Kind.

The first form of FILE_OPEN causes an error to occur if the second form of FILE_OPEN, when
under identical conditions, would return a Status value other than OPEN_OK.

A call to FILE_OPEN of the first form is successful if and only if the call does not cause an error to occ
Similarly, a call to FILE_OPEN of the second form is successful if and only if it returns a Status va
OPEN_OK.

If a file object F is associated with an external file, procedure FILE_CLOSE terminates access to the e
file associated with F and closes the external file. If F is not associated with an external file
FILE_CLOSE has no effect. In either case, the file object is no longer open after a call to FILE_CLOS
associates the file object with the formal parameter F.

An implicit call to FILE_CLOSE exists in a subprogram body for every file object declared in
corresponding subprogram declarative part. Each such call associates a unique file object with the
parameter F and is called whenever the corresponding subprogram completes its execution.

Procedure READ retrieves the next value from a file; it is an error if the access mode of the file ob
write-only or if the file object is not open. Procedure WRITE appends a value to a file; it is similarly an
if the access mode of the file object is read-only or if the file is not open. Function ENDFILE returns F
if a subsequent READ operation on an open file object whose access mode is read-only can retrieve
value from the file; otherwise, it returns TRUE. Function ENDFILE always returns TRUE for an ope
object whose access mode is write-only. It is an error if ENDFILE is called on a file object that is not

For a file type declaration in which the type mark denotes an unconstrained array type, the same op
are implicitly declared, except that the READ operation is declared as follows:

procedure READ (file F: FT; VALUE: out TM; LENGTH: out Natural);
Copyright © 2002 IEEE. All rights reserved. 49

IEEE
Std 1076-2002 IEEE STANDARD VHDL

es, but
read by
n only
 by the
UE is
affected

 at

 access
 opera-

 (a file
). READ
l oper-

Package

ions of
 is a set of

) must
larative
e body
tected

to the
The READ operation for such a type performs the same function as the READ operation for other typ
in addition it returns a value in parameter LENGTH that specifies the actual length of the array value
the operation. If the object associated with formal parameter VALUE is shorter than this length, the
that portion of the array value read by the operation that can be contained in the object is returned
READ operation, and the rest of the value is lost. If the object associated with formal parameter VAL
longer than this length, then the entire value is returned and remaining elements of the object are un
by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would return TRUE
that point.

At the beginning of the execution of any file operation, the execution of the file operation blocks (see 12.5)
until exclusive access to the file object denoted by the formal parameter F can be granted. Exclusive
to the given file object is then granted and the execution of the file operation proceeds. Once the file
tion completes, exclusive access to the given file object is rescinded.

NOTE—Predefined package TEXTIO is provided to support formatted human-readable I/O. It defines type TEXT
type representing files of variable-length text strings) and type LINE (an access type that designates such strings
and WRITE operations are provided in package TEXTIO that append or extract data from a single line. Additiona
ations are provided to read or write entire lines and to determine the status of the current line or of the file itself.
TEXTIO is defined in Clause 14.

3.5 Protected types

A protected type definition defines a protected type. A protected type implements instantiatiable reg
sequential statements, each of which are guaranteed exclusive access to shared data. Shared data
variable objects that may be potentially accessed as a unit by multiple processes.

protected_type_definition ::=
 protected_type_declaration

 | protected_type_body

Each protected type declaration appearing immediately within a given declarative region (see 10.1
have exactly one corresponding protected type body appearing immediately within the same dec
region and textually subsequent to the protected type declaration. Similarly, each protected typ
appearing immediately within a given declarative region must have exactly one corresponding pro
type declaration appearing immediately within the same declarative region and textually prior
protected type body.

3.5.1 Protected type declarations

A protected type declaration declares the external interface to a protected type.

protected_type_declaration ::=
protected

protected_type_declarative_part
end protected [protected_type_simple_name]

protected_type_declarative_part ::=
{ protected_type_declarative_item }

protected_type_declarative_item ::=
subprogram_declaration

| attribute_specification
| use_clause
50 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

the type

 called a
 to the
 explic-
formal
 that is an
nction
 type or a
If a simple name appears at the end of a protected type declaration, it must repeat the identifier of
declaration in which the protected type definition is included.

Each subprogram specified within a given protected type declaration defines an abstract operation,
method, that operates atomically and exclusively on a single object of the protected type. In addition
(implied) object of the protected type operated on by the subprogram, additional parameters may be
itly specified in the formal parameter list of the subprogram declaration of the subprogram. Such
parameters must not be of an access type or a file type; moreover, they must not have a subelement
access type or a file type. Additionally, in the case of a function subprogram, the return type of the fu
must not be of an access type or file type; moreover, it must not have a subelement that is an access
file type.

Examples:

type SharedCounter is protected
procedure increment (N: Integer := 1);
procedure decrement (N: Integer := 1);
impure function value return Integer;

end protected SharedCounter;

type ComplexNumber is protected
procedure extract (variable r, i: out Real);
procedure add (variable a, b: inout ComplexNumber);

end protected ComplexNumber;

type VariableSizedBitArray is protected
procedure add_bit (index: Positive; value: Bit);
impure function size return Natural;

end protected VariableSizedBitArray;

3.5.2 Protected type bodies

A protected type body provides the implementation for a protected type.

protected_type_body ::=
protected body

protected_type_body_declarative_part
end protected body [protected_type_simple name]

protected_type_body_declarative_part ::=
{ protected_type_body_declarative_item }

protected_type_body_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration
Copyright © 2002 IEEE. All rights reserved. 51

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ponding

arations
ms may
Each subprogram declaration appearing in a given protected type declaration shall have a corres
subprogram body appearing in the corresponding protected type body.

NOTE—Subprogram bodies appearing in a protected type body not conformant to any of the subprogram decl
in the corresponding protected type declaration are visible only within the protected type body. Such subprogra
have parameters and (in the case of functions) return types that are or contain access and file types.

Examples:

type SharedCounter is protected body

variable counter: Integer := 0;

procedure increment (N: Integer := 1) is
begin

counter := counter + N;
end procedure increment;

procedure decrement (N: Integer := 1) is
begin

counter := counter – N;
end procedure decrement;

impure function value return Integer is
begin

return counter;
end function value;

end protected body SharedCounter;

type ComplexNumber is protected body

variable re, im: Real;

procedure extract (r, i: out Real) is
begin

r := re;
i := im;

end procedure extract;

procedure add (variable a, b: inout ComplexNumber) is
variable a_real, b_real: Real;
variable a_imag, b_imag: Real;

begin
a.extract (a_real, a_imag);
b.extract (b_real, b_imag);
re := a_real + b_real;
im := a_imag + b_imag;

end procedure add;
end protected body ComplexNumber;
52 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
type VariableSizeBitArray is protected body
type bit_vector_access is access Bit_Vector;

variable bit_array: bit_vector_access := null ;
variable bit_array_length: Natural := 0;

procedure add_bit (index: Positive; value: Bit) is
variable tmp: bit_vector_access;

begin
if index > bit_array_length then

tmp := bit_array;
bit_array := new bit_vector (1 to index);
if tmp /= null then

bit_array (1 to bit_array_length) := tmp.all;
deallocate (tmp);

end if;
bit_array_length := index;

end if;
bit_array (index) := value;

end procedure add_bit;

impure function size return Natural is
begin

return bit_array_length;
end function size;

end protected body VariableSizeBitArray;
Copyright © 2002 IEEE. All rights reserved. 53

IEEE
Std 1076-2002 IEEE STANDARD VHDL
54 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

.

hin its
tity; these

 declara-
he other

ssed in
4. Declarations

The language defines several kinds of entities that are declared explicitly or implicitly by declarations

declaration ::=
 type_declaration
| subtype_declaration
| object_declaration
| interface_declaration
| alias_declaration
| attribute_declaration
| component_declaration
| group_template_declaration
| group_declaration
| entity_declaration
| configuration_declaration
| subprogram_declaration
| package_declaration
| primary_unit
| architecture_body

For each form of declaration, the language rules define a certain region of text called the scope of the decla-
ration (see 10.2). Each form of declaration associates an identifier with a named entity. Only wit
scope, there are places where it is possible to use the identifier to refer to the associated declared en
places are defined by the visibility rules (see 10.3). At such places the identifier is said to be a name of the
entity; the name is said to denote the associated entity.

This clause describes type and subtype declarations, the various kinds of object declarations, alias
tions, attribute declarations, component declarations, and group and group template declarations. T
kinds of declarations are described in Clause 1 and Clause 2.

A declaration takes effect through the process of elaboration. Elaboration of declarations is discu
Clause 12.

4.1 Type declarations

A type declaration declares a type.

type_declaration ::=
full_type_declaration

| incomplete_type_declaration

full_type_declaration ::=
type identifier is type_definition ;

type_definition ::=
scalar_type_definition

| composite_type_definition
| access_type_definition
| file_type_definition
| protected_type_definition
Copyright © 2002 IEEE. All rights reserved. 55

IEEE
Std 1076-2002 IEEE STANDARD VHDL

he type
ase type.

claration
e subtype
y
lics, and

ions in

n in that

this type
the base

ubtype
 mean-
es not

e has no
utes, or

the type
ons and
 in the
The types created by the elaboration of distinct type definitions are distinct types. The elaboration of t
definition for a scalar type or a constrained array type creates both a base type and a subtype of the b

The simple name declared by a type declaration denotes the declared type, unless the type de
declares both a base type and a subtype of the base type, in which case the simple name denotes th
and the base type is anonymous. A type is said to be anonymous if it has no simple name. For explanator
purposes, this standard sometimes refers to an anonymous type by a pseudo-name, written in ita
uses such pseudo-names at places where the syntax normally requires an identifier.

NOTES

1—Two type definitions always define two distinct types, even if they are lexically identical. Thus, the type definit
the following two integer type declarations define distinct types:

type A is range 1 to 10;

type B is range 1 to 10;

This applies to type declarations for other classes of types as well.

2—The various forms of type definition are described in Clause 3. Examples of type declarations are also give
clause.

4.2 Subtype declarations

A subtype declaration declares a subtype.

subtype_declaration ::=
subtype identifier is subtype_indication ;

subtype_indication ::=
[resolution_function_name] type_mark [constraint]

type_mark ::=
type_name

| subtype_name

constraint ::=
range_constraint

| index_constraint

A type mark denotes a type or a subtype. If a type mark is the name of a type, the type mark denotes
and also the corresponding unconstrained subtype. The base type of a type mark is, by definition,
type of the type or subtype denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

If a subtype indication includes a resolution function name, then any signal declared to be of that s
will be resolved, if necessary, by the named function (see 2.4); for an overloaded function name, the
ing of the function name is determined by context (see 2.3 and 10.5). It is an error if the function do
meet the requirements of a resolution function (see 2.4). The presence of a resolution function nam
effect on the declarations of objects other than signals or on the declarations of files, aliases, attrib
other subtypes.

If the subtype indication does not include a constraint, the subtype is the same as that denoted by
mark. The condition imposed by a constraint is the condition obtained after evaluation of the expressi
ranges forming the constraint. The rules defining compatibility are given for each form of constraint
56 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ondition
ues. An

 appears
subtype,
present,
nge used
subtype

solution
e is an

ntain a

and

ects also
 by the

n object
s, if any,
ts.

 or pack-
 available
s for the
appropriate clause. These rules are such that if a constraint is compatible with a subtype, then the c
imposed by the constraint cannot contradict any condition already imposed by the subtype on its val
error occurs if any check of compatibility fails.

The direction of a discrete subtype indication is the same as the direction of the range constraint that
as the constraint of the subtype indication. If no constraint is present, and the type mark denotes a
the direction of the subtype indication is the same as that of the denoted subtype. If no constraint is
and the type mark denotes a type, the direction of the subtype indication is the same as that of the ra
to define the denoted type. The direction of a discrete subtype is the same as the direction of its
indication.

A subtype indication denoting an access type, a file type, or a protected type must not contain a re
function. Furthermore, the only allowable constraint on a subtype indication denoting an access typ
index constraint (and then only if the designated type is an array type).

A subtype indication denoting a subtype of a record type, a file type, or a protected type must not co
constraint.

NOTE—A subtype declaration does not define a new type.

4.3 Objects

An object is a named entity that contains (has) a value of a type. An object is one of the following:

— An object declared by an object declaration (see 4.3.1)

— A loop or generate parameter (see 8.9 and 9.7)

— A formal parameter of a subprogram (see 2.1.1)

— A formal port (see 1.1.1.2 and 9.1)

— A formal generic (see 1.1.1.1 and 9.1)

— A local port (see 4.5)

— A local generic (see 4.5)

— An implicit signal GUARD defined by the guard expression of a block statement (see 9.1)

In addition, the following are objects, but are not named entities:

— An implicit signal defined by any of the predefined attributes 'DELAYED, 'STABLE, 'QUIET,
'TRANSACTION (see 14.1)

— An element or slice of another object (see 6.3, 6.4, and 6.5)

— An object designated by a value of an access type (see 3.3)

There are four classes of objects: constants, signals, variables, and files. The variable class of obj
has an additional subclass: shared variables. The class of an explicitly declared object is specified
reserved word that must or may appear at the beginning of the declaration of that object. For a give
of a composite type, each subelement of that object is itself an object of the same class and subclas
as the given object. The value of a composite object is the aggregation of the values of its subelemen

Objects declared by object declarations are available for use within blocks, processes, subprograms,
ages. Loop and generate parameters are implicitly declared by the corresponding statement and are
for use only within that statement. Other objects, declared by interface declarations, create channel
communication of values between independent parts of a description.
Copyright © 2002 IEEE. All rights reserved. 57

IEEE
Std 1076-2002 IEEE STANDARD VHDL

la-
h identi-
ed by
ivalent

ression
lue of a

en the
claration.
he body

are
constant
spond-

rotected
e.
4.3.1 Object declarations

An object declaration declares an object of a specified type. Such an object is called an explicitly declared
object.

object_declaration ::=
constant_declaration

| signal_declaration
| variable_declaration
| file_declaration

An object declaration is called a single-object declaration if its identifier list has a single identifier; it is
called a multiple-object declaration if the identifier list has two or more identifiers. A multiple-object dec
ration is equivalent to a sequence of the corresponding number of single-object declarations. For eac
fier of the list, the equivalent sequence has a single-object declaration formed by this identifier, follow
a colon and by whatever appears at the right of the colon in the multiple-object declaration; the equ
sequence is in the same order as the identifier list.

A similar equivalence applies also for interface object declarations (see 4.3.2).

NOTE—The subelements of a composite declared object are not declared objects.

4.3.1.1 Constant declarations

A constant declaration declares a constant of the specified type. Such a constant is an explicitly declared
constant.

constant_declaration ::=
constant identifier_list : subtype_indication [:= expression] ;

If the assignment symbol ":=" followed by an expression is present in a constant declaration, the exp
specifies the value of the constant; the type of the expression must be that of the constant. The va
constant cannot be modified after the declaration is elaborated.

If the assignment symbol ":=" followed by an expression is not present in a constant declaration, th
declaration declares a deferred constant. Such a constant declaration must appear in a package de
The corresponding full constant declaration, which defines the value of the constant, must appear in t
of the package (see 2.6).

Formal parameters of subprograms that are of mode in may be constants, and local and formal generics
always constants; the declarations of such objects are discussed in 4.3.2. A loop parameter is a
within the corresponding loop (see 8.9); similarly, a generate parameter is a constant within the corre
ing generate statement (see 9.7). A subelement or slice of a constant is a constant.

It is an error if a constant declaration declares a constant that is of a file type, an access type, a p
type, or a composite type that has a subelement that is a file type, an access type, or a protected typ

NOTE—The subelements of a composite declared constant are not declared constants.

Examples:

constant TOLER : DISTANCE := 1.5 nm;

constant PI : REAL := 3.141592 ;

constant CYCLE_TIME : TIME := 100 ns;

constant Propagation_Delay : DELAY_LENGTH; -- A deferred constant.
58 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ubtype
 a signal

gnal. For
d signal

 transac-
 specify

e same
a
f. For a
e signal.
lt expres-

 scalar
 scalar
EFT.

 type, or
 an error

.

(see
ich
f scalar
iption, a

on of a
e type of

p aspect
he cor-
al
n of the
ompos-
nts being
4.3.1.2 Signal declarations

A signal declaration declares a signal of the specified type. Such a signal is an explicitly declared signal.

signal_declaration ::=
signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

If the name of a resolution function appears in the declaration of a signal or in the declaration of the s
used to declare the signal, then that resolution function is associated with the declared signal. Such
is called a resolved signal.

If a signal kind appears in a signal declaration, then the signals so declared are guarded signals of the kind
indicated. For a guarded signal that is of a composite type, each subelement is likewise a guarded si
a guarded signal that is of an array type, each slice (see 6.5) is likewise a guarded signal. A guarde
may be assigned values under the control of Boolean-valued guard expressions (or guards). When a given
guard becomes False, the drivers of the corresponding guarded signals are implicitly assigned a null
tion (see 8.4.1) to cause those drivers to turn off. A disconnection specification (see 5.3) is used to
the time required for those drivers to turn off.

If the signal declaration includes the assignment symbol followed by an expression, it must be of th
type as the signal. Such an expression is said to be a default expression. The default expression defines
default value associated with the signal or, for a composite signal, with each scalar subelement thereo
signal declared to be of a scalar subtype, the value of the default expression is the default value of th
For a signal declared to be of a composite subtype, each scalar subelement of the value of the defau
sion is the default value of the corresponding subelement of the signal.

In the absence of an explicit default expression, an implicit default value is assumed for a signal of a
subtype or for each scalar subelement of a composite signal, each of which is itself a signal of a
subtype. The implicit default value for a signal of a scalar subtype T is defined to be that given by T'L

It is an error if a signal declaration declares a signal that is of a file type, an access type, a protected
a composite type having a subelement that is a file type, an access type, or a protected type. It is also
if a guarded signal of a scalar type is neither a resolved signal nor a subelement of a resolved signal

A signal may have one or more sources. For a signal of a scalar type, each source is either a driver
12.6.1) or an out, inout, buffer, or linkage port of a component instance or of a block statement with wh
the signal is associated. For a signal of a composite type, each composite source is a collection o
sources, one for each scalar subelement of the signal. It is an error if, after the elaboration of a descr
signal has multiple sources and it is not a resolved signal. It is also an error if, after the elaborati
description, a resolved signal has more sources than the number of elements in the index range of th
the formal parameter of the resolution function associated with the resolved signal.

If a subelement or slice of a resolved signal of composite type is associated as an actual in a port ma
(either in a component instantiation statement, a block statement, or in a binding indication), and if t
responding formal is of mode out, inout, buffer, or linkage, then every scalar subelement of that sign
must be associated exactly once with such a formal in the same port map aspect, and the collectio
corresponding formal parts taken together constitute one source of the signal. If a resolved signal of c
ite type is associated as an actual in a port map aspect, that is equivalent to each of its subeleme
associated in the same port map aspect.
Copyright © 2002 IEEE. All rights reserved. 59

IEEE
Std 1076-2002 IEEE STANDARD VHDL

y scalar
 drivers

at is the
fined,

either by
rs to the
BLE,

rough

ffect the

nt, 9.5;

s of
ted type.
bodies,
ocesses
must not

 base
fined by

n speci-
uch an
le

 expres-
If a subelement of a resolved signal of composite type has a driver in a given process, then ever
subelement of that signal must have a driver in the same process, and the collection of all of those
taken together constitute one source of the signal.

The default value associated with a scalar signal defines the value component of a transaction th
initial contents of each driver (if any) of that signal. The time component of the transaction is not de
but the transaction is understood to have already occurred by the start of simulation.

Examples:

signal S : STANDARD.BIT_VECTOR (1 to 10) ;

signal CLK1, CLK2 : TIME ;

signal OUTPUT : WIRED_OR MULTI_VALUED_LOGIC;

NOTES

1—Ports of any mode are also signals. The term signal is used in this standard to refer to objects declared
signal declarations or by port declarations (or to subelements, slices, or aliases of such objects). It also refe
implicit signal GUARD (see 9.1) and to implicit signals defined by the predefined attributes 'DELAYED, 'STA
'QUIET, and 'TRANSACTION. The term port is used to refer to objects declared by port declarations only.

2—Signals are given initial values by initializing their drivers. The initial values of drivers are then propagated th
the corresponding net to determine the initial values of the signals that make up the net (see 12.6.3).

3—The value of a signal is indirectly modified by a signal assignment statement (see 8.4); such assignments a
future values of the signal.

4—The subelements of a composite, declared signal are not declared signals.

Cross-references: disconnection specifications, 5.3; disconnection statements, 9.5; guarded assignme
guarded blocks, 9.1; guarded targets, 9.5; signal guard, 9.1.

4.3.1.3 Variable declarations

A variable declaration declares a variable of the specified type. Such a variable is an explicitly declared
variable.

variable_declaration ::=
[shared] variable identifier_list : subtype_indication [:= expression] ;

A variable declaration that includes the reserved word shared is a shared variable declaration. A shared
variable declaration declares a shared variable. Shared variables are a subclass of the variable clas
objects. The base type of the subtype indication of a shared variable declaration must be a protec
Variables declared immediately within entity declarations, architecture bodies, packages, package
and blocks must be shared variables. Variables declared immediately within subprograms and pr
must not be shared variables. Variables may appear in protected type bodies; such variables, which
be shared variables, represent shared data.

If a given variable declaration appears (directly or indirectly) within a protected type body, then the
type denoted by the subtype indication of the variable declaration must not be the protected type de
the protected type body.

If the variable declaration includes the assignment symbol followed by an expression, the expressio
fies an initial value for the declared variable; the type of the expression must be that of the variable. S
expression is said to be an initial value expression. A variable declaration, whether it is a shared variab
declaration or not, whose subtype indication denotes a protected type must not have an initial value
sion (moreover, it must not include the immediately preceding assignment symbol).
60 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

able is
an initial
type T

ype is
 is itself
 be the

.5); such

aller. For
ther, and
 from the

o such data
on-deter-
If an initial value expression appears in the declaration of a variable, then the initial value of the vari
determined by that expression each time the variable declaration is elaborated. In the absence of
value expression, a default initial value applies. The default initial value for a variable of a scalar sub
is defined to be the value given by T'LEFT. The default initial value of a variable of a composite t
defined to be the aggregate of the default initial values of all of its scalar subelements, each of which
a variable of a scalar subtype. The default initial value of a variable of an access type is defined to
value null for that type.

NOTES

1—The value of a variable that is not a shared variable is modified by a variable assignment statement (see 8
assignments take effect immediately.

2—The variables declared within a given procedure persist until that procedure completes and returns to the c
procedures that contain wait statements, a variable therefore persists from one point in simulation time to ano
the value in the variable is thus maintained over time. For processes, which never complete, all variables persist
beginning of simulation until the end of simulation.

3—The subelements of a composite, declared variable are not declared variables.

4— Since the language guarantees mutual exclusion of accesses to shared data, but not the order of access t
by multiple processes in the same simulation cycle, the use of shared varaibles can be both non-portable and n
ministic. For example, consider the following architecture:

architecture UseSharedVariables of SomeEntity is
subtype ShortRange is INTEGER range -1 to 1;
type ShortRangeProtected is protected

procedure Set(V: ShortRange);
procedure Get(V: out ShortRange);

end protected;

type ShortRangeProtected is protected body
variable Local: ShortRange := 0;

begin
procedure Set(V: ShortRange) is
begin

Local := V;
end procedure Set;

procedure Get(V: out ShortRange) is
begin

V := Local;
end procedure Get;

end protected body;

shared variable Counter: ShortRangeProtected ;

begin
PROC1: process

variable V: ShortRange;
begin

Counter.Get(V);
Counter.Set(V+1);
wait;

end process PROC1;

PROC2: process
variable V: ShortRange;
begin

Counter.Get(V);
Counter.Set(V–1);
wait;

end process PROC2;
end architecture UseSharedVariables;

In particular, the value of Counter after the execution of both processes is not guaranteed to be 0.

5—Variables that are not shared variables may have a subtype indication denoting a protected type.
Copyright © 2002 IEEE. All rights reserved. 61

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ion is
.3.1.4).
h the
ression
ion of
e file

tion is

sion is
rovide
 is not

object.
 design

ode that
ted with
rnal file,
Examples:

variable INDEX : INTEGER range 0 to 99 := 0 ;
-- Initial value is determined by the initial value expression

variable COUNT : POSITIVE ;
-- Initial value is POSITIVE'LEFT; that is,1

variable MEMORY : BIT_MATRIX (0 to 7, 0 to 1023) ;
-- Initial value is the aggregate of the initial values of each element

shared variable Counter: SharedCounter;
-- See 3.5.1 and 3.5.2 for the definitions of SharedCounter

shared variable addend, augend, result: ComplexNumber;
-- See 3.5.1 and 3.5.2 for the definition of ComplexNumber

variable bit_stack: VariableSizeBitArray;
-- See 3.5.1 and 3.5.2 for the definition of VariableSizeBitArray;

4.3.1.4 File declarations

A file declaration declares a file of the specified type. Such a file is an explicitly declared file.

file_declaration ::=
file identifier_list : subtype_indication [file_open_information] ;

file_open_information ::= [open file_open_kind_expression] is file_logical_name

file_logical_name ::= string_expression

The subtype indication of a file declaration must define a file subtype.

If file open information is included in a given file declaration, then the file declared by the declarat
opened (see 3.4.1) with an implicit call to FILE_OPEN when the file declaration is elaborated (see 12
This implicit call is to the FILE_OPEN procedure of the first form, and it associates the identifier wit
file parameter F, the file logical name with the External_Name parameter, and the file open kind exp
with the Open_Kind parameter. If a file open kind expression is not included in the file open informat
a given file declaration, then the default value of READ_MODE is used during elaboration of th
declaration.

If file open information is not included in a given file declaration, then the file declared by the declara
not opened when the file declaration is elaborated.

The file logical name must be an expression of predefined type STRING. The value of this expres
interpreted as a logical name for a file in the host system environment. An implementation must p
some mechanism to associate a file logical name with a host-dependent file. Such a mechanism
defined by the language.

The file logical name identifies an external file in the host file system that is associated with the file
This association provides a mechanism for either importing data contained in an external file into the
during simulation or exporting data generated during simulation to an external file.

If multiple file objects are associated with the same external file, and each file object has an access m
is read-only (see 3.4.1), then values read from each file object are read from the external file associa
the file object. The language does not define the order in which such values are read from the exte
nor does it define whether each value is read once or multiple times (once per file object).
62 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 written
rict the

ct.

eters of
ignal

e
The language does not define the order of and the relationship, if any, between values read from and
to multiple file objects that are associated with the same external file. An implementation may rest
number of file objects that are associated at one time with a given external file.

If a formal subprogram parameter is of the class file, it must be associated with an actual that is a file obje

Examples:

type IntegerFile is file of INTEGER;

file F1: IntegerFile; -- No implicit FILE_OPEN is performed
-- during elaboration.

file F2: IntegerFile is "test.dat"; -- At elaboration, an implicit call is performed:
-- FILE_OPEN (F2, "test.dat");
-- The OPEN_KIND parameter defaults to
-- READ_MODE.

file F3: IntegerFile open WRITE_MODE is "test.dat";
-- At elaboration, an implicit call is performed:
-- FILE_OPEN (F3, "test.dat", WRITE_MODE);

NOTE—All file objects associated with the same external file should be of the same base type.

4.3.2 Interface declarations

An interface declaration declares an interface object of a specified type. Interface objects include interface
constants that appear as generics of a design entity, a component, or a block, or as constant param
subprograms; interface signals that appear as ports of a design entity, component, or block, or as s
parameters of subprograms; interface variables that appear as variable parameters of subprograms; interface
files that appear as file parameters of subprograms.

interface_declaration ::=
interface_constant_declaration

| interface_signal_declaration
| interface_variable_declaration
| interface_file_declaration

interface_constant_declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_signal_declaration ::=
[signal] identifier_list : [mode] subtype_indication [bus] [:= static_expression]

interface_variable_declaration ::=
[variable] identifier_list : [mode] subtype_indication [:= static_expression]

interface_file_declaration ::=
file identifier_list : subtype_indication

mode ::= in | out | inout | buffer | linkage

If no mode is explicitly given in an interface declaration other than an interface file declaration, modin is
assumed.
Copyright © 2002 IEEE. All rights reserved. 63

IEEE
Std 1076-2002 IEEE STANDARD VHDL

define a
ion must
.

f a file

e

 be the
nding
 of the

value(s)
 implicit
ions (see
ts of

portion
bject or
 by the

cribed in

terface

it state-

UIET,

NE

ith an
For an interface constant declaration or an interface signal declaration, the subtype indication must
subtype that is neither a file type, an access type, nor a protected type. Moreover, the subtype indicat
not denote a composite type with a subelement that is a file type, an access type, or a protected type

For an interface file declaration, it is an error if the subtype indication does not denote a subtype o
type.

If an interface signal declaration includes the reserved word bus, then the signal declared by that interfac
declaration is a guarded signal of signal kind bus.

If an interface declaration contains a ":=" symbol followed by an expression, the expression is said to
default expression of the interface object. The type of a default expression must be that of the correspo
interface object. It is an error if a default expression appears in an interface declaration and any
following conditions hold:

— The mode is linkage.

— The interface object is a formal signal parameter.

— The interface object is a formal variable parameter of mode other than in.

— The subtype indication of the interface declaration denotes a protected type.

In an interface signal declaration appearing in a port list, the default expression defines the default
associated with the interface signal or its subelements. In the absence of a default expression, an
default value is assumed for the signal or for each scalar subelement, as defined for signal declarat
4.3.1.2). The value, whether implicitly or explicitly provided, is used to determine the initial conten
drivers, if any, of the interface signal as specified for signal declarations.

An interface object provides a channel of communication between the environment and a particular
of a description. The value of an interface object may be determined by the value of an associated o
expression in the environment; similarly, the value of an object in the environment may be determined
value of an associated interface object. The manner in which such associations are made is des
4.3.2.2.

The value of an object is said to be read when one of the following conditions is satisfied:

— When the object is evaluated, and also (indirectly) when the object is associated with an in
object of the modes in, inout, or linkage

— When the object is a signal and a name denoting the object appears in a sensitivity list in a wa
ment or a process statement

— When the object is a signal and the value of any of its predefined attributes 'STABLE, 'Q
'DELAYED, 'TRANSACTION, 'EVENT, 'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, or
'LAST_VALUE is read

— When one of its subelements is read

— When the object is a file and a READ operation is performed on the file

— When the object is a file of type STD.TEXTIO.TEXT and the procedure STD.TEXTIO.READLI
is called with the given object associated with the formal parameter F of the given procedure.

The value of an object is said to be updated when one of the following conditions is satisfied:

— When it is the target of an assignment, and also (indirectly) when the object is associated w
interface object of the modes out, buffer, inout, or linkage
64 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

TE-
dure.

ing an
arame-
r

ing the
IET,

 of the
of a

tes of

ing as
-

a formal of

onent, a

nt
, or any
— When one of its subelements is updated

— When the object is a file and a WRITE operation is performed on the file

— When the object is a file of type STD.TEXTIO.TEXT and the procedure STD.TEXTIO.WRI
LINE is called with the given object associated with the formal parameter F of the given proce

It is an error if an object other than a signal, variable, or file object is updated.

An interface object has one of the following modes:

— in. The value of the interface object is allowed to be read, but it must not be updated. Read
attribute of the interface object is allowed, unless the interface object is a subprogram signal p
ter and the attribute is one of 'STABLE, 'QUIET, 'DELAYED, 'TRANSACTION, 'DRIVING, o
'DRIVING_VALUE.

— out. The value of the interface object is allowed to be updated, but it must not be read. Read
attributes of the interface element, other than the predefined attributes 'STABLE, 'QU
'DELAYED, 'TRANSACTION, 'EVENT, 'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, and
'LAST_VALUE, is allowed. No other reading is allowed.

— inout. Reading and updating the value of the interface object is allowed. Reading the attributes
interface object, other than the attributes 'STABLE, 'QUIET, 'DELAYED, and 'TRANSACTION
signal parameter, is also permitted.

— buffer. Reading and updating the value of the interface object is allowed. Reading the attribu
the interface object is also permitted.

— linkage. Reading and updating the value of the interface object is allowed, but only by appear
an actual corresponding to an interface object of mode linkage. No other reading or updating is per
mitted.

NOTES

1—A subprogram parameter that is of a file type must be declared as a file parameter.

2—Since shared variables are a subclass of variables, a shared variable may be associated as an actual with
class variable.

3—Ports of mode linkage may be removed from a future version of the language. See Annex F.

4—Interface file objects do not have modes.

4.3.2.1 Interface lists

An interface list contains the declarations of the interface objects required by a subprogram, a comp
design entity, or a block statement.

interface_list ::=
interface_element { ; interface_element }

interface_element ::= interface_declaration

A generic interface list consists entirely of interface constant declarations. A port interface list consists
entirely of interface signal declarations. A parameter interface list may contain interface consta
declarations, interface signal declarations, interface variable declarations, interface file declarations
combination thereof.
Copyright © 2002 IEEE. All rights reserved. 65

IEEE
Std 1076-2002 IEEE STANDARD VHDL

face list

r names

ing inter-
tion, or
A name that denotes an interface object must not appear in any interface declaration within the inter
containing the denoted interface object except to declare this object.

NOTE—The restriction mentioned in the previous sentence makes the following three interface lists illegal:

entity E is
generic (G1: INTEGER; G2: INTEGER := G1); -- Illegal
port (P1: STRING; P2: STRING(P1'RANGE)); -- Illegal

procedure X (Y1, Y2: INTEGER; Y3: INTEGER range Y1 to Y2); -- Illegal
end E;

However, the following interface lists are legal:

entity E is
generic (G1, G2, G3, G4: INTEGER);
port (P1, P2: STRING (G1 to G2));
procedure X (Y3: INTEGER range G3 to G4);

end E;

4.3.2.2 Association lists

An association list establishes correspondences between formal or local generic, port, or paramete
on the one hand and local or actual names or expressions on the other.

association_list ::=
association_element { , association_element }

association_element ::=
[formal_part =>] actual_part

formal_part ::=
formal_designator

| function_name (formal_designator)
| type_mark (formal_designator)

formal_designator ::=
generic_name

| port_name
| parameter_name

actual_part ::=
actual_designator

| function_name (actual_designator)
| type_mark (actual_designator)

actual_designator ::=
expression

| signal_name
| variable_name
| file_name
| open

Each association element in an association list associates one actual designator with the correspond
face element in the interface list of a subprogram declaration, component declaration, entity declara
block statement. The corresponding interface element is determined either by position or by name.
66 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 to
on list

ar in the
 once a

le argu-

ion
 actual.
 the

, where
is
ark
type con-
l is not

nction
 of the
 a

espond-
s

a type
e mode
he
 provides
 of the

actual

ype

posite
e formal
sion is
 or type
An association element is said to be named if the formal designator appears explicitly; otherwise, it is said
be positional. For a positional association, an actual designator at a given position in an associati
corresponds to the interface element at the same position in the interface list.

Named associations can be given in any order, but if both positional and named associations appe
same association list, then all positional associations must occur first at their normal position. Hence
named association is used, the rest of the association list must use only named associations.

In the following paragraphs, the term actual refers to an actual designator, and the term formal refers to a
formal designator.

The formal part of a named association element may be in the form of a function call, where the sing
ment of the function is the formal designator itself, if and only if the mode of the formal is out, inout,
buffer, or linkage, and if the actual is not open. In this case, the function name must denote a funct
whose single parameter is of the type of the formal and whose result is the type of the corresponding
Such a conversion function provides for type conversion in the event that data flows from the formal to
actual.

Alternatively, the formal part of a named association element may be in the form of a type conversion
the expression to be converted is the formal designator itself, if and only if the mode of the formal out,
inout, buffer, or linkage, and if the actual is not open. In this case, the base type denoted by the type m
must be the same as the base type of the corresponding actual. Such a type conversion provides for
version in the event that data flows from the formal to the actual. It is an error if the type of the forma
closely related to the type of the actual. (See 7.3.5.)

Similarly, the actual part of a (named or positional) association element may be in the form of a fu
call, where the single argument of the function is the actual designator itself, if and only if the mode
formal is in, inout, or linkage, and if the actual is not open. In this case, the function name must denote
function whose single parameter is of the type of the actual, and whose result is the type of the corr
ing formal. In addition, the formal must not be of class constant for this interpretation to hold (the actual i
interpreted as an expression that is a function call if the class of the formal is constant). Such a conversion
function provides for type conversion in the event that data flows from the actual to the formal.

Alternatively, the actual part of a (named or positional) association element may be in the form of
conversion, where the expression to be type converted is the actual designator itself, if and only if th
of the formal is in, inout, or linkage, and if the actual is not open. In this case, the base type denoted by t
type mark must be the same as the base type of the corresponding formal. Such a type conversion
for type conversion in the event that data flows from the actual to the formal. It is an error if the type
actual is not closely related to the type of the formal.

The type of the actual (after applying the conversion function or type conversion, if present in the
part) must be the same as the type of the corresponding formal, if the mode of the formal is in, inout, or
linkage, and if the actual is not open. Similarly, if the mode of the formal is out, inout, buffer, or linkage,
and if the actual is not open, then the type of the formal (after applying the conversion function or t
conversion, if present in the formal part) must be the same as the corresponding actual.

For the association of signals with corresponding formal ports, association of a formal of a given com
type with an actual of the same type is equivalent to the association of each scalar subelement of th
with the matching subelement of the actual, provided that no conversion function or type conver
present in either the actual part or the formal part of the association element. If a conversion function
conversion is present, then the entire formal is considered to be associated with the entire actual.
Copyright © 2002 IEEE. All rights reserved. 67

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ion of a
ociation
ifferent
ill have an
ath (see

terface

said to be
bject
t, and all
ociation

e formal

al port

t. If the

t for that

t, signal,

 to make
t associa-

a default
 expres-

6.2).

 of these

nction
-
ociation

 of Param
 conver-
Similarly, for the association of actuals with corresponding formal subprogram parameters, associat
formal parameter of a given composite type with an actual of the same type is equivalent to the ass
of each scalar subelement of the formal parameter with the matching subelement of the actual. D
parameter passing mechanisms may be required in each case, but in both cases the associations w
equivalent effect. This equivalence applies provided that no actual is accessible by more than one p
2.1.1.1).

A formal must be either an explicitly declared interface object or member (see Clause 3) of such an in
object. In the former case, such a formal is said to be associated in whole. In the latter cases, named
association must be used to associate the formal and actual; the subelements of such a formal are
associated individually. Furthermore, every scalar subelement of the explicitly declared interface o
must be associated exactly once with an actual (or subelement thereof) in the same association lis
such associations must appear in a contiguous sequence within that association list. Each ass
element that associates a slice or subelement (or slice thereof) of an interface object must identify th
with a locally static name.

If an interface element in an interface list includes a default expression for a formal generic, for a form
of any mode other than linkage, or for a formal variable or constant parameter of mode in, then any
corresponding association list need not include an association element for that interface elemen
association element is not included in the association list, or if the actual is open, then the value of the
default expression is used as the actual expression or signal value in an implicit association elemen
interface element.

It is an error if an actual of open is associated with a formal that is associated individually. An actual of open
counts as the single association allowed for the corresponding formal, but does not supply a constan
or variable (as is appropriate to the object class of the formal) to the formal.

NOTES

1—It is a consequence of these rules that, if an association element is omitted from an association list in order
use of the default expression on the corresponding interface element, all subsequent association elements in tha
tion list must be named associations.

2—Although a default expression can appear in an interface element that declares a (local or formal) port, such
expression is not interpreted as the value of an implicit association element for that port. Instead, the value of the
sion is used to determine the effective value of that port during simulation if the port is left unconnected (see 12.

3—Named association may not be used when invoking implicitly defined operators, since the formal parameters
operators are not named (see 7.2).

4—Since information flows only from the actual to the formal when the mode of the formal is in, and since a fu
call is itself an expression, the actual associated with a formal of object class constant is never interpreted as a conver
sion function or a type conversion converting an actual designator that is an expression. Thus, the following ass
element is legal:

Param => F (open)

under the conditions that Param is a constant formal and F is a function returning the same base type as that
and having one or more parameters, all of which may be defaulted. It is an error if a conversion function or type
sion appears in the actual part when the actual designator is open.

4.3.3 Alias declarations

An alias declaration declares an alternate name for an existing named entity.

alias_declaration ::=
alias alias_designator [: subtype_indication] is name [signature] ;

alias_designator ::= identifier | character_literal | operator_symbol
68 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

nal, or a
ect. An
ters.

 present,
enotes a
lias of a
otes an

esigna-
operator
 2.3.1.

(a name,
cteristics
tity having

 specified
dication
en the
llowing

ype

ject is

ion of

bject is
btype
lement

 of the
s not

lias.

 of the
s
tching
An object alias is an alias whose alias designator denotes an object (i.e., a constant, a variable, a sig
file). A nonobject alias is an alias whose alias designator denotes some named entity other than an obj
alias can be declared for all named entities except for labels, loop parameters, and generate parame

The alias designator in an alias declaration denotes the named entity specified by the name and, if
the signature in the alias declaration. An alias of a signal denotes a signal; an alias of a variable d
variable; an alias of a constant denotes a constant; and an alias of a file denotes a file. Similarly, an a
subprogram (including an operator) denotes a subprogram, an alias of an enumeration literal den
enumeration literal, and so forth.

If the alias designator is a character literal, the name must denote an enumeration literal. If the alias d
tor is an operator symbol, the name must denote a function, and that function then overloads the
symbol. In this latter case, the operator symbol and the function both must meet the requirements of

NOTES

1—Since, for example, the alias of a variable is a variable, every reference within this document to a designator
character literal, or operator symbol) that requires the designator to denote a named entity with certain chara
(e.g., to be a variable) allows the designator to denote an alias, so long as the aliased name denotes a named en
the required characteristics. This situation holds except where aliases are specifically prohibited.

2—The alias of an overloadable named entity is itself overloadable.

4.3.3.1 Object aliases

The following rules apply to object aliases:

a) A signature must not appear in a declaration of an object alias.

b) The name must be a static name (see 6.1) that denotes an object. The base type of the name
in an alias declaration must be the same as the base type of the type mark in the subtype in
(if the subtype indication is present); this type must not be a multidimensional array type. Wh
object denoted by the name is referenced via the alias defined by the alias declaration, the fo
rules apply:

1) If the subtype indication is absent or if it is present and denotes an unconstrained array t

— If the alias designator denotes a slice of an object, then the subtype of the ob
viewed as if it were of the subtype specified by the slice.

— Otherwise, the object is viewed as if it were of the subtype specified in the declarat
the object denoted by the name.

2) If the subtype indication is present and denotes a constrained array subtype, then the o
viewed as if it were of the subtype specified by the subtype indication; moreover, the su
denoted by the subtype indication must include a matching element (see 7.2.2) for each e
of the object denoted by the name.

3) If the subtype indication denotes a scalar subtype, then the object is viewed as if it were
subtype specified by the subtype indication; moreover, it is an error if this subtype doe
have the same bounds and direction as the subtype denoted by the object name.

c) The same applies to attribute references where the prefix of the attribute name denotes the a

d) A reference to an element of an object alias is implicitly a reference to the matching element
object denoted by the alias. A reference to a slice of an object alias consisting of the elemente1, e2,
..., en is implicitly a reference to a slice of the object denoted by the alias consisting of the ma
elements corresponding to each of e1 through en.
Copyright © 2002 IEEE. All rights reserved. 69

IEEE
Std 1076-2002 IEEE STANDARD VHDL

eration
 profile

literals
plicit

 has, as
ubstitut-
mplicit
ased.

 of the
plicit

ame con-
 of the

tor for
plicit
es the
4.3.3.2 Nonobject aliases

The following rules apply to nonobject aliases:

a) A subtype indication must not appear in a nonobject alias.

b) A signature is required if the name denotes a subprogram (including an operator) or enum
literal. In this case, the signature is required to match (see 2.3) the parameter and result type
of exactly one of the subprograms or enumeration literals denoted by the name.

c) If the name denotes an enumeration type, then one implicit alias declaration for each of the
of the type immediately follows the alias declaration for the enumeration type; each such im
declaration has, as its alias designator, the simple name or character literal of the literal and
its name, a name constructed by taking the name of the alias for the enumeration type and s
ing the simple name or character literal being aliased for the simple name of the type. Each i
alias has a signature that matches the parameter and result type profile of the literal being ali

d) Alternatively, if the name denotes a physical type, then one implicit alias declaration for each
units of the type immediately follows the alias declaration for the physical type; each such im
declaration has, as its alias designator, the simple name of the unit and has, as its name, a n
structed by taking the name of the alias for the physical type and substituting the simple name
unit being aliased for the simple name of the type.

e) Finally, if the name denotes a type, then implicit alias declarations for each predefined opera
the type immediately follow the explicit alias declaration for the type and, if present, any im
alias declarations for literals or units of the type. Each implicit alias has a signature that match
parameter and result type profile of the implicit operator being aliased.

Examples:

variable REAL_NUMBER : BIT_VECTOR (0 to 31);

alias SIGN : BIT is REAL_NUMBER (0);
-- SIGN is now a scalar (BIT) value

alias MANTISSA : BIT_VECTOR (23 downto 0) is REAL_NUMBER (8 to 31);
-- MANTISSA is a 24b value whose range is 23 downto 0.
-- Note that the ranges of MANTISSA and REAL_NUMBER (8 to 31)
-- have opposite directions. A reference to MANTISSA (23 downto 18)
-- is equivalent to a reference to REAL_NUMBER (8 to 13).

alias EXPONENT : BIT_VECTOR (1 to 7) is REAL_NUMBER (1 to 7);
-- EXPONENT is a 7-bit value whose range is 1 to 7.

alias STD_BIT is STD.STANDARD.BIT; -- explicit alias

-- alias '0' is STD.STANDARD.'0' -- implicit aliases …
-- [return STD.STANDARD.BIT];
-- alias '1' is STD.STANDARD.'1'
-- [return STD.STANDARD.BIT];
-- alias "and" is STD.STANDARD."and"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
-- alias "or" is STD.STANDARD."or"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
70 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ent or

r more
r-defined
se 14
pdated.

laration.

tity
constant,
-- alias "nand" is STD.STANDARD."nand"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
-- alias "nor" is STD.STANDARD."nor"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
-- alias "xor" is STD.STANDARD."xor"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
-- alias "xnor" is STD.STANDARD."xnor"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
-- alias "not" is STD.STANDARD."not"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];
-- alias "=" is STD.STANDARD."="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BOOLEAN];
-- alias "/=" is STD.STANDARD."/="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BOOLEAN];
-- alias "<" is STD.STANDARD."<"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BOOLEAN];
-- alias "<=" is STD.STANDARD."<="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BOOLEAN];
-- alias ">" is STD.STANDARD.">"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BOOLEAN];
-- alias ">=" is STD.STANDARD.">="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BOOLEAN];

NOTE—An alias of an explicitly declared object is not an explicitly declared object, nor is the alias of a subelem
slice of an explicitly declared object an explicitly declared object.

4.4 Attribute declarations

An attribute is a value, function, type, range, signal, or constant that may be associated with one o
named entities in a description. There are two categories of attributes: predefined attributes and use
attributes. Predefined attributes provide information about named entities in a description. Clau
contains the definition of all predefined attributes. Predefined attributes that are signals must not be u

User-defined attributes are constants of arbitrary type. Such attributes are defined by an attribute dec

attribute_declaration ::=
attribute identifier: type_mark ;

The identifier is said to be the designator of the attribute. An attribute may be associated with an en
declaration, an architecture, a configuration, a procedure, a function, a package, a type, a subtype, a
a signal, a variable, a quantity, a terminal, a component, a label, a literal, a unit, a group, or a file.
Copyright © 2002 IEEE. All rights reserved. 71

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e with a
ed not be

ion for
cification,

 not with
than the
the same
ject as the

e entire
ment of

lement of

ponent
ssociate

he local

 of the

ed
It is an error if the type mark denotes an access type, a file type, a protected type, or a composite typ
subelement that is an access type, a file type, or a protected type. The denoted type or subtype ne
constrained.

Examples:

type COORDINATE is record X,Y: INTEGER; end record;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

attribute LOCATION: COORDINATE;

attribute PIN_NO: POSITIVE;

NOTES

1—A given named entity E will be decorated with the user-defined attribute A if and only if an attribute specificat
the value of attribute A exists in the same declarative part as the declaration of E. In the absence of such a spe
an attribute name of the form E'A is illegal.

2—A user-defined attribute is associated with the named entity denoted by the name specified in a declaration,
the name itself. Hence, an attribute of an object can be referenced by using an alias for that object rather
declared name of the object as the prefix of the attribute name, and the attribute referenced in such a way is
attribute (and therefore has the same value) as the attribute referenced by using the declared name of the ob
prefix.

3—A user-defined attribute of a port, signal, variable, or constant of some composite type is an attribute of th
port, signal, variable, or constant, not of its elements. If it is necessary to associate an attribute with each ele
some composite object, then the attribute itself can be declared to be of a composite type such that for each e
the object, there is a corresponding element of the attribute.

4.5 Component declarations

A component declaration declares an interface to a virtual design entity that may be used in a com
instantiation statement. A component configuration or a configuration specification can be used to a
a component instance with a design entity that resides in a library.

component_declaration ::=
component identifier [is]

[local_generic_clause]
[local_port_clause]

end component [component_simple_name] ;

Each interface object in the local generic clause declares a local generic. Each interface object in t
port clause declares a local port.

If a simple name appears at the end of a component declaration, it must repeat the identifier
component declaration.

4.6 Group template declarations

A group template declaration declares a group template, which defines the allowable classes of nam
entities that can appear in a group.

group_template_declaration ::=
group identifier is (entity_class_entry_list) ;
72 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

position.

n in the
pear in
 within

ibed

e class

 contains

laration
e declara-
rogram
ody.

e group
entity_class_entry_list ::=
entity_class_entry { , entity_class_entry }

entity_class_entry ::= entity_class [<>]

A group template is characterized by the number of entity class entries and the entity class at each
Entity classes are described in 5.1.

An entity class entry that is an entity class defines the entity class that may appear at that positio
group type. An entity class entry that includes a box (<>) allows zero or more group constituents to ap
this position in the corresponding group declaration; such an entity class entry must be the last one
the entity class entry list.

Examples:

group PIN2PIN is (signal, signal); -- Groups of this type consist of two signals.

group RESOURCE is (label <>); -- Groups of this type consist of any number
-- of labels.

group DIFF_CYCLES is (group <>); -- A group of groups.

4.7 Group declarations

A group declaration declares a group, a named collection of named entities. Named entities are descr
in 5.1.

group_declaration ::=
group identifier : group_template_name (group_constituent_list) ;

group_constituent_list ::= group_constituent { , group_constituent }

group_constituent ::= name | character_literal

It is an error if the class of any group constituent in the group constituent list is not the same as th
specified by the corresponding entity class entry in the entity class entry list of the group template.

A name that is a group constituent may not be an attribute name (see 6.6). Moreover, if such a name
a prefix, it is an error if the prefix is a function call.

If a group declaration appears within a package body, and a group constituent within that group dec
is the same as the simple name of the package body, then the group constituent denotes the packag
tion and not the package body. The same rule holds for group declarations appearing within subp
bodies containing group constituents with the same designator as that of the enclosing subprogram b

If a group declaration contains a group constituent that denotes a variable of an access type, th
declaration declares a group incorporating the variable itself, and not the designated object, if any.
Copyright © 2002 IEEE. All rights reserved. 73

IEEE
Std 1076-2002 IEEE STANDARD VHDL
Examples:

group G1: RESOURCE (L1, L2); -- A group of two labels.

group G2: RESOURCE (L3, L4, L5); -- A group of three labels.

group C2Q: PIN2PIN (PROJECT.GLOBALS.CK, Q); -- Groups may associate named
-- entities in different declarative
-- parts (and regions).

group CONSTRAINT1: DIFF_CYCLES (G1, G3); -- A group of groups.
74 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

DL
viously
ns, and

t either
rmore,
ich the

s or the
ive part

fines the

es, both

ntities
t denoted

s of
at each
r the

f the
5. Specifications

This clause describes specifications, which may be used to associate additional information with a VH
description. A specification associates additional information with a named entity that has been pre
declared. There are three kinds of specifications: attribute specifications, configuration specificatio
disconnection specifications.

A specification always relates to named entities that already exist; thus a given specification mus
follow or (in certain cases) be contained within the declaration of the entity to which it relates. Furthe
a specification must always appear either immediately within the same declarative part as that in wh
declaration of the named entity appears, or (in the case of specifications that relate to design unit
interface objects of design units, subprograms, or block statements) immediately within the declarat
associated with the declaration of the design unit, subprogram body, or block statement.

5.1 Attribute specification

An attribute specification associates a user-defined attribute with one or more named entities and de
value of that attribute for those entities. The attribute specification is said to decorate the named entity.

attribute_specification ::=
attribute attribute_designator of entity_specification is expression ;

entity_specification ::=
entity_name_list : entity_class

entity_class ::=
entity | architecture | configuration

| procedure | function | package
| type | subtype | constant
| signal | variable | component
| label | literal | units
| group | file

entity_name_list ::=
entity_designator { , entity_designator }

| others
| all

entity_designator ::= entity_tag [signature]

entity_tag ::= simple_name | character_literal | operator_symbol

The attribute designator must denote an attribute. The entity name list identifies those named entiti
implicitly and explicitly defined, that inherit the attribute, described as follows:

— If a list of entity designators is supplied, then the attribute specification applies to the named e
denoted by those designators. It is an error if the class of those names is not the same as tha
by the entity class.

— If the reserved word others is supplied, then the attribute specification applies to named entitie
the specified class that are declared in the immediately enclosing declarative part, provided th
such entity is not explicitly named in the entity name list of a previous attribute specification fo
given attribute.

— If the reserved word all is supplied, then the attribute specification applies to all named entities o
specified class that are declared in the immediately enclosing declarative part.
Copyright © 2002 IEEE. All rights reserved. 75

IEEE
Std 1076-2002 IEEE STANDARD VHDL

a
 in that
larative

ration or

mber of

subpro-
esult type
losing

ute as a
e same
name
sion is

config-
rly, an
tement
ent. An
onstant,
r within
 name,

 in an

it is an
re both

aracter
r more

entities

h the
te spec-

 name
ute and
 alias) as
An attribute specification with the entity name list others or all for a given entity class that appears in
declarative part must be the last such specification for the given attribute for the given entity class
declarative part. It is an error if a named entity in the specified entity class is declared in a given dec
part following such an attribute specification.

If a name in an entity name list denotes a subprogram or package, it denotes the subprogram decla
package declaration. Subprogram and package bodies cannot be attributed.

An entity designator that denotes an alias of an object is required to denote the entire object, not a me
an object.

The entity tag of an entity designator containing a signature must denote the name of one or more
grams or enumeration literals. In this case, the signature must match (see 2.3.2) the parameter and r
profile of exactly one subprogram or enumeration literal in the current declarative part; the enc
attribute specification then decorates that subprogram or enumeration literal.

The expression specifies the value of this attribute for each of the named entities inheriting the attrib
result of this attribute specification. The type of the expression in the attribute specification must be th
as (or implicitly convertible to) the type mark in the corresponding attribute declaration. If the entity
list denotes an entity declaration, architecture body, or configuration declaration, then the expres
required to be locally static (see 7.4).

An attribute specification for an attribute of a design unit (i.e., an entity declaration, an architecture, a
uration, or a package) must appear immediately within the declarative part of that design unit. Simila
attribute specification for an attribute of an interface object of a design unit, subprogram, or block sta
must appear immediately within the declarative part of that design unit, subprogram, or block statem
attribute specification for an attribute of a procedure, a function, a type, a subtype, an object (i.e., a c
a file, a signal, or a variable), a component, literal, unit name, group, or a labeled entity must appea
the declarative part in which that procedure, function, type, subtype, object, component, literal, unit
group, or label, respectively, is explicitly or implicitly declared.

For a given named entity, the value of a user-defined attribute of that entity is the value specified
attribute specification for that attribute of that entity.

It is an error if a given attribute is associated more than once with a given named entity. Similarly,
error if two different attributes with the same simple name (whether predefined or user-defined) a
associated with a given named entity.

An entity designator that is a character literal is used to associate an attribute with one or more ch
literals. An entity designator that is an operator symbol is used to associate an attribute with one o
overloaded operators.

If the entity tag is overloaded and the entity designator does not contain a signature, all named
already declared in the current declarative part and matching the specification are decorated.

If an attribute specification appears, it must follow the declaration of the named entity with whic
attribute is associated, and it must precede all references to that attribute of that named entity. Attribu
ifications are allowed for all user-defined attributes, but are not allowed for predefined attributes.

An attribute specification may reference a named entity by using an alias for that entity in the entity
list, but such a reference counts as the single attribute specification that is allowed for a given attrib
therefore prohibits a subsequent specification that uses the declared name of the entity (or any other
the entity designator.
76 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

subpro-
rloaded

scription
 that X is
 associ-
plied via

ns lack a

 entities
attribute

f

 meet all

tances
An attribute specification whose entity designator contains no signature and identifies an overloaded
gram or enumeration literal has the effect of associating that attribute with each of the designated ove
subprograms or enumeration literals declared within that declarative part.

Examples:

attribute PIN_NO of CIN: signal is 10;

attribute PIN_NO of COUT: signal is 5;

attribute LOCATION of ADDER1: label is (10,15);

attribute LOCATION of others: label is (25,77);

attribute CAPACITANCE of all: signal is 15 pF;

attribute IMPLEMENTATION of G1: group is "74LS152";

attribute RISING_DELAY of C2Q: group is 7.2 ns;

NOTES

1—User-defined attributes represent local information only and cannot be used to pass information from one de
to another. For instance, assume some signal X in an architecture body has some attribute A. Further, assume
associated with some local port L of component C. C in turn is associated with some design entity E(B), and L is
ated with E’s formal port P. Neither L nor P has attributes with the simple name A, unless such attributes are sup
other attribute specifications; in this latter case, the values of P'A and X'A are not related in any way.

2—The local ports and generics of a component declaration cannot be attributed, since component declaratio
declarative part.

3—If an attribute specification applies to an overloadable named entity, then declarations of additional named
with the same simple name are allowed to occur in the current declarative part unless the aforementioned
specification has as its entity name list either of the reserved words others or all.

4—Attribute specifications supplying either of the reserved words others or all never apply to the interface objects o
design units, block statements, or subprograms.

5—An attribute specification supplying either of the reserved words others or all may apply to none of the named
entities in the current declarative part, in the event that none of the named entities in the current declarative part
of the requirements of the attribute specification.

5.2 Configuration specification

A configuration specification associates binding information with component labels representing ins
of a given component declaration.

configuration_specification ::=
for component_specification binding_indication;

component_specification ::=
instantiation_list : component_name

instantiation_list ::=
 instantiation_label { , instantiation_label }
| others
| all
Copyright © 2002 IEEE. All rights reserved. 77

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ssoci-

corre-
iately

 compo-
enote a
ponent.

s of
iately
d in the
onent

f the
losing
 corre-

t
t declar-

th the
 to be
nding
ration
onfig-
nding

he current

associ-

es of a
 expres-
 a bind-
n.

spect
The instantiation list identifies those component instances with which binding information is to be a
ated, defined as follows:

— If a list of instantiation labels is supplied, then the configuration specification applies to the
sponding component instances. Such labels must be (implicitly) declared within the immed
enclosing declarative part. It is an error if these component instances are not instances of the
nent declaration named in the component specification. It is also an error if any of the labels d
component instantiation statement whose corresponding instantiated unit does not name a com

— If the reserved word others is supplied, then the configuration specification applies to instance
the specified component declaration whose labels are (implicitly) declared in the immed
enclosing declarative part, provided that each such component instance is not explicitly name
instantiation list of a previous configuration specification. This rule applies only to those comp
instantiation statements whose corresponding instantiated units name components.

— If the reserved word all is supplied, then the configuration specification applies to all instances o
specified component declaration whose labels are (implicitly) declared in the immediately enc
declarative part. This rule applies only to those component instantiation statements whose
sponding instantiated units name components.

A configuration specification with the instantiation list others or all for a given component name tha
appears in a declarative part must be the last such specification for the given component name in tha
ative part.

The elaboration of a configuration specification results in the association of binding information wi
labels identified by the instantiation list. A label that has binding information associated with it is said
bound. It is an error if the elaboration of a configuration specification results in the association of bi
information with a component label that is already bound, unless the binding indication in the configu
specification is an incremental binding indication (see 5.2.1). It is also an error if the elaboration of a c
uration specification containing an incremental binding indication results in the association of bi
information with a component label that is already incrementally bound.

NOTE—A configuration specification supplying either of the reserved words others or all may apply to none of the
component instances in the current declarative part. This is the case when none of the component instances in t
declarative part meet all of the requirements of the given configuration specification.

5.2.1 Binding indication

A binding indication associates instances of a component with a particular design entity. It may also
ate actuals with formals declared in the entity declaration.

binding_indication ::=
[use entity_aspect]
[generic_map_aspect]
[port_map_aspect]

The entity aspect of a binding indication, if present, identifies the design entity with which the instanc
component are associated. If present, the generic map aspect of a binding indication identifies the
sions to be associated with formal generics in the entity declaration. Similarly, the port map aspect of
ing indication identifies the signals or values to be associated with formal ports in the entity declaratio

When a binding indication is used in an explicit configuration specification, it is an error if the entity a
is absent.
78 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e block
 one or
n com-
 corre-
se,
. Such a

ication

in the

ication

n
 in the

n and

t map

n and

 default

he fol-

nd),
 of the
n. An

imary
 in the
y bind-

 con-
m and

cannot
ast one of
A binding indication appearing in a component configuration must have an entity aspect unless th
corresponding to the block configuration in which the given component configuration appears has
more configuration specifications that together configure all component instances denoted in the give
ponent configuration. The binding indications appearing in these configuration specifications are the
sponding primary binding indications. A binding indication need not have an entity aspect; in that ca
either or both of a generic map aspect or a port map aspect must be present in the binding indication
binding indication is an incremental binding indication. An incremental binding indication is used to incre-
mentally rebind the ports and generics of the denoted instance(s) under the following conditions:

— For each formal generic appearing in the generic map aspect of the incremental binding ind
and denoting a formal generic that is unassociated or associated with open in any of the primary
binding indications, the given formal generic is bound to the actual with which it is associated
generic map aspect of the incremental binding indication.

— For each formal generic appearing in the generic map aspect of the incremental binding ind
and denoting a formal generic that is associated with an actual other than open in one of the primary
binding indications, the given formal generic is rebound to the actual with which it is associated i
the generic map aspect of the incremental binding indication. That is, the association given
primary binding indication has no effect for the given instance.

— For each formal port appearing in the port map aspect of the incremental binding indicatio
denoting a formal port that is unassociated or associated with open in any of the primary binding
indications, the given formal port is bound to the actual with which it is associated in the por
aspect of the incremental binding indication.

— It is an error if a formal port appears in the port map aspect of the incremental binding indicatio
it is a formal port that is associated with an actual other than open in one of the primary binding
indications.

If the generic map aspect or port map aspect of a primary binding indication is not present, then the
rules as described in 5.2.2 apply.

It is an error if an explicit entity aspect in an incremental binding indication does not adhere to any of t
lowing rules:

— If the entity aspect in the corresponding primary binding indication is of the first form (fully bou
as specified in 5.2.1.1, then the entity aspect in the incremental binding indication must also be
first form and must denote the same entity declaration as that of the primary binding indicatio
architecture name must be specified in the incremental binding indication if and only if the pr
binding indication also identifies an architecture name; in this case, the architecture name
incremental binding indication must denote the same architecture name as that of the primar
ing indication.

— If the entity aspect in the primary binding indication is of the second form (that is, identifying a
figuration), then the entity aspect of the incremental binding indication must be of the same for
must denote the same configuration declaration as that of the primary binding indication.

NOTES:

1—The third form (open) of an entity aspect does not apply to incremental binding indications as this form
include either a generic map aspect or a port map aspect and incremental binding indications must contain at le
these aspects.

2—The entity aspect of an incremental binding indication in a component configuration is optional.

3—The presence of an incremental binding indication will never cause the default rules of 5.2.2 to be applied.
Copyright © 2002 IEEE. All rights reserved. 79

IEEE
Std 1076-2002 IEEE STANDARD VHDL
Examples:

entity AND_GATE is
generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
port (I1, I2: in BIT; O: out BIT);

end entity AND_GATE;

entity XOR_GATE is
generic (I1toO, I2toO : DELAY_LENGTH := 4 ns);
port (I1, I2: in BIT; O : out BIT);

end entity XOR_GATE;

package MY_GATES is
component AND_GATE is

generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
port (I1, I2: in BIT; O: out BIT);

end component AND_GATE;

component XOR_GATE is
generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
port (I1, I2: in BIT; O : out BIT);

end component XOR_GATE;
end package MY_GATES;

entity Half_Adder is
port (X, Y: in BIT; Sum, Carry: out BIT);

end entity Half_Adder;

use WORK.MY_GATES.all;
architecture Structure of Half_Adder is

for L1: XOR_GATE use
entity WORK.XOR_GATE(Behavior) -- The primary binding indication
 generic map (3 ns, 3 ns) -- for instance L1.
 port map (I1 => I1, I2 => I2, O => O);

for L2: AND_GATE use
entity WORK.AND_GATE(Behavior) -- The primary binding indication
 generic map (3 ns, 4 ns) -- for instance L2.
 port map (I1, open, O);

begin
L1: XOR_GATE port map (X, Y, Sum);
L2: AND_GATE port map (X, Y, Carry);

end architecture Structure;

use WORK.GLOBAL_SIGNALS.all;
configuration Different of Half_Adder is

for Structure
for L1: XOR_GATE
 generic map (2.9 ns, 3.6 ns); -- The incremental binding
end for; -- indication of L1; rebinds its generics.
for L2: AND_GATE
 generic map (2.8 ns, 3.25 ns) -- The incremental binding
 port map (I2 => Tied_High); -- indication L2; rebinds its generics
end for; -- and binds its open port.

end for;
end configuration Different;
80 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ent. An

nding
tion is
 name
 If an

e body
ring the
espond-

 entity
e entity
rary unit
 com-
ly in
 body. In
hat the
 by the
 unit
if the

ary unit
ith the

n this
d by

to the
configu-

ferred.

rt map
5.2.1.1 Entity aspect

An entity aspect identifies a particular design entity to be associated with instances of a compon
entity aspect may also specify that such a binding is to be deferred.

entity_aspect ::=
entity entity_name [(architecture_identifier)]

| configuration configuration_name
| open

The first form of entity aspect identifies a particular entity declaration and (optionally) a correspo
architecture body. If no architecture identifier appears, then the immediately enclosing binding indica
said to imply the design entity whose interface is defined by the entity declaration denoted by the entity
and whose body is defined by the default binding rules for architecture identifiers (see 5.2.2).
architecture identifier appears, then the immediately enclosing binding indication is said to imply the design
entity consisting of the entity declaration denoted by the entity name together with an architectur
associated with the entity declaration; the architecture identifier defines a simple name that is used du
elaboration of a design hierarchy to select the appropriate architecture body. In either case, the corr
ing component instances are said to be fully bound.

At the time of the analysis of an entity aspect of the first form, the library unit corresponding to the
declaration denoted by the entity name is required to exist; moreover, the design unit containing th
aspect depends on the denoted entity declaration. If the architecture identifier is also present, the lib
corresponding to the architecture identifier is required to exist only if the binding indication is part of a
ponent configuration containing explicit block configurations or explicit component configurations; on
this case does the design unit containing the entity aspect also depend on the denoted architecture
any case, the library unit corresponding to the architecture identifier is required to exist at the time t
design entity implied by the enclosing binding indication is bound to the component instance denoted
component configuration or configuration specification containing the binding indication; if the library
corresponding to the architecture identifier was required to exist during analysis, it is an error
architecture identifier does not denote the same library unit as that denoted during analysis. The libr
corresponding to the architecture identifier, if it exists, must be an architecture body associated w
entity declaration denoted by the entity name.

The second form of entity aspect identifies a design entity indirectly by identifying a configuration. I
case, the entity aspect is said to imply the design entity at the apex of the design hierarchy that is define
the configuration denoted by the configuration name.

At the time of the analysis of an entity aspect of the second form, the library unit corresponding
configuration name is required to exist. The design unit containing the entity aspect depends on the
ration denoted by the configuration name.

The third form of entity aspect is used to specify that the identification of the design entity is to be de
In this case, the immediately enclosing binding indication is said to not imply any design entity. Further-
more, the immediately enclosing binding indication must not include a generic map aspect or a po
aspect.
Copyright © 2002 IEEE. All rights reserved. 81

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 aspect
blocks

 a port

a port

ication
losing
l. It is
e same

 config-
 at least
n local
l port.

ntiation
. It is an

ent of

ssociate
associ-
s asso-

reserved
sion, or

trictions
5.2.1.2 Generic map and port map aspects

A generic map aspect associates values with the formal generics of a block. Similarly, a port map
associates signals or values with the formal ports of a block. The following applies to both external
defined by design entities and to internal blocks defined by block statements.

generic_map_aspect ::=
generic map (generic_association_list)

port_map_aspect ::=
port map (port_association_list)

Both named and positional association are allowed in a port or generic association list.

The following definitions are used in the remainder of this subclause:

— The term actual refers to an actual designator that appears either in an association element of
association list or in an association element of a generic association list.

— The term formal refers to a formal designator that appears either in an association element of
association list or in an association element of a generic association list.

The purpose of port and generic map aspects is as follows:

— Generic map aspects and port map aspects appearing immediately within a binding ind
associate actuals with the formals of the entity declaration implied by the immediately enc
binding indication. It is an error if a scalar formal may be associated with more than one actua
an error if a scalar subelement of any composite formal is associated more than once in th
association list.

Each scalar subelement of every local port of the component instances to which an enclosing
uration specification or component configuration applies must be associated as an actual with
one formal or with a scalar subelement thereof. The actuals of these associations for a give
port must be either the entire local port or any slice or subelement (or slice thereof) of the loca
The actuals in these associations must be locally static names.

— Generic map aspects and port map aspects appearing immediately within a component insta
statement associate actuals with the formals of the component instantiated by the statement
error if a scalar formal is associated with more than one actual. It is an error if a scalar subelem
any composite formal is associated with more than one scalar subelement of an actual.

— Generic map aspects and port map aspects appearing immediately within a block header a
actuals with the formals defined by the same block header. It is an error if a scalar formal is
ated with more than one actual. It is an error if a scalar subelement of any composite formal i
ciated with more than one actual or with a scalar subelement thereof.

An actual associated with a formal generic in a generic map aspect must be an expression or the
word open; an actual associated with a formal port in a port map aspect must be a signal, an expres
the reserved word open.

Certain restrictions apply to the actual associated with a formal port in a port map aspect; these res
are described in 1.1.1.2.

A formal that is not associated with an actual is said to be an unassociated formal.
82 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

formal
within a
NOTE—A generic map aspect appearing immediately within a binding indication need not associate every
generic with an actual. These formals may be left unbound so that, for example, a component configuration
configuration declaration may subsequently bind them.

Example:

entity Buf is
generic (Buf_Delay: TIME := 0 ns);
port (Input_pin: in Bit; Output_pin: out Bit);

end Buf;

architecture DataFlow of Buf is
begin

Output_pin <= Input_pin after Buf_Delay;
end DataFlow;

entity Test_Bench is
end Test_Bench;

architecture Structure of Test_Bench is
component Buf is

generic (Comp_Buf_Delay: TIME);
port (Comp_I: in Bit; Comp_O: out Bit);

end component;
-- A binding indication; generic and port map aspects within a binding indication
-- associate actuals (Comp_I, etc.) with formals of the entity declaration
-- (Input_pin, etc.):
for UUT: Buf

use entity Work.Buf(DataFlow)
 generic map (Buf_Delay => Comp_Buf_Delay)
 port map (Input_pin => Comp_I, Output_pin=> Comp_O);

signal S1,S2: Bit;
begin

-- A component instantiation statement; generic and port map aspects within a
-- component instantiation statement associate actuals (S1, etc.) with the
-- formals of a component (Comp_I, etc.):
UUT: Buf

generic map(Comp_Buf_Delay => 50 ns)
port map(Comp_I => S1, Comp_O => S2);

-- A block statement; generic and port map aspects within the block header of a block
-- statement associate actuals (in this case, 4) with the formals defined in the block header:
B: block

generic (G: INTEGER);
generic map(G => 4);

begin
end block;

end Structure;
Copyright © 2002 IEEE. All rights reserved. 83

IEEE
Std 1076-2002 IEEE STANDARD VHDL

eclara-
 (from a
design

 formal

dica-
ic map

hen the

d that is

and that
 with

e of
g

 default

er is the
 declara-
r to a

tecture
ation.
d word
g the
es, this

y name
NOTES

1—A local generic (from a component declaration) or formal generic (from a block statement or from the entity d
tion of the enclosing design entity) may appear as an actual in a generic map aspect. Similarly, a local port
component declaration) or formal port (from a block statement or from the entity declaration of the enclosing
entity) may appear as an actual in a port map aspect.

2—If a formal generic is rebound by an incremental binding indication, the actual expression associated by the
generic in the primary binding indication is not evaluated during the elaboration of the description.

Cross-References: Generics, 1.1.1; Ports, 1.1.2; Interface Declarations, 4.3.2.

5.2.2 Default binding indication

In certain circumstances, a default binding indication will apply in the absence of an explicit binding in
tion. The default binding indication consists of a default entity aspect, together with a default gener
aspect and a default port map aspect, as appropriate.

If no visible entity declaration has the same simple name as that of the instantiated component, t
default entity aspect is open. A visible entity declaration is either

a) An entity declaration that has the same simple name as that of the instantiated component an
directly visible (see 10.3),

b) An entity declaration that has the same simple name as that of the instantiated component
would be directly visible in the absence of a directly visible (see 10.3) component declaration
the same simple name as that of the entity declaration, or

c) An entity declaration denoted by “L.C”, where L is the target library and C is the simple nam
the instantiated component. The target library is the library logical name of the library containin
the design unit in which the component C is declared.

These visibility checks are made at the point of the absent explicit binding indication that causes the
binding indication to apply.

Otherwise, the default entity aspect is of the form

entity entity_name (architecture_identifier)

where the entity name is the simple name of the instantiated component, and the architecture identifi
same as the simple name of the most recently analyzed architecture body associated with the entity
tion. If this rule is applied either to a binding indication contained within a configuration specification o
component configuration that does not contain an explicit inner block configuration, then the archi
identifier is determined during elaboration of the design hierarchy containing the binding indic
Likewise, if a component instantiation statement contains an instantiated unit containing the reserve
entity but does not contain an explicitly specified architecture identifier, this rule is applied durin
elaboration of the design hierarchy containing a component instantiation statement. In all other cas
rule is applied during analysis of the binding indication.

It is an error if there is no architecture body associated with the entity declaration denoted by an entit
that is the simple name of the instantiated component.
84 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 entity
he corre-
uch a
aining

 entity
ponding
l does
ted for-

entity
 indica-
y the

binding

rs of a

denotes
r of such

ype mark
nt of an
explicit
uarded
the type
plicitly
nection
The default binding indication includes a default generic map aspect if the design entity implied by the
aspect contains formal generics. The default generic map aspect associates each local generic in t
sponding component instantiation (if any) with a formal of the same simple name. It is an error if s
formal does not exist or if its mode and type are not appropriate for such an association. Any rem
unassociated formals are associated with the actual designator open.

The default binding indication includes a default port map aspect if the design entity implied by the
aspect contains formal ports. The default port map aspect associates each local port in the corres
component instantiation (if any) with a formal of the same simple name. It is an error if such a forma
not exist or if its mode and type are not appropriate for such an association. Any remaining unassocia
mals are associated with the actual designator open.

If an explicit binding indication lacks a generic map aspect, and if the design entity implied by the
aspect contains formal generics, then the default generic map aspect is assumed within that binding
tion. Similarly, if an explicit binding indication lacks a port map aspect, and the design entity implied b
entity aspect contains formal ports, then the default port map aspect is assumed within that
indication.

5.3 Disconnection specification

A disconnection specification defines the time delay to be used in the implicit disconnection of drive
guarded signal within a guarded signal assignment.

disconnection_specification ::=
disconnect guarded_signal_specification after time_expression;

guarded_signal_specification ::=
guarded_signal_list : type_mark

signal_list ::=
signal_name { , signal_name }

| others
| all

Each signal name in a signal list in a guarded signal specification must be a locally static name that
a guarded signal (see 4.3.1.2). Each guarded signal must be an explicitly declared signal or membe
a signal.

If the guarded signal is a declared signal or a slice thereof, the type mark must be the same as the t
indicated in the guarded signal specification (see 4.3.1.2). If the guarded signal is an array eleme
explicitly declared signal, the type mark must be the same as the element subtype indication in the (
or implicit) array type declaration that declares the base type of the explicitly declared signal. If the g
signal is a record element of an explicitly declared signal, then the type mark must be the same as
mark in the element subtype definition of the record type declaration that declares the type of the ex
declared signal. Each signal must be declared in the declarative part enclosing the discon
specification.
Copyright © 2002 IEEE. All rights reserved. 85

IEEE
Std 1076-2002 IEEE STANDARD VHDL

S

ent of
s single
 type of

nnection

ection

ignal
 one for
 as fol-
m the
e in the

ection

 signals
do not

 of the
closing
explicit
on has

iscon-

signals
er of the
closing

n has no

plicit
Subject to the aforementioned rules, a disconnection specification applies to the drivers of a guarded signal
of whose type mark denotes the type T under the following circumstances:

— For a scalar signal S, if an explicit or implicit disconnection specification of the form

disconnect S: T after time_expression;

exists, then this disconnection specification applies to the drivers of S.

— For a composite signal S, an explicit or implicit disconnection specification of the form

disconnect S: T after time_expression;

is equivalent to a series of implicit disconnection specifications, one for each scalar subelem
the signal S. Each disconnection specification in the series is created as follows: it has, as it
signal name in its signal list, a unique scalar subelement of S. Its type mark is the same as the
the same scalar subelement of S. Its time expression is the same as that of the original disco
specification.

The characteristics of the disconnection specification must be such that each implicit disconn
specification in the series is a legal disconnection specification.

— If the signal list in an explicit or implicit disconnection specification contains more than one s
name, the disconnection specification is equivalent to a series of disconnection specifications,
each signal name in the signal list. Each disconnection specification in the series is created
lows: It has, as its single signal name in its signal list, a unique member of the signal list fro
original disconnection specification. Its type mark and time expression are the same as thos
original disconnection specification.

The characteristics of the disconnection specification must be such that each implicit disconn
specification in the series is a legal disconnection specification.

— An explicit disconnection specification of the form

disconnect others: T after time_expression;

is equivalent to an implicit disconnection specification where the reserved word others is replaced
with a signal list comprised of the simple names of those guarded signals that are declared
declared in the enclosing declarative part, whose type mark is the same as T, and that
otherwise have an explicit disconnection specification applicable to its drivers; the remainder
disconnection specification is otherwise unchanged. If there are no guarded signals in the en
declarative part whose type mark is the same as T and that do not otherwise have an
disconnection specification applicable to its drivers, then the above disconnection specificati
no effect.

The characteristics of the explicit disconnection specification must be such that the implicit d
nection specification, if any, is a legal disconnection specification.

— An explicit disconnection specification of the form

disconnect all: T after time_expression;

is equivalent to an implicit disconnection specification where the reserved word all is replaced with
a signal list comprised of the simple names of those guarded signals that are declared
declared in the enclosing declarative part and whose type mark is the same as T; the remaind
disconnection specification is otherwise unchanged. If there are no guarded signals in the en
declarative part whose type mark is the same as T, then the above disconnection specificatio
effect.

The characteristics of the explicit disconnection specification must be such that the im
disconnection specification, if any, is a legal disconnection specification.
86 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ve
uarded
ation.

negative

, scalar
llowing

xplicit

t meet all

red in an

uarded
A disconnection specification with the signal list others or all for a given type that appears in a declarati
part must be the last such specification for the given type in that declarative part. It is an error if a g
signal of the given type is declared in a given declarative part following such a disconnection specific

The time expression in a disconnection specification must be static and must evaluate to a non-
value.

It is an error if more than one disconnection specification applies to drivers of the same signal.

If, by the aforementioned rules, no disconnection specification applies to the drivers of a guarded
signal S whose type mark is T (including a scalar subelement of a composite signal), then the fo
default disconnection specification is implicitly assumed:

disconnect S : T after 0 ns;

A disconnection specification that applies to the drivers of a guarded signal S is the applicable disconnection
specification for the signal S.

Thus the implicit disconnection delay for any guarded signal is always defined, either by an e
disconnection specification or by an implicit one.

NOTES

1—A disconnection specification supplying either the reserved words others or all may apply to none of the guarded
signals in the current declarative part, in the event that none of the guarded signals in the current declarative par
of the requirements of the disconnection specification.

2—Since disconnection specifications are based on declarative parts, not on declarative regions, ports decla
entity declaration cannot be referenced by a disconnection specification in a corresponding architecture body.

Cross-references: disconnection statements, 9.5; guarded assignment, 9.5; guarded blocks, 9.1; g
signals, 4.3.1.2; guarded targets, 9.5; signal guard, 9.1.
Copyright © 2002 IEEE. All rights reserved. 87

IEEE
Std 1076-2002 IEEE STANDARD VHDL
88 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

, a slice,
t desig-

meter of

ame that
. If the
 object
 is a null
uous.
6. Names

The rules applicable to the various forms of names are described in this clause.

6.1 Names

Names can denote declared entities, whether declared explicitly or implicitly. Names can also denote

— Objects denoted by access values

— Methods (see 3.5.1) of protected types

— Subelements of composite objects

— Subelements of composite values

— Slices of composite objects

— Slices of composite values

— Attributes of any named entity

name ::=
simple_name

| operator_symbol
| selected_name
| indexed_name
| slice_name
| attribute_name

prefix ::=
 name
| function_call

Certain forms of name (indexed and selected names, slice names, and attribute names) include a prefix that is
a name or a function call. If the prefix of a name is a function call, then the name denotes an element
or an attribute, either of the result of the function call, or (if the result is an access value) of the objec
nated by the result. Function calls are defined in 7.3.3.

If the type of a prefix is an access type, then the prefix must not be a name that denotes a formal para
mode out or a member thereof.

A prefix is said to be appropriate for a type in either of the following cases:

— The type of the prefix is the type considered.

— The type of the prefix is an access type whose designated type is the type considered.

The evaluation of a name determines the named entity denoted by the name. The evaluation of a n
has a prefix includes the evaluation of the prefix, that is, of the corresponding name or function call
type of the prefix is an access type, the evaluation of the prefix includes the determination of the
designated by the corresponding access value. In such a case, it is an error if the value of the prefix
access value. It is an error if, after all type analysis (including overload resolution) the name is ambig
Copyright © 2002 IEEE. All rights reserved. 89

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 does not
 and (in

rs as part

 discrete

the pre-

 is not an
ject of a

hat is an
 locally

 appears

 locally

 a static
tatic
longest

ion, or
 for an
s in the
tion, or
r of the

e name.
A name is said to be a static name if and only if one of the following conditions holds:

— The name is a simple name or selected name (including those that are expanded names) that
denote a function call, an object or value of an access type, or an object of a protected type
the case of a selected name) whose prefix is a static name.

— The name is an indexed name whose prefix is a static name, and every expression that appea
of the name is a static expression.

— The name is a slice name whose prefix is a static name and whose discrete range is a static
range.

— The name is an attribute name whose prefix is a static signal name and whose suffix is one of
defined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION.

Furthermore, a name is said to be a locally static name if and only if one of the following conditions hold:

— The name is a simple name or selected name (including those that are expanded names) that
alias and that does not denote a function call, an object or value of an access type, or an ob
protected type and (in the case of a selected name) whose prefix is a locally static name.

— The name is a simple name or selected name (including those that are expanded names) t
alias, and that the aliased name given in the corresponding alias declaration (see 4.3.3) is a
static name, and (in the case of a selected name) whose prefix is a locally static name.

— The name is an indexed name whose prefix is a locally static name, and every expression that
as part of the name is a locally static expression.

— The name is a slice name whose prefix is a locally static name and whose discrete range is a
static discrete range.

A static signal name is a static name that denotes a signal. The longest static prefix of a signal name is the
name itself, if the name is a static signal name; otherwise, it is the longest prefix of the name that is
signal name. Similarly, a static variable name is a static name that denotes a variable, and the longest s
prefix of a variable name is the name itself, if the name is a static variable name; otherwise, it is the
prefix of the name that is a static variable name.

Examples:

S(C,2) --A static name: C is a static constant.
R(J to 16) --A nonstatic name: J is a signal.

--R is the longest static prefix of R(J to 16).

T(n) --A static name; n is a generic constant.
T(2) --A locally static name.

6.2 Simple names

A simple name for a named entity is either the identifier associated with the entity by its declarat
another identifier associated with the entity by an alias declaration. In particular, the simple name
entity declaration, a configuration, a package, a procedure, or a function is the identifier that appear
corresponding entity declaration, configuration declaration, package declaration, procedure declara
function declaration, respectively. The simple name of an architecture is that defined by the identifie
architecture body.

simple_name ::= identifier

The evaluation of a simple name has no other effect than to determine the named entity denoted by th
90 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ration of

 a named
ge, or
 are con-

noting an
.

ust be the

st

ary and
anded
 is the

e and the
 occurs
ge if the

 prefix
 subpro-
he suffix is
mmedi-

 prefix
 appears

d name
tatement,
fix of a

 are those
d as an
6.3 Selected names

A selected name is used to denote a named entity whose declaration appears either within the decla
another named entity or within a design library.

selected_name ::= prefix . suffix

suffix ::=
simple_name

| character_literal
| operator_symbol
| all

A selected name can denote an element of a record, an object designated by an access value, or
entity whose declaration is contained within another named entity, particularly within a library, a packa
a protected type. Furthermore, a selected name can denote all named entities whose declarations
tained within a library or a package.

For a selected name that is used to denote a record element, the suffix must be a simple name de
element of a record object or value. The prefix must be appropriate for the type of this object or value

For a selected name that is used to denote the object designated by an access value, the suffix m
reserved word all. The prefix must belong to an access type.

The remaining forms of selected names are called expanded names. The prefix of an expanded name mu
not be a function call.

An expanded name denotes a primary unit contained in a design library if the prefix denotes the libr
the suffix is the simple name of a primary unit whose declaration is contained in that library. An exp
name denotes all primary units contained in a library if the prefix denotes the library and the suffix
reserved word all.

An expanded name denotes a named entity declared in a package if the prefix denotes the packag
suffix is the simple name, character literal, or operator symbol of a named entity whose declaration
immediately within that package. An expanded name denotes all named entities declared in a packa
prefix denotes the package and the suffix is the reserved word all.

An expanded name denotes a named entity declared immediately within a named construct if the
denotes a construct that is an entity declaration, an architecture body, a subprogram declaration, a
gram body, a block statement, a process statement, a generate statement, or a loop statement, and t
the simple name, character literal, or operator symbol of a named entity whose declaration occurs i
ately within that construct. This form of expanded name is only allowed within the construct itself.

An expanded name denotes a named entity declared immediately within a protected type if the
denotes an object of a protected type and the suffix is a simple name of a method whose declaration
immediately within the protected type declaration.

If, according to the visibility rules, there is at least one possible interpretation of the prefix of a selecte
as the name of an enclosing entity declaration, architecture, subprogram, block statement, process s
generate statement, or loop statement, or if there is at least one possible interpretation of the pre
selected name as the name of an object of a protected type, then the only interpretations considered
of the immediately preceding two paragraphs. In this case, the selected name is always interprete
expanded name. In particular, no interpretations of the prefix as a function call are considered.
Copyright © 2002 IEEE. All rights reserved. 91

IEEE
Std 1076-2002 IEEE STANDARD VHDL
Examples:

-- Given the following declarations:

type INSTR_TYPE is
record

OPCODE: OPCODE_TYPE;
end record;

signal INSTRUCTION: INSTR_TYPE;

-- The name "INSTRUCTION.OPCODE" is the name of a record element.

-- Given the following declarations:

type INSTR_PTR is access INSTR_TYPE;
variable PTR: INSTR_PTR;

-- The name "PTR.all" is the name of the object designated by PTR.

-- Given the following library clause:

library TTL, CMOS;

-- The name "TTL.SN74LS221" is the name of a design unit contained in a library
-- and the name "CMOS.all" denotes all design units contained in a library.

-- Given the following declaration and use clause:

library MKS;
use MKS.MEASUREMENTS, STD.STANDARD;

-- The name "MEASUREMENTS.VOLTAGE" denotes a named entity declared in a
-- package and the name "STANDARD.all" denotes all named entities declared in a
-- package.

-- Given the following process label and declarative part:

P: process
variable DATA: INTEGER;

begin
-- Within process P, the name "P.DATA" denotes a named entity declared in process P.

end process;

counter.increment(5); -- See 4.3.1.3 for the definition of "counter."
counter.decrement(i);
if counter.value = 0 then … end if;

result.add(sv1, sv2); -- See 4.3.1.3 for the definition of "result."

bit_stack.add_bit(1, ’1’); -- See 4.3.1.3 for the definition of "bit_stack."
bit_stack.add_bit(2, ’1’);
bit_stack.add_bit(3, ’0’);
92 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

belement
and whose
 is neces-

; however,

 that sat-

e index
nd each
e prefix
e corre-

tion call,
t exactly
NOTES

1—The object denoted by an access value is accessed differently depending on whether the entire object or a su
of the object is desired. If the entire object is desired, a selected name whose prefix denotes the access value
suffix is the reserved word all is used. In this case, the access value is not automatically dereferenced, since it
sary to distinguish an access value from the object denoted by an access value.

If a subelement of the object is desired, a selected name whose prefix denotes the access value is again used
the suffix in this case denotes the subelement. In this case, the access value is automatically dereferenced.

These two cases are shown in the following example:

type rec;

type recptr is access rec;

type rec is
 record

value : INTEGER;
\next\ : recptr;

 end record;

variable list1, list2: recptr;
variable recobj: rec;

list2 := list1; -- Access values are copied;
-- list1 and list2 now denote the same object.

list2 := list1.\next\; -- list2 denotes the same object as list1.\next\.
-- list1.\next\ is the same as list1.all.\next\.
-- An implicit dereference of the access value occurs before the
-- “\next\” field is selected.

recobj := list2.all; -- An explicit dereference is needed here.

2—Overload resolution is used to disambiguate selected names. See rules a) and c) of 10.5.

3—If, according to the rules of this clause and of 10.5, there is not exactly one interpretation of a selected name
isfies these rules, then the selected name is ambiguous.

6.4 Indexed names

An indexed name denotes an element of an array.

indexed_name ::= prefix (expression { , expression })

The prefix of an indexed name must be appropriate for an array type. The expressions specify th
values for the element; there must be one such expression for each index position of the array, a
expression must be of the type of the corresponding index. For the evaluation of an indexed name, th
and the expressions are evaluated. It is an error if an index value does not belong to the range of th
sponding index range of the array.

Examples:

REGISTER_ARRAY(5) -- An element of a one-dimensional array

MEMORY_CELL(1024,7) -- An element of a two-dimensional array

NOTE—If a name (including one used as a prefix) has an interpretation both as an indexed name and as a func
then the innermost complete context is used to disambiguate the name. If, after applying this rule, there is no
one interpretation of the name, then the name is ambiguous. See 10.5.
Copyright © 2002 IEEE. All rights reserved. 93

IEEE
Std 1076-2002 IEEE STANDARD VHDL

f another
stant is

ray type

e array.
ange

 error if
less the

ponding

d entity.

e prefix
the fact

tion lit-
nd result

, depend-
6.5 Slice names

A slice name denotes a one-dimensional array composed of a sequence of consecutive elements o
one-dimensional array. A slice of a signal is a signal; a slice of a variable is a variable; a slice of a con
a constant; a slice of a value is a value.

slice_name ::= prefix (discrete_range)

The prefix of a slice must be appropriate for a one-dimensional array object. The base type of this ar
is the type of the slice.

The bounds of the discrete range define those of the slice and must be of the type of the index of th
The slice is a null slice if the discrete range is a null range. It is an error if the direction of the discrete r
is not the same as that of the index range of the array denoted by the prefix of the slice name.

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated. It is an
either of the bounds of the discrete range does not belong to the index range of the prefixing array, un
slice is a null slice. (The bounds of a null slice need not belong to the subtype of the index.)

Examples:

signal R15: BIT_VECTOR (0 to 31) ;
constant DATA: BIT_VECTOR (31 downto 0) ;

R15(0 to 7) -- A slice with an ascending range.
DATA(24 downto 1) -- A slice with a descending range.
DATA(1 downto 24) -- A null slice.
DATA(24 to 25) -- An error.

NOTE—If A is a one-dimensional array of objects, the name A(N to N) or A(N downto N) is a slice that contains one
element; its type is the base type of A. On the other hand, A(N) is an element of the array A and has the corres
element type.

6.6 Attribute names

An attribute name denotes a value, function, type, range, signal, or constant associated with a name

attribute_name ::=
prefix [signature] ' attribute_designator [(expression)]

attribute_designator ::= attribute_simple_name

The applicable attribute designators depend on the prefix plus the signature, if any. The meaning of th
of an attribute must be determinable independently of the attribute designator and independently of
that it is the prefix of an attribute.

It is an error if a signature follows the prefix and the prefix does not denote a subprogram or enumera
eral, or an alias thereof. In this case, the signature is required to match (see 2.3.2) the parameter a
type profile of exactly one visible subprogram or enumeration literal, as is appropriate to the prefix.

If the attribute designator denotes a predefined attribute, the expressions either must or may appear
ing upon the definition of that attribute (see Clause 14); otherwise, they must not be present.
94 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e aliased
ttributes
lias
E, or
ame.

a slice of
If the prefix of an attribute name denotes an alias, then the attribute name denotes an attribute of th
name and not the alias itself, except when the attribute designator denotes any of the predefined a
'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME. If the prefix of an attribute name denotes an a
and the attribute designator denotes any of the predefined attributes SIMPLE_NAME, 'PATH_NAM
'INSTANCE_NAME, then the attribute name denotes the attribute of the alias and not of the aliased n

If the attribute designator denotes a user-defined attribute, the prefix cannot denote a subelement or
an object.

Examples:

REG'LEFT(1) -- The leftmost index bound of array REG

INPUT_PIN'PATH_NAME -- The hierarchical path name of the port INPUT_PIN

CLK'DELAYED(5 ns) -- The signal CLK delayed by 5 ns
Copyright © 2002 IEEE. All rights reserved. 95

IEEE
Std 1076-2002 IEEE STANDARD VHDL
96 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

se.

d values
file types
g either

d; for an
e over-
nd result

operators
ponding
7. Expressions

The rules applicable to the different forms of expression, and to their evaluation, are given in this clau

7.1 Expressions

An expression is a formula that defines the computation of a value.

expression ::=
relation { and relation }

| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| relation { xnor relation }

relation ::=
shift_expression [relational_operator shift_expression]

shift_expression ::=
simple_expression [shift_operator simple_expression]

simple_expression ::=
[sign] term { adding_operator term }

term ::=
factor { multiplying_operator factor }

factor ::=
primary [** primary]

| abs primary
| not primary

primary ::=
name

| literal
| aggregate
| function_call
| qualified_expression
| type_conversion
| allocator
| (expression)

Each primary has a value and a type. The only names allowed as primaries are attributes that yiel
and names denoting objects or values. In the case of names denoting objects other than objects of
or protected types, the value of the primary is the value of the object. In the case of names denotin
file objects or objects of protected types, the value of the primary is the entity denoted by the name.

The type of an expression depends only upon the types of its operands and on the operators applie
overloaded operand or operator, the determination of the operand type, or the identification of th
loaded operator, depends on the context (see 10.5). For each predefined operator, the operand a
types are given in the following subclause.

NOTE—The syntax for an expression involving logical operators allows a sequence of and, or, xor, or xnor operators
(whether predefined or user-defined), since the corresponding predefined operations are associative. For the
nand and nor (whether predefined or user-defined), however, such a sequence is not allowed, since the corres
predefined operations are not associative.
Copyright © 2002 IEEE. All rights reserved. 97

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 of opera-
creasing

cedence.
ssociated
not be

nds.

r certain
 certain

are the

parame-
n.

herwise

d
IT or
e

l
atching

the unary
 of the
7.2 Operators

The operators that may be used in expressions are defined below. Each operator belongs to a class
tors, all of which have the same precedence level; the classes of operators are listed in order of in
precedence.

logical_operator ::= and | or | nand | nor | xor | xnor

relational_operator ::= = | /= | < | <= | > | >=

shift_operator ::= sll | srl | sla | sra | rol | ror

adding_operator ::= + | – | &

sign ::= + | –

multiplying_operator ::= * | / | mod | rem

miscellaneous_operator ::= ** |abs | not

Operators of higher precedence are associated with their operands before operators of lower pre
Where the language allows a sequence of operators, operators with the same precedence level are a
with their operands in textual order, from left to right. The precedence of an operator is fixed and can
changed by the user, but parentheses can be used to control the association of operators and opera

In general, operands in an expression are evaluated before being associated with operators. Fo
operations, however, the right-hand operand is evaluated if and only if the left-hand operand has a
value. These operations are called short-circuit operations. The logical operations and, or, nand, and nor
defined for operands of types BIT and BOOLEAN are all short-circuit operations; furthermore, these
only short-circuit operations.

Every predefined operator is a pure function (see 2.1). No predefined operators have named formal
ters; therefore, named association (see 4.3.2.2) cannot be used when invoking a predefined operatio

NOTES

1—The predefined operators for the standard types are declared in package STANDARD as shown in 14.2.

2—The operator not is classified as a miscellaneous operator for the purposes of defining precedence, but is ot
classified as a logical operator.

7.2.1 Logical operators

The logical operators and, or, nand, nor, xor, xnor, and not are defined for predefined types BIT an
BOOLEAN. They are also defined for any one-dimensional array type whose element type is B
BOOLEAN. For the binary operators and, or, nand, nor, xor, and xnor, the operands must be of the sam
base type. Moreover, for the binary operators and, or, nand, nor, xor, and xnor defined on one-dimensiona
array types, the operands must be arrays of the same length, the operation is performed on m
elements of the arrays, and the result is an array with the same index range as the left operand. For
operator not defined on one-dimensional array types, the operation is performed on each element
operand, and the result is an array with the same index range as the operand.
98 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

UE for
.

is
n. For
era-

 unary

of each
defined

otected
e value
al and
The effects of the logical operators are defined in the following tables. The symbol T represents TR
type BOOLEAN, '1' for type BIT; the symbol F represents FALSE for type BOOLEAN, '0' for type BIT

A B A and B A B A or B A B A xor B
T T T T T T T T F
T F F T F T T F T
F T F F T T F T T
F F F F F F F F F

A B A nand B A B A nor B A B A xnor B
T T F T T F T T T
T F T T F F T F F
F T T F T F F T F
F F T F F T F F T

A not A
T F
F T

For the short-circuit operations and, or, nand, and nor on types BIT and BOOLEAN, the right operand
evaluated only if the value of the left operand is not sufficient to determine the result of the operatio
operations and and nand, the right operand is evaluated only if the value of the left operand is T; for op
tions or and nor, the right operand is evaluated only if the value of the left operand is F.

NOTE—All of the binary logical operators belong to the class of operators with the lowest precedence. The
logical operator not belongs to the class of operators with the highest precedence.

7.2.2 Relational operators

Relational operators include tests for equality, inequality, and ordering of operands. The operands
relational operator must be of the same type. The result type of each relational operator is the pre
type BOOLEAN.

The equality and inequality operators (= and /=) are defined for all types other than file types and pr
types. The equality operator returns the value TRUE if the two operands are equal and returns th
FALSE otherwise. The inequality operator returns the value FALSE if the two operands are equ
returns the value TRUE otherwise.

Operator Operation Operand type Result type

= Equality Any type, other
than a file type or a
protected type

BOOLEAN

/= Inequality Any type, other
than a file type or a
protected type

BOOLEAN

<
<=
>

>=

Ordering Any scalar type or
discrete array type

BOOLEAN
Copyright © 2002 IEEE. All rights reserved. 99

IEEE
Std 1076-2002 IEEE STANDARD VHDL

alues of

edefined
al. Two
 equal to

wo one-
llowing
 immedi-
nts are

espond-

lation <
erand is

rand is
ftmost

 of the
 (greater
ame two

se
Two scalar values of the same type are equal if and only if the values are the same. Two composite v
the same type are equal if and only if for each element of the left operand there is a matching element of the
right operand and vice versa, and the values of matching elements are equal, as given by the pr
equality operator for the element type. In particular, two null arrays of the same type are always equ
values of an access type are equal if and only if they both designate the same object or they both are
the null value for the access type.

For two record values, matching elements are those that have the same element identifier. For t
dimensional array values, matching elements are those (if any) whose index values match in the fo
sense: the left bounds of the index ranges are defined to match; if two elements match, the elements
ately to their right are also defined to match. For two multidimensional array values, matching eleme
those whose indices match in successive positions.

The ordering operators are defined for any scalar type and for any discrete array type. A discrete array is a
one-dimensional array whose elements are of a discrete type. Each operator returns TRUE if the corr
ing relation is satisfied; otherwise, the operator returns FALSE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types, the re
(less than) is defined such that the left operand is less than the right operand if and only if the left op
a null array and the right operand is a nonnull array.

Otherwise, both operands are nonnull arrays, and one of the following conditions is satisfied:

a) The leftmost element of the left operand is less than that of the right, or
b) The leftmost element of the left operand is equal to that of the right, and the tail of the left ope

less than that of the right (the tail consists of the remaining elements to the right of the le
element and can be null).

The relation <= (less than or equal) for discrete array types is defined to be the inclusive disjunction
results of the < and = operators for the same two operands. The relations > (greater than) and >=
than or equal) are defined to be the complements of the <= and < operators, respectively, for the s
operands.

7.2.3 Shift operators

The shift operators sll, srl, sla, sra, rol , and ror are defined for any one-dimensional array type who
element type is either of the predefined types BIT or BOOLEAN.

Operator Operation Left operand type Right operand type Result type

sll Shift left
logical

Any one-dimensional array type whose
element type is BIT or BOOLEAN

INTEGER Same as left

srl Shift right
logical

Any one-dimensional array type whose
element type is BIT or BOOLEAN

INTEGER Same as left

sla Shift left
arithmetic

Any one-dimensional array type whose
element type is BIT or BOOLEAN

INTEGER Same as left

sra Shift right
arithmetic

Any one-dimensional array type whose
element type is BIT or BOOLEAN

INTEGER Same as left

rol Rotate left
logical

Any one-dimensional array type whose
element type is BIT or BOOLEAN

INTEGER Same as left

ror Rotate right
logical

Any one-dimensional array type whose
element type is BIT or BOOLEAN

INTEGER Same as left
100 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

their left

alues of
 to as R.

 is 0
 value
ts of L
 shift
alue of

 is 0
 value
ts of L
 shift
alue of

, if R
ith a

 – 1)
on is
of the

 is, if
with a
ements
ed R

f L is
 that is
 L and
es to

r if L
 that is
 L and
es to

t.
The index subtypes of the return values of all shift operators are the same as the index subtypes of
arguments.

The values returned by the shift operators are defined as follows. In the remainder of this clause, the v
their leftmost arguments are referred to as L and the values of their rightmost arguments are referred

— The sll operator returns a value that is L logically shifted left by R index positions. That is, if R
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a
that is the result of a concatenation whose left argument is the rightmost (L'Length – 1) elemen
and whose right argument is T'Left, where T is the element type of L. If R is positive, this basic
operation is repeated R times to form the result. If R is negative, then the return value is the v
the expression L srl –R.

— The srl operator returns a value that is L logically shifted right by R index positions. That is, if R
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a
that is the result of a concatenation whose right argument is the leftmost (L'Length – 1) elemen
and whose left argument is T'Left, where T is the element type of L. If R is positive, this basic
operation is repeated R times to form the result. If R is negative, then the return value is the v
the expression L sll –R.

— The sla operator returns a value that is L arithmetically shifted left by R index positions. That is
is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L w
value that is the result of a concatenation whose left argument is the rightmost (L'Length
elements of L and whose right argument is L(L'Right). If R is positive, this basic shift operati
repeated R times to form the result. If R is negative, then the return value is the value
expression L sra –R.

— The sra operator returns a value that is L arithmetically shifted right by R index positions. That
R is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L
value that is the result of a concatenation whose right argument is the leftmost (L'Length – 1) el
of L and whose left argument is L(L'Left). If R is positive, this basic shift operation is repeat
times to form the result. If R is negative, then the return value is the value of the expression L sla –R.

— The rol operator returns a value that is L rotated left by R index positions. That is, if R is 0 or i
a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value
the result of a concatenation whose left argument is the rightmost (L'Length – 1) elements of
whose right argument is L(L'Left). If R is positive, this basic rotate operation is repeated R tim
form the result. If R is negative, then the return value is the value of the expression L ror –R.

— The ror operator returns a value that is L rotated right by R index positions. That is, if R is 0 o
is a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value
the result of a concatenation whose right argument is the leftmost (L'Length – 1) elements of
whose left argument is L(L'Right). If R is positive, this basic rotate operation is repeated R tim
form the result. If R is negative, then the return value is the value of the expression L rol –R.

NOTES

1—The logical operators may be overloaded, for example, to disallow negative integers as the second argumen

2—The subtype of the result of a shift operator is the same as that of the left operand.
Copyright © 2002 IEEE. All rights reserved. 101

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ematical

tion is a
ds, and
y the

erwise,
 of the
nd the

element
by the
its only
d the
btype

ay type,
 In this
ncatena-
 arrays

 index
e result
7.2.4 Adding operators

The adding operators + and – are predefined for any numeric type and have their conventional math
meaning. The concatenation operator & is predefined for any one-dimensional array type.

For concatenation, there are three mutually exclusive cases, as follows:

a) If both operands are one-dimensional arrays of the same type, the result of the concatena
one-dimensional array of this same type whose length is the sum of the lengths of its operan
whose elements consist of the elements of the left operand (in left-to-right order) followed b
elements of the right operand (in left-to-right order).

If both operands are null arrays, then the result of the concatenation is the right operand. Oth
the direction and bounds of the result are determined as follows: Let S be the index subtype
base type of the result. The direction of the result of the concatenation is the direction of S, a
left bound of the result is S'LEFT.

b) If one of the operands is a one-dimensional array and the type of the other operand is the
type of this aforementioned one-dimensional array, the result of the concatenation is given
rules in case a, using in place of the other operand an implicit array having this operand as
element. Both the left and right bounds of the index subtype of this implicit array is S’LEFT, an
direction of the index subtype of this implicit array is the direction of S, where S is the index su
of the base type of the result.

c) If both operands are of the same type and it is the element type of some one-dimensional arr
the type of the result must be known from the context and is this one-dimensional array type.
case, each operand is treated as the one element of an implicit array, and the result of the co
tion is determined as in case a). The bounds and direction of the index subtypes of the implicit
are determined as in the case of the implicit array in case b).

In all cases, it is an error if either bound of the index subtype of the result does not belong to the
subtype of the type of the result, unless the result is a null array. It is also an error if any element of th
does not belong to the element subtype of the type of the result.

Examples:

subtype BYTE is BIT_VECTOR (7 downto 0);
type MEMORY is array (Natural range <>) of BYTE;

Operator Operation Left operand type Right operand type Result type

+ Addition Any numeric type Same type Same type

– Subtraction Any numeric type Same type Same type

& Concatenation Any one-dimensional
array type

Same array type Same array type

Any one-dimensional
array type

The element type Same array type

The element type Any one-dimensional
array type

Same array type

The element type The element type Any one-dimensional
array type
102 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 type that
r if, using
-- The following concatenation accepts two BIT_VECTORs and returns a BIT_VECTOR
-- [case a)]:

constant ZERO: BYTE := "0000" & "0000";

-- The next two examples show that the same expression can represent either case a) or
-- case c), depending on the context of the expression.

-- The following concatenation accepts two BIT_VECTORS and returns a BIT_VECTOR
-- [case a)]:

constant C1: BIT_VECTOR := ZERO & ZERO;

-- The following concatenation accepts two BIT_VECTORs and returns a MEMORY
-- [case c)]:

constant C2: MEMORY := ZERO & ZERO;

-- The following concatenation accepts a BIT_VECTOR and a MEMORY, returning a
-- MEMORY [case b)]:

constant C3: MEMORY := ZERO & C2;

-- The following concatenation accepts a MEMORY and a BIT_VECTOR, returning a
-- MEMORY [case b)]:

constant C4: MEMORY := C2 & ZERO;

-- The following concatenation accepts two MEMORYs and returns a MEMORY [case a)]:

constant C5: MEMORY := C2 & C3;

type R1 is range 0 to 7;
type R2 is range 7 downto 0;

type T1 is array (R1 range <>) of Bit;
type T2 is array (R2 range <>) of Bit;

subtype S1 is T1(R1);
subtype S2 is T2(R2);

constant K1: S1 := (others => '0');
constant K2: T1 := K1(1 to 3) & K1(3 to 4); -- K2'Left = 0 and K2'Right = 4
constant K3: T1 := K1(5 to 7) & K1(1 to 2); -- K3'Left = 0 and K3'Right = 4
constant K4: T1 := K1(2 to 1) & K1(1 to 2); -- K4'Left = 0 and K4'Right = 1

constant K5: S2 := (others => '0');
constant K6: T2 := K5(3 downto 1) & K5(4 downto 3); -- K6'Left = 7 and K6'Right = 3
constant K7: T2 := K5(7 downto 5) & K5(2 downto 1); -- K7'Left = 7 and K7'Right = 3
constant K8: T2 := K5(1 downto 2) & K5(2 downto 1); -- K8'Left = 7 and K8'Right = 6

NOTES

1—For a given concatenation whose operands are of the same type, there may be visible more than one array
could be the result type according to the rules of case c). The concatenation is ambiguous and therefore an erro
the overload resolution rules of 2.3 and 10.5, the type of the result is not uniquely determined.
Copyright © 2002 IEEE. All rights reserved. 103

IEEE
Std 1076-2002 IEEE STANDARD VHDL

to apply.
etermine

: they
rand and

 must not

ntional
se

ivision
2—Additionally, for a given concatenation, there may be visible array types that allow both case a) and case c)
The concatenation is again ambiguous and therefore an error if the overload resolution rules cannot be used to d
a result type uniquely.

7.2.5 Sign operators

Signs + and – are predefined for any numeric type and have their conventional mathematical meaning
respectively represent the identity and negation functions. For each of these unary operators, the ope
the result have the same type.

NOTE—Because of the relative precedence of signs + and – in the grammar for expressions, a signed operand
follow a multiplying operator, the exponentiating operator **, or the operators abs and not. For example, the syntax does
not allow the following expressions:

A/+B -- An illegal expression.

A**–B -- An illegal expression.

However, these expressions may be rewritten legally as follows:

A/(+B) -- A legal expression.

A ** (–B) -- A legal expression.

7.2.6 Multiplying operators

The operators * and / are predefined for any integer and any floating point type and have their conve
mathematical meaning; the operators mod and rem are predefined for any integer type. For each of the
operators, the operands and the result are of the same type.

Integer division and remainder are defined by the following relation:

A = (A/B) ∗ B +(A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer d
satisfies the following identity:

(–A)/B = –(A/B) = A/(–B)

Operator Operation Operand type Result type

+ Identity Any numeric type Same type

– Negation Any numeric type Same type

Operator Operation Left operand type Right operand type Result type

* Multiplication Any integer type Same type Same type

Any floating point type Same type Same type

/ Division Any integer type Same type Same type

Any floating point type Same type Same type

mod Modulus Any integer type Same type Same type

rem Remainder Any integer type Same type Same type
104 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

an

g

g

g

g

the
The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less th
the absolute value of B; in addition, for some integer value N, this result must satisfy the relation:

A = B ∗ N + (A mod B)

In addition to the above table, the operators ∗ and / are predefined for any physical type.

Multiplication of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the followin
computation:

Tp'Val(Tp'Pos(P) ∗ I)

Multiplication of a value P of a physical type Tp by a value F of type REAL is equivalent to the followin
computation:

Tp'Val(INTEGER(REAL(Tp'Pos(P)) ∗ F))

Division of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the followin
computation:

Tp'Val(Tp'Pos(P) / I)

Division of a value P of a physical type Tp by a value F of type REAL is equivalent to the followin
computation:

Tp'Val(INTEGER(REAL(Tp'Pos(P)) / F))

Division of a value P of a physical type Tp by a value P2 of the same physical type is equivalent to
following computation:

Tp'Pos(P) / Tp'Pos(P2)

Operator Operation Left operand type Right operand type Result type

* Multiplication Any physical type INTEGER Same as left

Any physical type REAL Same as left

INTEGER Any physical type Same as right

REAL Any physical type Same as right

/ Division Any physical type INTEGER Same as left

Any physical type REAL Same as left

Any physical type The same type Universal integer
Copyright © 2002 IEEE. All rights reserved. 105

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ither

y itself
ponent
onent.
onen-

type is

 a value),
tion, an
; the other
Examples:

5 rem 3 = 2
5 mod 3 = 2

(–5) rem 3 = –2
(–5) mod 3 = 1

(–5) rem (–3) = –2
(–5) mod (–3) = –2

5 rem (–3) = 2
5 mod (–3) = –1

NOTE—Because of the precedence rules (see 7.2), the expression “–5 rem 2” is interpreted as “–(5 rem 2)” and not as
“(–5) rem 2.”

7.2.7 Miscellaneous operators

The unary operator abs is predefined for any numeric type.

The exponentiating operator ** is predefined for each integer type and for each floating point type. In e
case the right operand, called the exponent, is of the predefined type INTEGER.

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left operand b
for a number of times indicated by the absolute value of the exponent and from left to right; if the ex
is negative, then the result is the reciprocal of that obtained with the absolute value of the exp
Exponentiation with a negative exponent is only allowed for a left operand of a floating point type. Exp
tiation by a zero exponent results in the value one. Exponentiation of a value of a floating point
approximate.

7.3 Operands

The operands in an expression include names (that denote objects, values, or attributes that result in
literals, aggregates, function calls, qualified expressions, type conversions, and allocators. In addi
expression enclosed in parentheses may be an operand in an expression. Names are defined in 6.1
kinds of operands are defined in 7.3.1 through 7.3.6.

Operator Operation Operand type Result type

abs Absolute value Any numeric type Same numeric type

Operator Operation Left operand type Right operand type Result type

** Exponentiation Any integer type INTEGER Same as left

Any floating point type INTEGER Same as left
106 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

iteral

literals.

 a string
ng the
er type.

 of the
mber of
or a null
 array
d is the
d is the

it string
7.3.1 Literals

A literal is either a numeric literal, an enumeration literal, a string literal, a bit string literal, or the l
null .

literal ::=
numeric_literal

| enumeration_literal
| string_literal
| bit_string_literal
| null

numeric_literal ::=
abstract_literal

| physical_literal

Numeric literals include literals of the abstract types universal_integer and universal_real, as well as literals
of physical types. Abstract literals are defined in 13.4; physical literals are defined in 3.1.3.

Enumeration literals are literals of enumeration types. They include both identifiers and character
Enumeration literals are defined in 3.1.1.

String and bit string literals are representations of one-dimensional arrays of characters. The type of
or bit string literal must be determinable solely from the context in which the literal appears, excludi
literal itself but using the fact that the type of the literal must be a one-dimensional array of a charact
The lexical structure of string and bit string literals is defined in Clause 13.

For a nonnull array value represented by either a string or bit-string literal, the direction and bounds
array value are determined according to the rules for positional array aggregates, where the nu
elements in the aggregate is equal to the length (see 13.6 and 13.7) of the string or bit string literal. F
array value represented by either a string or bit-string literal, the direction and leftmost bound of the
value are determined as in the non-null case. If the direction is ascending, then the rightmost boun
predecessor (as given by the 'PRED attribute) of the leftmost bound; otherwise the rightmost boun
successor (as given by the 'SUCC attribute) of the leftmost bound.

The character literals corresponding to the graphic characters contained within a string literal or a b
literal must be visible at the place of the string literal.

The literal null represents the null access value for any access type.

Evaluation of a literal yields the corresponding value.

Examples:

3.14159_26536 -- A literal of type universal_real.

5280 -- A literal of type universal_integer.

10.7 ns -- A literal of a physical type.

O"4777" -- A bit-string literal.

"54LS281" -- A string literal.

"" -- A string literal representing a null array.
Copyright © 2002 IEEE. All rights reserved. 107

IEEE
Std 1076-2002 IEEE STANDARD VHDL

es into a

ciation is

ments

ociations
t it is an
tion
esized

gregate.
d in an
hereas a
e has no
irection

his single

ggregate.

ppears,
ype. The

nts of that
t one

e type of

valuated
valuated
elongs to
7.3.2 Aggregates

An aggregate is a basic operation (see the introduction to Clause 3) that combines one or more valu
composite value of a record or array type.

aggregate ::=
(element_association { , element_association })

element_association ::=
[choices =>] expression

choices ::= choice { | choice }

choice ::=
 simple_expression
| discrete_range
| element_simple_name
| others

Each element association associates an expression with elements (possibly none). An element asso
said to be named if the elements are specified explicitly by choices; otherwise, it is said to be positional. For
a positional association, each element is implicitly specified by position in the textual order of the ele
in the corresponding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional ass
appearing first (in textual order) and all named associations appearing next (in any order, except tha
error if any associations follow an others association). Aggregates containing a single element associa
must always be specified using named association in order to distinguish them from parenth
expressions.

An element association with a choice that is an element simple name is only allowed in a record ag
An element association with a choice that is a simple expression or a discrete range is only allowe
array aggregate: a simple expression specifies the element at the corresponding index value, w
discrete range specifies the elements at each of the index values in the range. The discrete rang
significance other than to define the set of choices implied by the discrete range. In particular, the d
specified or implied by the discrete range has no significance. An element association with the choiceothers
is allowed in either an array aggregate or a record aggregate if the association appears last and has t
choice; it specifies all remaining elements, if any.

Each element of the value defined by an aggregate must be represented once and only once in the a

The type of an aggregate must be determinable solely from the context in which the aggregate a
excluding the aggregate itself but using the fact that the type of the aggregate must be a composite t
type of an aggregate in turn determines the required type for each of its elements.

7.3.2.1 Record aggregates

If the type of an aggregate is a record type, the element names given as choices must denote eleme
record type. If the choice others is given as a choice of a record aggregate, it must represent at leas
element. An element association with more than one choice, or with the choice others, is only allowed if the
elements specified are all of the same type. The expression of an element association must have th
the associated record elements.

A record aggregate is evaluated as follows. The expressions given in the element associations are e
in an order (or lack thereof) not defined by the language. The expression of a named association is e
once for each associated element. A check is made that the value of each element of the aggregate b
the subtype of this element. It is an error if this check fails.
108 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

, and the
nal array
 of the
element

ray of a

t
 an array
, only if
oice. An

 is,

trained

rained

trained

 and the
)

ject is

 corre-

ttribute

pe

 of these

te
regate is
 of the

as named
e of the
 is deter-
ing list;

e array.
ber of
7.3.2.2 Array aggregates

For an aggregate of a one-dimensional array type, each choice must specify values of the index type
expression of each element association must be of the element type. An aggregate of an n-dimensio
type, where n is greater than 1, is written as a one-dimensional aggregate in which the index subtype
aggregate is given by the first index position of the array type, and the expression specified for each
association is an (n–1)-dimensional array or array aggregate, which is called a subaggregate. A string or bit
string literal is allowed as a subaggregate in the place of any aggregate of a one-dimensional ar
character type.

Apart from a final element association with the single choice others, the rest (if any) of the elemen
associations of an array aggregate must be either all positional or all named. A named association of
aggregate is allowed to have a choice that is not locally static, or likewise a choice that is a null range
the aggregate includes a single element association and this element association has a single ch
others choice is locally static if the applicable index constraint is locally static.

The subtype of an array aggregate that has an others choice must be determinable from the context. That
an array aggregate with an others choice must appear only in one of the following contexts:

a) As an actual associated with a formal parameter or formal generic declared to be of a cons
array subtype (or subelement thereof)

b) As the default expression defining the default initial value of a port declared to be of a const
array subtype

c) As the result expression of a function, where the corresponding function result type is a cons
array subtype

d) As a value expression in an assignment statement, where the target is a declared object,
subtype of the target is a constrained array subtype (or subelement of such a declared object

e) As the expression defining the initial value of a constant or variable object, where that ob
declared to be of a constrained array subtype

f) As the expression defining the default values of signals in a signal declaration, where the
sponding subtype is a constrained array subtype

g) As the expression defining the value of an attribute in an attribute specification, where that a
is declared to be of a constrained array subtype

h) As the operand of a qualified expression whose type mark denotes a constrained array subty

i) As a subaggregate nested within an aggregate, where that aggregate itself appears in one
contexts

The bounds of an array that does not have an others choice are determined as follows. If the aggrega
appears in one of the contexts in the preceding list, then the direction of the index subtype of the agg
that of the corresponding constrained array subtype; otherwise, the direction of the index subtype
aggregate is that of the index subtype of the base type of the aggregate. For an aggregate that h
associations, the leftmost and rightmost bounds are determined by the direction of the index subtyp
aggregate and the smallest and largest choices given. For a positional aggregate, the leftmost bound
mined by the applicable index constraint if the aggregate appears in one of the contexts in the preced
otherwise, the leftmost bound is given by S'LEFT where S is the index subtype of the base type of th
In either case, the rightmost bound is determined by the direction of the index subtype and the num
elements.
Copyright © 2002 IEEE. All rights reserved. 109

IEEE
Std 1076-2002 IEEE STANDARD VHDL

hoices of
t is not
 are eval-
valuated

e first step

fined by
ggregate

ks fails.

 to be
s of the
 in the

actual
han the
efault

call and
ot have
pe of the
 formal
e actual
rs.

d name,
t exactly

ly state

xpression
s that its

ression
The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the c
this aggregate and of its subaggregates, if any, are evaluated in some order (or lack thereof) tha
defined by the language. Second, the expressions of the element associations of the array aggregate
uated in some order that is not defined by the language; the expression of a named association is e
once for each associated element. The evaluation of a subaggregate consists of this second step (th
is omitted since the choices have already been evaluated).

For the evaluation of an aggregate that is not a null array, a check is made that the index values de
choices belong to the corresponding index subtypes, and also that the value of each element of the a
belongs to the subtype of this element. For a multidimensional aggregate of dimension n, a check is made
that all (n-1)-dimensional subaggregates have the same bounds. It is an error if any one of these chec

7.3.3 Function calls

A function call invokes the execution of a function body. The call specifies the name of the function
invoked and specifies the actual parameters, if any, to be associated with the formal parameter
function. Execution of the function body results in a value of the type declared to be the result type
declaration of the invoked function.

function_call ::=
function_name [(actual_parameter_part)]

actual_parameter_part ::= parameter_association_list

For each formal parameter of a function, a function call must specify exactly one corresponding
parameter. This actual parameter is specified either explicitly, by an association element (other t
actual part open) in the association list, or in the absence of such an association element, by a d
expression (see 4.3.2).

Evaluation of a function call includes evaluation of the actual parameter expressions specified in the
evaluation of the default expressions associated with formal parameters of the function that do n
actual parameters associated with them. In both cases, the resulting value must belong to the subty
associated formal parameter. (If the formal parameter is of an unconstrained array type, then the
parameter takes on the subtype of the actual parameter.) The function body is executed using th
parameter values and default expression values as the values of the corresponding formal paramete

NOTE—If a name (including one used as a prefix) has an interpretation both as a function call and an indexe
then the innermost complete context is used to disambiguate the name. If, after applying this rule, there is no
one interpretation of the name, then the name is ambiguous. See 10.5.

7.3.4 Qualified expressions

A qualified expression is a basic operation (see the introduction to Clause 3) that is used to explicit
the type, and possibly the subtype, of an operand that is an expression or an aggregate.

qualified_expression ::=
 type_mark ' (expression)
| type_mark ' aggregate

The operand must have the same type as the base type of the type mark. The value of a qualified e
is the value of the operand. The evaluation of a qualified expression evaluates the operand and check
value belongs to the subtype denoted by the type mark.

NOTE—Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified exp
can be used to state the type explicitly.
110 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

f a type
t type).
,
ion only

a check

o

eric
e oper-
 target
lue to
unding

apply:
en, for
rand to
ubtype,
 of each

 satisfy

ubtype is
strained
e corre-
check is
ce versa.
7.3.5 Type conversions

A type conversion provides for explicit conversion between closely related types.

type_conversion ::= type_mark (expression)

The target type of a type conversion is the base type of the type mark. The type of the operand o
conversion must be determinable independent of the context (in particular, independent of the targe
Furthermore, the operand of a type conversion is not allowed to be the literal null , an allocator, an aggregate
or a string literal. An expression enclosed by parentheses is allowed as the operand of a type convers
if the expression alone is allowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed by
that the result of the conversion belongs to the subtype.

Explicit type conversions are allowed between closely related types. In particular, a type is closely related t
itself. Other types are closely related only under the following conditions:

a) Abstract Numeric Types—Any abstract numeric type is closely related to any other abstract num
type. In an explicit type conversion where the type mark denotes an abstract numeric type, th
and can be of any integer or floating point type. The value of the operand is converted to the
type, which must also be an integer or floating point type. The conversion of a floating point va
an integer type rounds to the nearest integer; if the value is halfway between two integers, ro
may be up or down.

b) Array Types—Two array types are closely related if, and only if, all of the following apply:

— The types have the same dimensionality

— For each index position, the index types are either the same or are closely related

— The element types are the same

In an explicit type conversion where the type mark denotes an array type, the following rules
if the type mark denotes an unconstrained array type and if the operand is not a null array, th
each index position, the bounds of the result are obtained by converting the bounds of the ope
the corresponding index type of the target type. If the type mark denotes a constrained array s
then the bounds of the result are those imposed by the type mark. In either case, the value
element of the result is that of the matching element of the operand (see 7.2.2).

No other types are closely related.

In the case of conversions between numeric types, it is an error if the result of the conversion fails to
a constraint imposed by the type mark.

In the case of conversions between array types, a check is made that any constraint on the element s
the same for the operand array type as for the target array type. If the type mark denotes an uncon
array type, then, for each index position, a check is made that the bounds of the result belong to th
sponding index subtype of the target type. If the type mark denotes a constrained array subtype, a
made that for each element of the operand there is a matching element of the target subtype, and vi
It is an error if any of these checks fail.
Copyright © 2002 IEEE. All rights reserved. 111

IEEE
Std 1076-2002 IEEE STANDARD VHDL

f type

d is an
n oper-
d is
for the

t.

subtype
of the
ignated
created

ut using

 If an
subtype
 indica-

llocator
ludes a
by that
e of the

alified
al value.

 by the
cessible

xplicitly

once this
In certain cases, an implicit type conversion will be performed. An implicit conversion of an operand o
universal_integer to another integer type, or of an operand of type universal_real to another floating point
type, can only be applied if the operand is either a numeric literal or an attribute, or if the operan
expression consisting of the division of a value of a physical type by a value of the same type; such a
and is called a convertible universal operand. An implicit conversion of a convertible universal operan
applied if and only if the innermost complete context determines a unique (numeric) target type
implicit conversion, and there is no legal interpretation of this context without this conversion.

NOTE—Two array types may be closely related even if corresponding index positions have different directions.

7.3.6 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the objec

allocator ::=
new subtype_indication

| new qualified_expression

The type of the object created by an allocator is the base type of the type mark given in either the
indication or the qualified expression. For an allocator with a subtype indication, the initial value
created object is the same as the default initial value for an explicitly declared variable of the des
subtype. For an allocator with a qualified expression, this expression defines the initial value of the
object.

The type of the access value returned by an allocator must be determinable solely from the context, b
the fact that the value returned is of an access type having the named designated type.

The only allowed form of constraint in the subtype indication of an allocator is an index constraint.
allocator includes a subtype indication and if the type of the object created is an array type, then the
indication must either denote a constrained subtype or include an explicit index constraint. A subtype
tion that is part of an allocator must not include a resolution function.

If the type of the created object is an array type, then the created object is always constrained. If the a
includes a subtype indication, the created object is constrained by the subtype. If the allocator inc
qualified expression, the created object is constrained by the bounds of the initial value defined
expression. For other types, the subtype of the created object is the subtype defined by the subtyp
access type definition.

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the qu
expression is first performed. The new object is then created, and the object is then assigned its initi
Finally, an access value that designates the created object is returned.

In the absence of explicit deallocation, an implementation must guarantee that any object created
evaluation of an allocator remains allocated for as long as this object or one of its subelements is ac
directly or indirectly; that is, as long as it can be denoted by some name.

NOTES

1—Procedure deallocate is implicitly declared for each access type. This procedure provides a mechanism for e
deallocating the storage occupied by an object created by an allocator.

2—An implementation may (but need not) deallocate the storage occupied by an object created by an allocator,
object has become inaccessible.
112 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

type

e analy-

; such an

plicitly

 initial-

rimary

actual

E and
s of a

IVE,

whose

 expres-
t is of a
tatic. A
a locally
ubtype
Examples:

new NODE -- Takes on default initial value.

new NODE'(15 ns, null) -- Initial value is specified.

new NODE'(Delay => 5 ns, \Next\=> Stack) -- Initial value is specified.

new BIT_VECTOR'("00110110") -- Constrained by initial value.

new STRING (1 to 10) -- Constrained by index constraint.

new STRING -- Illegal: must be constrained.

7.4 Static expressions

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be static, and the
marks of certain subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated during th
sis of the design unit in which they appear; such an expression is said to be locally static. Certain forms of
expression can be evaluated as soon as the design hierarchy in which they appear is elaborated
expression is said to be globally static.

7.4.1 Locally static primaries

An expression is said to be locally static if and only if every operator in the expression denotes an im
defined operator whose operands and result are scalar and if every primary in the expression is alocally
static primary, where a locally static primary is defined to be one of the following:

a) A literal of any type other than type TIME

b) A constant (other than a deferred constant) explicitly declared by a constant declaration and
ized with a locally static expression

c) An alias whose aliased name (given in the corresponding alias declaration) is a locally static p

d) A function call whose function name denotes an implicitly defined operator, and whose
parameters are each locally static expressions

e) A predefined attribute that is a value, other than the predefined attributes 'INSTANCE_NAM
'PATH_NAME, and whose prefix is either a locally static subtype or is an object name that i
locally static subtype

f) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACT
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose
prefix is either a locally static subtype or is an object that is of a locally static subtype, and
actual parameter (if any) is a locally static expression

g) A user-defined attribute whose value is defined by a locally static expression

h) A qualified expression whose operand is a locally static expression

i) A type conversion whose expression is a locally static expression

j) A locally static expression enclosed in parentheses

A locally static range is either a range of the second form (see 3.1) whose bounds are locally static
sions, or a range of the first form whose prefix denotes either a locally static subtype or an object tha
locally static subtype. A locally static range constraint is a range constraint whose range is locally s
locally static scalar subtype is either a scalar base type or a scalar subtype formed by imposing on
static subtype a locally static range constraint. A locally static discrete range is either a locally static s
or a locally static range.
Copyright © 2002 IEEE. All rights reserved. 113

IEEE
Std 1076-2002 IEEE STANDARD VHDL

nding
type is
 index
pes. A
 subtype

 static

a pure

d entity

 static

 static

re each

 is an

IVE,

 sub-

btype

lobally
ges
A locally static index constraint is an index constraint for which each index subtype of the correspo
array type is locally static and in which each discrete range is locally static. A locally static array sub
a constrained array subtype formed by imposing on an unconstrained array type a locally static
constraint. A locally static record subtype is a record type whose fields are all of locally static subty
locally static access subtype is a subtype denoting an access type. A locally static file subtype is a
denoting a file type.

A locally static subtype is either a locally static scalar subtype, a locally static array subtype, a locally
record subtype, a locally static access subtype, or a locally static file subtype.

7.4.2 Globally static primaries

An expression is said to be globally static if and only if every operator in the expression denotes
function and every primary in the expression is a globally static primary, where a globally static primary is a
primary that, if it denotes an object or a function, does not denote a dynamically elaborated name
(see 12.5) and is one of the following:

a) A literal of type TIME

b) A locally static primary

c) A generic constant

d) A generate parameter

e) A constant (including a deferred constant)

f) An alias whose aliased name (given in the corresponding alias declaration) is a globally
primary

g) An array aggregate, if and only if

1) All expressions in its element associations are globally static expressions, and

2) All ranges in its element associations are globally static ranges

h) A record aggregate, if and only if all expressions in its element associations are globally
expressions

i) A function call whose function name denotes a pure function and whose actual parameters a
globally static expressions

j) A predefined attribute that is a value and whose prefix is either a globally static subtype or
object or function call that is of a globally static subtype

k) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACT
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose
prefix is either a globally static subtype or is an object or function call that is of a globally static
type, and whose actual parameter (if any) is a globally static expression

l) A user-defined attribute whose value is defined by a globally static expression

m) A qualified expression whose operand is a globally static expression

n) A type conversion whose expression is a globally static expression

o) An allocator of the first form (see 7.3.6) whose subtype indication denotes a globally static su

p) An allocator of the second form whose qualified expression is a globally static expression

q) A globally static expression enclosed in parentheses

r) A subelement or a slice of a globally static primary, provided that any index expressions are g
static expressions and any discrete ranges used in slice names are globally static discrete ran
114 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 expres-
at is of
lobally
sing on
lobally

nding
array

lly static
 static
 subtype

lobally

lly static
 an array

itialized
sulting
r. Only

ons.

e opera-
rations

e
 by the
A globally static range is either a range of the second form (see 3.1) whose bounds are globally static
sions, or a range of the first form whose prefix denotes either a globally static subtype or an object th
a globally static subtype. A globally static range constraint is a range constraint whose range is g
static. A globally static scalar subtype is either a scalar base type or a scalar subtype formed by impo
a globally static subtype a globally static range constraint. A globally static discrete range is either a g
static subtype or a globally static range.

A globally static index constraint is an index constraint for which each index subtype of the correspo
array type is globally static and in which each discrete range is globally static. A globally static
subtype is a constrained array subtype formed by imposing on an unconstrained array type a globa
index constraint. A globally static record subtype is a record type whose fields are all of globally
subtypes. A globally static access subtype is a subtype denoting an access type. A globally static file
is a subtype denoting a file type.

A globally static subtype is either a globally static scalar subtype, a globally static array subtype, a g
static record subtype, a globally static access subtype, or a globally static file subtype.

NOTES

1—An expression that is required to be a static expression must either be a locally static expression or a globa
expression. Similarly, a range, a range constraint, a scalar subtype, a discrete range, an index constraint, or
subtype that is required to be static must either be locally static or globally static.

2—The rules for locally and globally static expressions imply that a declared constant or a generic may be in
with an expression that is neither globally nor locally static; for example, with a call to an impure function. The re
constant value may be globally or locally static, even though its subtype or its initial value expression is neithe
interface constant, variable, and signal declarations require that their initial value expressions be static expressi

7.5 Universal expressions

A universal_expression is either an expression that delivers a result of type universal_integer or one that
delivers a result of type universal_real.

The same operations are predefined for the type universal_integer as for any integer type. The sam
tions are predefined for the type universal_real as for any floating point type. In addition, these ope
include the following multiplication and division operators:

The accuracy of the evaluation of a universal expression of type universal_real is at least as good as th
accuracy of evaluation of expressions of the most precise predefined floating point type supported
implementation, apart from universal_real itself.

Operator Operation Left operand type Right operand
type Result type

* Multiplication Universal real Universal integer Universal real

Universal integer Universal real Universal real

/ Division Universal real Universal integer Universal real
Copyright © 2002 IEEE. All rights reserved. 115

IEEE
Std 1076-2002 IEEE STANDARD VHDL

of type
er type

oating

.

For the evaluation of an operation of a universal expression, the following rules apply. If the result is
universal_integer, then the values of the operands and the result must lie within the range of the integ
with the widest range provided by the implementation, excluding type universal_integer itself. If the result is
of type universal_real, then the values of the operands and the result must lie within the range of the fl
point type with the widest range provided by the implementation, excluding type universal_real itself.

NOTE—The predefined operators for the universal types are declared in package STANDARD as shown in 14.2
116 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e used to
h they

eclara-

the
mber of
me must
set is

ary is

y set

 to the
8. Sequential statements

The various forms of sequential statements are described in this clause. Sequential statements ar
define algorithms for the execution of a subprogram or process; they execute in the order in whic
appear.

sequence_of_statements ::=
{ sequential_statement }

sequential_statement ::=
wait_statement
| assertion_statement
| report_statement
| signal_assignment_statement
| variable_assignment_statement
| procedure_call_statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

All sequential statements may be labeled. Such labels are implicitly declared at the beginning of the d
tive part of the innermost enclosing process statement or subprogram body.

8.1 Wait statement

The wait statement causes the suspension of a process statement or a procedure.

wait_statement ::=

[label :] wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name { , signal_name }

condition_clause ::= until condition

condition ::= boolean_expression

timeout_clause ::= for time_expression

The sensitivity clause defines the sensitivity set of the wait statement, which is the set of signals to which
wait statement is sensitive. Each signal name in the sensitivity list identifies a given signal as a me
the sensitivity set. Each signal name in the sensitivity list must be a static signal name, and each na
denote a signal for which reading is permitted. If no sensitivity clause appears, the sensitivity
constructed according to the following (recursive) rule:

The sensitivity set is initially empty. For each primary in the condition of the condition clause, if the prim

— A simple name that denotes a signal, add the longest static prefix of the name to the sensitivit

— A selected name whose prefix denotes a signal, add the longest static prefix of the name
sensitivity set
Copyright © 2002 IEEE. All rights reserved. 117

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 to the

nsitivity

 of the
ly this

any, in

ark, as

process
d concur-

as if the

n. If no

his wait

es to a

here the
ee 2.2) of
ediately

ivity set of
value of
s will

 that is a
atement
ally, it is
ed type
 body.
— An indexed name whose prefix denotes a signal, add the longest static prefix of the name
sensitivity set and apply this rule to all expressions in the indexed name

— A slice name whose prefix denotes a signal, add the longest static prefix of the name to the se
set and apply this rule to any expressions appearing in the discrete range of the slice name

— An attribute name, if the designator denotes a signal attribute, add the longest static prefix
name of the implicit signal denoted by the attribute name to the sensitivity set; otherwise, app
rule to the prefix of the attribute name

— An aggregate, apply this rule to every expression appearing after the choices and the =>, if
every element association

— A function call, apply this rule to every actual designator in every parameter association

— An actual designator of open in a parameter association, do not add to the sensitivity set

— A qualified expression, apply this rule to the expression or aggregate qualified by the type m
appropriate

— A type conversion, apply this rule to the expression type converted by the type mark

— A parenthesized expression, apply this rule to the expression enclosed within the parentheses

— Otherwise, do not add to the sensitivity set.

This rule is also used to construct the sensitivity sets of the wait statements in the equivalent
statements for concurrent procedure call statements (9.3), concurrent assertion statements (9.4), an
rent signal assignment statements (9.5).

If a signal name that denotes a signal of a composite type appears in a sensitivity list, the effect is
name of each scalar subelement of that signal appears in the list.

The condition clause specifies a condition that must be met for the process to continue executio
condition clause appears, the condition clause until TRUE is assumed.

The timeout clause specifies the maximum amount of time the process will remain suspended at t
statement. If no timeout clause appears, the timeout clause for (STD.STANDARD.TIME'HIGH –
STD.STANDARD.NOW) is assumed. It is an error if the time expression in the timeout clause evaluat
negative value.

The execution of a wait statement causes the time expression to be evaluated to determine thetimeout
interval. It also causes the execution of the corresponding process statement to be suspended, w
corresponding process statement is the one that either contains the wait statement or is the parent (s
the procedure that contains the wait statement. The suspended process will resume, at the latest, imm
after the timeout interval has expired.

The suspended process can also resume as a result of an event occurring on any signal in the sensit
the wait statement. If such an event occurs, the condition in the condition clause is evaluated. If the
the condition is TRUE, the process will resume. If the value of the condition is FALSE, the proces
resuspend. Such resuspension does not involve the recalculation of the timeout interval.

It is an error if a wait statement appears in a function subprogram or in a procedure that has a parent
function subprogram. Furthermore, it is an error if a wait statement appears in an explicit process st
that includes a sensitivity list or in a procedure that has a parent that is such a process statement. Fin
an error if a wait statement appears within any subprogram whose body is declared within a protect
body, or within any subprogram that has an ancestor whose body is declared within a protected type
118 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

rue; has

ld at the

 clause
ot passed
appear

ifies a
type

ertion. In
e for
sence

e condi-

, if
lt values,
Example:

type Arr is array (1 to 5) of BOOLEAN;
function F (P: BOOLEAN) return BOOLEAN;
signal S: Arr;
signal l, r: INTEGER range 1 to 5;

-- The following two wait statements have the same meaning:

wait until F(S(3)) and (S(l) or S(r));
wait on S(3), S, l, r until F(S(3)) and (S(l) or S(r));

NOTES

1—The wait statement wait until Clk = '1'; has semantics identical to

loop
wait on Clk;

exit when Clk = '1';

end loop;

because of the rules for the construction of the default sensitivity clause. These same rules imply that wait until T
semantics identical to wait;.

2—The conditions that cause a wait statement to resume execution of its enclosing process may no longer ho
time the process resumes execution if the enclosing process is a postponed process.

3—The rule for the construction of the default sensitivity set implies that if a function call appears in a condition
and the called function is an impure function, then any signals that are accessed by the function but that are n
through the association list of the call are not added to the default sensitivity set for the condition by virtue of the -
ance of the function call in the condition.

8.2 Assertion statement

An assertion statement checks that a specified condition is true and reports an error if it is not.

assertion_statement ::= [label :] assertion ;

assertion ::=
assert condition

[report expression]
[severity expression]

If the report clause is present, it must include an expression of predefined type STRING that spec
message to be reported. If the severity clause is present, it must specify an expression of predefined
SEVERITY_LEVEL that specifies the severity level of the assertion.

The report clause specifies a message string to be included in error messages generated by the ass
the absence of a report clause for a given assertion, the string "Assertion violation." is the default valu
the message string. The severity clause specifies a severity level associated with the assertion. In the ab
of a severity clause for a given assertion, the default value of the severity level is ERROR.

Evaluation of an assertion statement consists of evaluation of the Boolean expression specifying th
tion. If the expression results in the value FALSE, then an assertion violation is said to occur. When an
assertion violation occurs, the report and severity clause expressions of the corresponding assertion
present, are evaluated. The specified message string and severity level (or the corresponding defau
if not specified) are then used to construct an error message.
Copyright © 2002 IEEE. All rights reserved. 119

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ression
y
associ-
rity

y clause
e sever-

 one or
The error message consists of at least

a) An indication that this message is from an assertion

b) The value of the severity level

c) The value of the message string

d) The name of the design unit (see 11.1) containing the assertion.

8.3 Report statement

A report statement displays a message.

report_statement ::=
[label :]

report expression
 [severity expression] ;

The report statement expression must be of the predefined type STRING. The string value of this exp
is included in the message generated by the report statement. If the severity clause is present, it must specif
an expression of predefined type SEVERITY_LEVEL. The severity clause specifies a severity level
ated with the report. In the absence of a severity clause for a given report, the default value of the seve
level is NOTE.

The evaluation of a report statement consists of the evaluation of the report expression and severit
expression, if present. The specified message string and severity level (or corresponding default, if th
ity level is not specified) are then used to construct a report message.

The report message consists of at least

a) An indication that this message is from a report statement

b) The value of the severity level

c) The value of the message string

d) The name of the design unit containing the report statement.

Example:

report "Entering process P"; -- A report statement
-- with default severity NOTE.

report "Setup or Hold violation; outputs driven to 'X'" -- Another report statement;
 severity WARNING; -- severity is specified.

8.4 Signal assignment statement

A signal assignment statement modifies the projected output waveforms contained in the drivers of
more signals (see 12.6.1).

signal_assignment_statement ::=
[label :] target <= [delay_mechanism] waveform ;

delay_mechanism ::=
 transport
| [reject time_expression] inertial
120 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 the base
nd side
nt assigns

ggregate
type of
produced
. Further-
t denotes
s to the

n in an
ignal and
ign-
ore than
 such an

hanism
ent

smis-
hort its

lse
 that a
d.

s
res-
e time

either

ent

ents

er, it is an

et is of a
ed type.
target ::=
 name
| aggregate

waveform ::=
 waveform_element { , waveform_element }
| unaffected

If the target of the signal assignment statement is a name, then the name must denote a signal, and
type of the value component of each transaction produced by a waveform element on the right-ha
must be the same as the base type of the signal denoted by that name. This form of signal assignme
right-hand side values to the drivers associated with a single (scalar or composite) signal.

If the target of the signal assignment statement is in the form of an aggregate, then the type of the a
must be determinable from the context, excluding the aggregate itself but including the fact that the
the aggregate must be a composite type. The base type of the value component of each transaction
by a waveform element on the right-hand side must be the same as the base type of the aggregate
more, the expression in each element association of the aggregate must be a locally static name tha
a signal. This form of signal assignment assigns slices or subelements of the right-hand side value
drivers associated with the signal named as the corresponding slice or subelement of the aggregate.

If the target of a signal assignment statement is in the form of an aggregate, and if the expressio
element association of that aggregate is a signal name that denotes a given signal, then the given s
each subelement thereof (if any) are said to be identified by that element association as targets of the ass
ment statement. It is an error if a given signal or any subelement thereof is identified as a target by m
one element association in such an aggregate. Furthermore, it is an error if an element association in
aggregate contains an others choice or a choice that is a discrete range.

The right-hand side of a signal assignment may optionally specify a delay mechanism. A delay mec
consisting of the reserved word transport specifies that the delay associated with the first waveform elem
is to be construed as transport delay. Transport delay is characteristic of hardware devices (such as tran
sion lines) that exhibit nearly infinite frequency response: any pulse is transmitted, no matter how s
duration. If no delay mechanism is present, or if a delay mechanism including the reserved word inertial is
present, the delay is construed to be inertial delay. Inertial delay is characteristic of switching circuits: a pu
whose duration is shorter than the switching time of the circuit will not be transmitted, or in the case
pulse rejection limit is specified, a pulse whose duration is shorter than that limit will not be transmitte

Every inertially delayed signal assignment has a pulse rejection limit. If the delay mechanism specifie
inertial delay, and if the reserved word reject followed by a time expression is present, then the time exp
sion specifies the pulse rejection limit. In all other cases, the pulse rejection limit is specified by th
expression associated with the first waveform element.

It is an error if the pulse rejection limit for any inertially delayed signal assignment statement is
negative or greater than the time expression associated with the first waveform element.

It is an error if the reserved word unaffected appears as a waveform in a (sequential) signal assignm
statement.

NOTES

1—The reserved word unaffected must only appear as a waveform in concurrent signal assignment statem
(see 9.5.1).

2—For a signal assignment whose target is a name, the type of the target must not be a protected type; moreov
error if the type of any subelement of the target is a protected type.

3—For a signal assignment whose target is in the form of an aggregate, it is an error if any element of the targ
protected type; moreover, it is an error if the type of any element of the target has a subelement that is a protect
Copyright © 2002 IEEE. All rights reserved. 121

IEEE
Std 1076-2002 IEEE STANDARD VHDL

f type

ojected

luation
eform
me. The
 that it

alled a
ave

e TIME
licit
egative

ction is
 For the
expres-
defined
ation of
Examples:

-- Assignments using inertial delay:

-- The following three assignments are equivalent to each other:

Output_pin <= Input_pin after 10 ns;
Output_pin <= inertial Input_pin after 10 ns;
Output_pin <= reject 10 ns inertial Input_pin after 10 ns;

-- Assignments with a pulse rejection limit less than the time expression:

Output_pin <= reject 5 ns inertial Input_pin after 10 ns;
Output_pin <= reject 5 ns inertial Input_pin after 10 ns, not Input_pin after 20 ns;

-- Assignments using transport delay:

Output_pin <= transport Input_pin after 10 ns;
Output_pin <= transport Input_pin after 10 ns, not Input_pin after 20 ns;

-- Their equivalent assignments:

Output_pin <= reject 0 ns inertial Input_pin after 10 ns;
Output_pin <= reject 0 ns inertial Input_pin after 10 ns, not Input_pin after 20 ns;

NOTE—If a right-hand side value expression is either a numeric literal or an attribute that yields a result o
universal_integer or universal_real, then an implicit type conversion is performed.

8.4.1 Updating a projected output waveform

The effect of execution of a signal assignment statement is defined in terms of its effect upon the pr
output waveforms (see 12.6.1) representing the current and future values of drivers of signals.

waveform_element ::=
 value_expression [after time_expression]
| null [after time_expression]

The future behavior of the driver(s) for a given target is defined by transactions produced by the eva
of waveform elements in the waveform of a signal assignment statement. The first form of wav
element is used to specify that the driver is to assign a particular value to the target at the specified ti
second form of waveform element is used to specify that the driver of the signal is to be turned off, so
(at least temporarily) stops contributing to the value of the target. This form of waveform element is c
null waveform element. It is an error if the target of a signal assignment statement containing a null w-
form element is not a guarded signal or an aggregate of guarded signals.

The base type of the time expression in each waveform element must be the predefined physical typ
as defined in package STANDARD. If the after clause of a waveform element is not present, then an imp
"after 0 ns" is assumed. It is an error if the time expression in a waveform element evaluates to a n
value.

Evaluation of a waveform element produces a single transaction. The time component of the transa
determined by the current time added to the value of the time expression in the waveform element.
first form of waveform element, the value component of the transaction is determined by the value
sion in the waveform element. For the second form of waveform element, the value component is not
by the language, but it is defined to be of the type of the target. A transaction produced by the evalu
the second form of waveform element is called a null transaction.
122 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 its right-
ment in
 transac-

e current
d output

ansac-

of their

rm is

me at

iately
nsaction.

output

t wave-

a similar
h scalar
rtions are
nd whose
h such
ment of
et that is

t, and if
nt must be
h formal
ithin a
m
edure or
For the execution of a signal assignment statement whose target is of a scalar type, the waveform on
hand side is first evaluated. Evaluation of a waveform consists of the evaluation of each waveform ele
the waveform. Thus, the evaluation of a waveform results in a sequence of transactions, where each
tion corresponds to one waveform element in the waveform. These transactions are called new transactions.
It is an error if the sequence of new transactions is not in ascending order with respect to time.

The sequence of transactions is then used to update the projected output waveform representing th
and future values of the driver associated with the signal assignment statement. Updating a projecte
waveform consists of the deletion of zero or more previously computed transactions (called old transactions)
from the projected output waveform and the addition of the new transactions, as follows:

a) All old transactions that are projected to occur at or after the time at which the earliest new tr
tion is projected to occur are deleted from the projected output waveform.

b) The new transactions are then appended to the projected output waveform in the order
projected occurrence.

If the initial delay is inertial delay according to the definitions of 8.4, the projected output wavefo
further modified as follows:

a) All of the new transactions are marked.

b) An old transaction is marked if the time at which it is projected to occur is less than the ti
which the first new transaction is projected to occur minus the pulse rejection limit.

c) For each remaining unmarked, old transaction, the old transaction is marked if it immed
precedes a marked transaction and its value component is the same as that of the marked tra

d) The transaction that determines the current value of the driver is marked.

e) All unmarked transactions (all of which are old transactions) are deleted from the projected
waveform.

For the purposes of marking transactions, any two successive null transactions in a projected outpu
form are considered to have the same value component.

The execution of a signal assignment statement whose target is of a composite type proceeds in
fashion, except that the evaluation of the waveform results in one sequence of transactions for eac
subelement of the type of the target. Each such sequence consists of transactions whose value po
determined by the values of the same scalar subelement of the value expressions in the waveform, a
time portion is determined by the time expression corresponding to that value expression. Eac
sequence is then used to update the projected output waveform of the driver of the matching subele
the target. This applies both to a target that is the name of a signal of a composite type and to a targ
in the form of an aggregate.

If a given procedure is declared by a declarative item that is not contained within a process statemen
a signal assignment statement appears in that procedure, then the target of the assignment stateme
a formal parameter of the given procedure or of a parent of that procedure, or an aggregate of suc
parameters. Similarly, if a given procedure is declared by a declarative item that is not contained w
process statement, and if a signal is associated with an inout or out mode signal parameter in a subprogra
call within that procedure, then the signal so associated must be a formal parameter of the given proc
of a parent of that procedure.
Copyright © 2002 IEEE. All rights reserved. 123

IEEE
Std 1076-2002 IEEE STANDARD VHDL

inable if
re that is
the signal
th a signal

llows:

:

 first new
ctions
NOTES

1—These rules guarantee that the driver affected by a signal assignment statement is always statically determ
the signal assignment appears within a given process (including the case in which it appears within a procedu
declared within the given process). In this case, the affected driver is the one defined by the process; otherwise,
assignment must appear within a procedure, and the affected driver is the one passed to the procedure along wi
parameter of that procedure.

2—Overloading the operator "=" has no effect on the updating of a projected output waveform.

3—Consider a signal assignment statement of the form

T <= reject tr inertial e1 after t1 { , ei after ti }

The following relations hold:

0 ns ≤ tr ≤ t1

and

0 ns ≤ ti < ti+1

Note that, if tr = 0 ns, then the waveform editing is identical to that for transport-delayed assignment; and if tr = t1,

the waveform is identical to that for the statement

T <= e1 after t1 { , ei after ti }

4—Consider the following signal assignment in some process:

S <= reject 15 ns inertial 12 after 20 ns, 18 after 41 ns

where S is a signal of some integer type.

Assume that at the time this signal assignment is executed, the driver of S in the process has the following
contents (the first entry is the current driving value):

(The times given are relative to the current time.) The updating of the projected output waveform proceeds as fo

a) The driver is truncated at 20 ns. The driver now contains the following pending transactions:

b) The new waveforms are added to the driver. The driver now contains the following pending transactions

c) All new transactions are marked, as well as those old transactions that occur at less than the time of the
waveform (20 ns) less the rejection limit (15 ns). The driver now contains the following pending transa
(marked transactions are emboldened):

1 2 2 12 5 8

NOW +3 ns +12 ns +13 ns +20 ns +42 ns

1 2 2 12

NOW +3 ns +12 ns +13 ns

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns
124 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 has the

 are then

stead, a
r is made

d by an

, and the
e denoted
alar or

e aggre-
the type
 must be
tion of the
 assigns
belement

ic name
hich the

han one

e expres-
e of the

 subtype
 errone-
atement.

 similar
rmed for

ggregate.
d) Each remaining unmarked transaction is marked if it immediately precedes a marked transaction and
same value as the marked transaction. The driver now contains the following pending transactions:

e) The transaction that determines the current value of the driver is marked, and all unmarked transactions
deleted. The final driver contents are then as follows, after clearing the markings:

5—No subtype check is performed on the value component of a new transaction when it is added to a driver. In
subtype check that the value component of a transaction belongs to the subtype of the signal driven by the drive
when the driver takes on that value (see 12.6.1).

8.5 Variable assignment statement

A variable assignment statement replaces the current value of a variable with a new value specifie
expression. The named variable and the right-hand side expression must be of the same type.

variable_assignment_statement ::=
[label :] target := expression ;

If the target of the variable assignment statement is a name, then the name must denote a variable
base type of the expression on the right-hand side must be the same as the base type of the variabl
by that name. This form of variable assignment assigns the right-hand side value to a single (sc
composite) variable.

If the target of the variable assignment statement is in the form of an aggregate, then the type of th
gate must be determinable from the context, excluding the aggregate itself but including the fact that
of the aggregate must be a composite type. The base type of the expression on the right-hand side
the same as the base type of the aggregate. Furthermore, the expression in each element associa
aggregate must be a locally static name that denotes a variable. This form of variable assignment
each subelement or slice of the right-hand side value to the variable named as the corresponding su
or slice of the aggregate.

If the target of a variable assignment statement is in the form of an aggregate, and if the locally stat
in an element association of that aggregate denotes a given variable or denotes another variable of w
given variable is a subelement or slice, then the element association is said to identify the given variable as a
target of the assignment statement. It is an error if a given variable is identified as a target by more t
element association in such an aggregate.

For the execution of a variable assignment whose target is a variable name, the variable name and th
sion are first evaluated. A check is then made that the value of the expression belongs to the subtyp
variable, except in the case of a variable that is an array (in which case the assignment involves a
conversion). Finally, the value of the expression becomes the new value of the variable. A design is
ous if it depends on the order of evaluation of the target and source expressions of an assignment st

The execution of a variable assignment whose target is in the form of an aggregate proceeds in a
fashion, except that each of the names in the aggregate is evaluated, and a subtype check is perfo
each subelement or slice of the right-hand side value that corresponds to one of the names in the a

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

1 2 12 12 18

NOW +3 ns +13 ns +20 ns +41 ns
Copyright © 2002 IEEE. All rights reserved. 125

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 variable

ation of
esignated
le.

over, it is

et is of a
ed type.

e value
ubtype

ent (see
version
nd vice

alue of

nt, spec-

g actual
han the
ression

the call
t do not
ubtype of
e formal
he actual
rs.
The value of the subelement or slice of the right-hand side value then becomes the new value of the
denoted by the corresponding name.

An error occurs if the aforementioned subtype checks fail.

The determination of the type of the target of a variable assignment statement may require determin
the type of the expression if the target is a name that can be interpreted as the name of a variable d
by the access value returned by a function call, and similarly, as an element or slice of such a variab

NOTES

1—If the right-hand side is either a numeric literal or an attribute that yields a result of type universal integer or univer-
sal real, then an implicit type conversion is performed.

2—For a variable assignment whose target is a name, the type of the target must not be a protected type; more
an error if the type of any subelement of the target is a protected type.

3—For a variable assignment whose target is in the form of an aggregate, it is an error if any element of the targ
protected type; moreover, it is an error if the type of any element of the target has a subelement that is a protect

8.5.1 Array variable assignments

If the target of an assignment statement is a name denoting an array variable (including a slice), th
assigned to the target is implicitly converted to the subtype of the array variable; the result of this s
conversion becomes the new value of the array variable.

This means that the new value of each element of the array variable is specified by the matching elem
7.2.2) in the corresponding array value obtained by evaluation of the expression. The subtype con
checks that for each element of the array variable there is a matching element in the array value, a
versa. An error occurs if this check fails.

NOTE—The implicit subtype conversion described for assignment to an array variable is performed only for the v
the right-hand side expression as a whole; it is not performed for subelements or slices that are array values.

8.6 Procedure call statement

A procedure call invokes the execution of a procedure body.

procedure_call_statement ::= [label :] procedure_call ;

procedure_call ::= procedure_name [(actual_parameter_part)]

The procedure name specifies the procedure body to be invoked. The actual parameter part, if prese
ifies the association of actual parameters with formal parameters of the procedure.

For each formal parameter of a procedure, a procedure call must specify exactly one correspondin
parameter. This actual parameter is specified either explicitly, by an association element (other t
actual open) in the association list or, in the absence of such an association element, by a default exp
(see 4.3.2).

Execution of a procedure call includes evaluation of the actual parameter expressions specified in
and evaluation of the default expressions associated with formal parameters of the procedure tha
have actual parameters associated with them. In both cases, the resulting value must belong to the s
the associated formal parameter. (If the formal parameter is of an unconstrained array type, then th
parameter takes on the subtype of the actual parameter.) The procedure body is executed using t
parameter values and default expression values as the values of the corresponding formal paramete
126 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ng on the

l
onding

e chosen

 type is a
 occurs,
ray type.
f choices

an array
f the case
expres-
call to a
8.7 If statement

An if statement selects for execution one or none of the enclosed sequences of statements, dependi
value of one or more corresponding conditions.

if_statement ::=
[if_label :]

if condition then
 sequence_of_statements
{ elsif condition then
 sequence_of_statements }
[else
 sequence_of_statements]
end if [if_label] ;

If a label appears at the end of an if statement, it must repeat the if label.

For the execution of an if statement, the condition specified after if , and any conditions specified after elsif,
are evaluated in succession (treating a final else as elsif TRUE then) until one evaluates to TRUE or al
conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, then the corresp
sequence of statements is executed; otherwise, none of the sequences of statements is executed.

8.8 Case statement

A case statement selects for execution one of a number of alternative sequences of statements; th
alternative is defined by the value of an expression.

case_statement ::=
[case_label :]

case expression is
 case_statement_alternative
 { case_statement_alternative }
end case [case_label] ;

case_statement_alternative ::=
when choices =>

sequence_of_statements

The expression must be of a discrete type, or of a one-dimensional array type whose element base
character type. This type must be determinable independently of the context in which the expression
but using the fact that the expression must be of a discrete type or a one-dimensional character ar
Each choice in a case statement alternative must be of the same type as the expression; the list o
specifies for which values of the expression the alternative is chosen.

If the expression is the name of an object whose subtype is locally static, whether a scalar type or
type, then each value of the subtype must be represented once and only once in the set of choices o
statement, and no other value is allowed; this rule is likewise applied if the expression is a qualified
sion or type conversion whose type mark denotes a locally static subtype, or if the expression is a
function whose return type mark denotes a locally static subtype.
Copyright © 2002 IEEE. All rights reserved. 127

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e of the

ons are

locally

lly static
ent sub-

once and

 static. A

 in the
f a case

ution of
 is the cho-
expres-
iscrete
tor "="

stive and
d as the

 type

times.
If the expression is of a one-dimensional character array type, then the expression must be on
following:

— The name of an object whose subtype is locally static

— An indexed name whose prefix is one of the members of this list and whose indexing expressi
locally static expressions

— A slice name whose prefix is one of the members of this list and whose discrete range is a
static discrete range

— A function call whose return type mark denotes a locally static subtype

— A qualified expression or type conversion whose type mark denotes a locally static subtype.

In such a case, each choice appearing in any of the case statement alternatives must be a loca
expression whose value is of the same length as that of the case expression. It is an error if the elem
type of the one-dimensional character array type is not a locally static subtype.

For other forms of expression, each value of the (base) type of the expression must be represented
only once in the set of choices, and no other value is allowed.

The simple expression and discrete ranges given as choices in a case statement must be locally
choice defined by a discrete range stands for all values in the corresponding range. The choice others is only
allowed for the last alternative and as its only choice; it stands for all values (possibly none) not given
choices of previous alternatives. An element simple name (see 7.3.2) is not allowed as a choice o
statement alternative.

If a label appears at the end of a case statement, it must repeat the case label.

The execution of a case statement consists of the evaluation of the expression followed by the exec
the chosen sequence of statements. A sequence of statements in a given case statement alternative
sen sequence of statements if and only if the expression “E = V” evaluates to True, where “E” is the
sion, “V” is the value of one of the choices of the given case statement alternative (if a choice is a d
range, then this latter condition is fulfilled when V is an element of the discrete range), and the opera
in the expression is the predefined "=" operator on the base type of E.

NOTES

1—The execution of a case statement chooses one and only one alternative, since the choices are exhau
mutually exclusive. A qualified expression whose type mark denotes a locally static subtype can often be use
expression of a case statement to limit the number of choices that need be explicitly specified.

2—An others choice is required in a case statement if the type of the expression is the type universal_integer (for
example, if the expression is an integer literal), since this is the only way to cover all values of the
universal_integer.

3—Overloading the operator “=” has no effect on the semantics of case statement execution.

8.9 Loop statement

A loop statement includes a sequence of statements that is to be executed repeatedly, zero or more

loop_statement ::=
[loop_label :]

[iteration_scheme] loop
 sequence_of_statements
end loop [loop_label] ;
128 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

he loop

n of the
a return

ents.

f the
cuted; if

f the
 of the
arameter
en as an

rete
is
 discrete

, an exit

alues are

ter loop

atement
.

a next
g loop

n of the
iteration_scheme ::=
 while condition
| for loop_parameter_specification

parameter_specification ::=
identifier in discrete_range

If a label appears at the end of a loop statement, it must repeat the label at the beginning of t
statement.

Execution of a loop statement is complete when the loop is left as a consequence of the completio
iteration scheme (see below), if any, or the execution of a next statement, an exit statement, or
statement.

A loop statement without an iteration scheme specifies repeated execution of the sequence of statem

For a loop statement with a while iteration scheme, the condition is evaluated before each execution o
sequence of statements; if the value of the condition is TRUE, the sequence of statements is exe
FALSE, the iteration scheme is said to be complete and the execution of the loop statement is complete.

For a loop statement with a for iteration scheme, the loop parameter specification is the declaration o
loop parameter with the given identifier. The loop parameter is an object whose type is the base type
discrete range. Within the sequence of statements, the loop parameter is a constant. Hence, a loop p
is not allowed as the target of an assignment statement. Similarly, the loop parameter must not be giv
actual corresponding to a formal of mode out or inout in an association list.

For the execution of a loop with a for iteration scheme, the discrete range is first evaluated. If the disc
range is a null range, the iteration scheme is said to be complete and the execution of the loop statement
therefore complete; otherwise, the sequence of statements is executed once for each value of the
range (subject to the loop not being left as a consequence of the execution of a next statement
statement, or a return statement), after which the iteration scheme is said to be complete. Prior to each such
iteration, the corresponding value of the discrete range is assigned to the loop parameter. These v
assigned in left-to-right order.

NOTE—A loop may be left as the result of the execution of a next statement if the loop is nested inside of an ou
and the next statement has a loop label that denotes the outer loop.

8.10 Next statement

A next statement is used to complete the execution of one of the iterations of an enclosing loop st
(called “loop” in the following text). The completion is conditional if the statement includes a condition

next_statement ::=
[label :] next [loop_label] [when condition] ;

A next statement with a loop label is only allowed within the labeled loop and applies to that loop;
statement without a loop label is only allowed within a loop and applies only to the innermost enclosin
(whether labeled or not).

For the execution of a next statement, the condition, if present, is first evaluated. The current iteratio
loop is terminated if the value of the condition is TRUE or if there is no condition.
Copyright © 2002 IEEE. All rights reserved. 129

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 in the

n exit
g loop

p then

re body.

rmost

ppearing

must be

ment.

 that the
e check
e return

ions are
n. Thus,

nge of the
8.11 Exit statement

An exit statement is used to complete the execution of an enclosing loop statement (called “loop”
following text). The completion is conditional if the statement includes a condition.

exit_statement ::=
[label :] exit [loop_label] [when condition] ;

An exit statement with a loop label is only allowed within the labeled loop and applies to that loop; a
statement without a loop label is only allowed within a loop and applies only to the innermost enclosin
(whether labeled or not).

For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the loo
takes place if the value of the condition is TRUE or if there is no condition.

8.12 Return statement

A return statement is used to complete the execution of the innermost enclosing function or procedu

return_statement ::=
[label :] return [expression] ;

A return statement is only allowed within the body of a function or procedure, and it applies to the inne
enclosing function or procedure.

A return statement appearing in a procedure body must not have an expression. A return statement a
in a function body must have an expression.

The value of the expression defines the result returned by the function. The type of this expression
the base type of the type mark given after the reserved word return in the specification of the function. It is
an error if execution of a function completes by any means other than the execution of a return state

For the execution of a return statement, the expression (if any) is first evaluated and a check is made
value belongs to the result subtype. The execution of the return statement is thereby completed if th
succeeds; so also is the execution of the enclosing subprogram. An error occurs at the place of th
statement if the check fails.

NOTES

1—If the expression is either a numeric literal, or an attribute that yields a result of type universal_integer or
universal_real, then an implicit conversion of the result is performed.

2—If the return type mark of a function denotes a constrained array subtype, then no implicit subtype convers
performed on the values of the expressions of the return statements within the subprogram body of that functio
for each index position of each value, the bounds of the discrete range must be the same as the discrete ra
return subtype, and the directions must be the same.

8.13 Null statement

A null statement performs no action.

null_statement ::=
[label :] null ;
130 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ditions
ith the
hoices, it
The execution of the null statement has no effect other than to pass on to the next statement.

NOTE—The null statement can be used to specify explicitly that no action is to be performed when certain con
are true, although it is never mandatory for this (or any other) purpose. This is particularly useful in conjunction w
case statement, in which all possible values of the case expression must be covered by choices: for certain c
may be that no action is required.
Copyright © 2002 IEEE. All rights reserved. 131

IEEE
Std 1076-2002 IEEE STANDARD VHDL
132 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e used to
 design.

current
Additional
rms of

l or in
uted. A

 declar-
nerate

chically
9. Concurrent statements

The various forms of concurrent statements are described in this clause. Concurrent statements ar
define interconnected blocks and processes that jointly describe the overall behavior or structure of a
Concurrent statements execute asynchronously with respect to each other.

concurrent_statement ::=
 block_statement
| process_statement
| concurrent_procedure_call_statement
| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

The primary concurrent statements are the block statement, which groups together other con
statements, and the process statement, which represents a single independent sequential process.
concurrent statements provide convenient syntax for representing simple, commonly occurring fo
processes, as well as for representing structural decomposition and regular descriptions.

Within a given simulation cycle, an implementation may execute concurrent statements in paralle
some order. The language does not define the order, if any, in which such statements will be exec
description that depends upon a particular order of execution of concurrent statements is erroneous.

All concurrent statements may be labeled. Such labels are implicitly declared at the beginning of the
ative part of the innermost enclosing entity declaration, architecture body, block statement, or ge
statement.

9.1 Block statement

A block statement defines an internal block representing a portion of a design. Blocks may be hierar
nested to support design decomposition.

block_statement ::=
block_label :

block [(guard_expression)] [is]
 block_header
 block_declarative_part
begin
 block_statement_part
end block [block_label] ;

block_header ::=
[generic_clause
[generic_map_aspect ;]]
[port_clause
[port_map_aspect ;]]

block_declarative_part ::=
{ block_declarative_item }

block_statement_part ::=
{ concurrent_statement }
Copyright © 2002 IEEE. All rights reserved. 133

IEEE
Std 1076-2002 IEEE STANDARD VHDL

f
, and
e guard
 state-

e to be
ts. The
1.1.1.2);
.2). Such

end to
plicitly

ck.

portion of
If a guard expression appears after the reserved word block, then a signal with the simple name GUARD o
predefined type BOOLEAN is implicitly declared at the beginning of the declarative part of the block
the guard expression defines the value of that signal at any given time (see 12.6.4). The type of th
expression must be type BOOLEAN. Signal GUARD may be used to control the operation of certain
ments within the block (see 9.5).

The implicit signal GUARD must not have a source.

If a block header appears in a block statement, it explicitly identifies certain values or signals that ar
imported from the enclosing environment into the block and associated with formal generics or por
generic and port clauses define the formal generics and formal ports of the block (see 1.1.1.1 and
the generic map and port map aspects define the association of actuals with those formals (see 5.2.1
actuals are evaluated in the context of the enclosing declarative region.

If a label appears at the end of a block statement, it must repeat the block label.

NOTES

1—The value of signal GUARD is always defined within the scope of a given block, and it does not implicitly ext
design entities bound to components instantiated within the given block. However, the signal GUARD may be ex
passed as an actual signal in a component instantiation in order to extend its value to lower-level components.

2—An actual appearing in a port association list of a given block can never denote a formal port of the same blo

9.2 Process statement

A process statement defines an independent sequential process representing the behavior of some
the design.

process_statement ::=
[process_label :]

[postponed] process [(sensitivity_list)] [is]
 process_declarative_part
begin
 process_statement_part
end [postponed] process [process_label] ;

process_declarative_part ::=
{ process_declarative_item }

process_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration
134 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 a

 to
it state-

ent of a

ermitted

tponed
l.

nts. After
l immedi-

ch
oncurrent
ears in the

t state-
art. Thus, a
ensitivity
ill wait
n it exe-

n whether
nt simula-
 in which
at are the

 resumes

quential
process_statement_part ::=
{ sequential_statement }

If the reserved word postponed precedes the initial reserved word process, the process statement defines
postponed process; otherwise, the process statement defines a nonpostponed process.

If a sensitivity list appears following the reserved word process, then the process statement is assumed
contain an implicit wait statement as the last statement of the process statement part; this implicit wa
ment is of the form

wait on sensitivity_list ;

where the sensitivity list of the wait statement is that following the reserved word process. Such a process
statement must not contain an explicit wait statement. Similarly, if such a process statement is a par
procedure, then it is an error if that procedure contains a wait statement.

It is an error if any name that does not denote a static signal name (see 6.1) for which reading is p
appears in the sensitivity list of a process statement.

If the reserved word postponed appears at the end of a process statement, the process must be a pos
process. If a label appears at the end of a process statement, the label must repeat the process labe

It is an error if a variable declaration in a process declarative part declares a shared variable.

The execution of a process statement consists of the repetitive execution of its sequence of stateme
the last statement in the sequence of statements of a process statement is executed, execution wil
ately continue with the first statement in the sequence of statements.

A process statement is said to be a passive process if neither the process itself, nor any procedure of whi
the process is a parent, contains a signal assignment statement. It is an error if a process or a c
statement, other than a passive process or a concurrent statement equivalent to such a process, app
entity statement part of an entity declaration.

NOTES

1—The rules in 9.2 imply that a process that has an explicit sensitivity list always has exactly one (implicit) wai
ment in it, and that wait statement appears at the end of the sequence of statements in the process statement p
process with a sensitivity list always waits at the end of its statement part; any event on a signal named in the s
list will cause such a process to execute from the beginning of its statement part down to the end, where it w
again. Such a process executes once through at the beginning of simulation, suspending for the first time whe
cutes the implicit wait statement.

2—The time at which a process executes after being resumed by a wait statement (see 8.1) differs depending o
the process is postponed or nonpostponed. When a nonpostponed process is resumed, it executes in the curre
tion cycle (see 2.6.4). When a postponed process is resumed, it does not execute until a simulation cycle occurs
the next simulation cycle is not a delta cycle. In this way, a postponed process accesses the values of signals th
“final” values at the current simulated time.

3—The conditions that cause a process to resume execution may no longer hold at the time the process
execution if the process is a postponed process.

9.3 Concurrent procedure call statements

A concurrent procedure call statement represents a process containing the corresponding se
procedure call statement.
Copyright © 2002 IEEE. All rights reserved. 135

IEEE
Std 1076-2002 IEEE STANDARD VHDL

uivalent
ludes the
roce-

hat of the
n empty

 a wait

 appear in

ncurrent

cted by
 with a

rocess

processes
ent at the

op inter-
t). Such a
ment is a
cute only
ondition

 unless
re call

 assertion
concurrent_procedure_call_statement ::=
[label :] [postponed] procedure_call ;

For any concurrent procedure call statement, there is an equivalent process statement. The eq
process statement is a postponed process if and only if the concurrent procedure call statement inc
reserved word postponed. The equivalent process statement has a label if and only if the concurrent p
dure call statement has a label; if the equivalent process statement has a label, it is the same as t
concurrent procedure call statement. The equivalent process statement also has no sensitivity list, a
declarative part, and a statement part that consists of a procedure call statement followed by
statement.

The procedure call statement consists of the same procedure name and actual parameter part that
the concurrent procedure call statement.

If there exists a name that denotes a signal in the actual part of any association element in the co
procedure call statement, and that actual is associated with a formal parameter of mode in or inout, then the
equivalent process statement includes a final wait statement with a sensitivity clause that is constru
taking the union of the sets constructed by applying the rule of 8.1 to each actual part associated
formal parameter.

Execution of a concurrent procedure call statement is equivalent to execution of the equivalent p
statement.

Example:

CheckTiming (tPLH, tPHL, Clk, D, Q); -- A concurrent procedure call statement.

process -- The equivalent process.
begin

CheckTiming (tPLH, tPHL, Clk, D, Q);
wait on Clk, D, Q;

end process;

NOTES

1—Concurrent procedure call statements make it possible to declare procedures representing commonly used
and to create such processes easily by merely calling the procedure as a concurrent statement. The wait statem
end of the statement part of the equivalent process statement allows a procedure to be called without having it lo
minably, even if the procedure is not necessarily intended for use as a process (i.e., it contains no wait statemen
procedure may persist over time (and thus the values of its variables retain state over time) if its outermost state
loop statement and the loop contains a wait statement. Similarly, such a procedure may be guaranteed to exe
once, at the beginning of simulation, if its last statement is a wait statement that has no sensitivity clause, c
clause, or timeout clause.

2—The value of an implicitly declared signal GUARD has no effect on evaluation of a concurrent procedure call
it is explicitly referenced in one of the actual parts of the actual parameter part of the concurrent procedu
statement.

9.4 Concurrent assertion statements

A concurrent assertion statement represents a passive process statement containing the specified
statement.

concurrent_assertion_statement ::=
[label :] [postponed] assertion ;
136 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

t process
ved word
ent has

tion state-
tatement

he asser-
 that is
tement
se.

atement.

puts. There-
sertion is

plicitly

ss state-
h at the

 values to

tics that

e
d signal
hen

curs on
plicitly
st be an
nment
ignment

, or if it is
tic signal
For any concurrent assertion statement, there is an equivalent process statement. The equivalen
statement is a postponed process if and only if the concurrent assertion statement includes the reser
postponed. The equivalent process statement has a label if and only if the concurrent assertion statem
a label; if the equivalent process statement has a label, it is the same as that of the concurrent asser
ment. The equivalent process statement also has no sensitivity list, an empty declarative part, and a s
part that consists of an assertion statement followed by a wait statement.

The assertion statement consists of the same condition, report clause, and severity clause that appear in the
concurrent assertion statement.

If there exists a name that denotes a signal in the Boolean expression that defines the condition of t
tion, then the equivalent process statement includes a final wait statement with a sensitivity clause
constructed by applying the rule of 8.1 to that expression; otherwise, the equivalent process sta
contains a final wait statement that has no explicit sensitivity clause, condition clause, or timeout clau

Execution of a concurrent assertion statement is equivalent to execution of the equivalent process st

NOTES

1—Since a concurrent assertion statement represents a passive process statement, such a process has no out
fore, the execution of a concurrent assertion statement will never cause an event to occur. However, if the as
false, then the specified error message will be sent to the simulation report.

2—The value of an implicitly declared signal GUARD has no effect on evaluation of the assertion unless it is ex
referenced in one of the expressions of that assertion.

3—A concurrent assertion statement whose condition is defined by a static expression is equivalent to a proce
ment that ends in a wait statement that has no sensitivity clause; such a process will execute once throug
beginning of simulation and then wait indefinitely.

9.5 Concurrent signal assignment statements

A concurrent signal assignment statement represents an equivalent process statement that assigns
signals.

concurrent_signal_assignment_statement ::=
 [label :] [postponed] conditional_signal_assignment
| [label :] [postponed] selected_signal_assignment

options ::= [guarded] [delay_mechanism]

There are two forms of the concurrent signal assignment statement. For each form, the characteris
distinguish it are discussed in the following paragraphs.

Each form may include one or both of the two options guarded and a delay mechanism (see 8.4 for th
delay mechanism, 9.5.1 for the conditional signal assignment statement, and 9.5.2 for the selecte
assignment statement). The option guarded specifies that the signal assignment statement is executed w
a signal GUARD changes from FALSE to TRUE, or when that signal has been TRUE and an event oc
one of the signal assignment statement’s inputs. (The signal GUARD must be either one of the im
declared GUARD signals associated with block statements that have guard expressions, or it mu
explicitly declared signal of type Boolean that is visible at the point of the concurrent signal assig
statement.) The delay mechanism option specifies the pulse rejection characteristics of the signal ass
statement.

If the target of a concurrent signal assignment is a name that denotes a guarded signal (see 4.3.1.2)
in the form of an aggregate and the expression in each element association of the aggregate is a sta
name denoting a guarded signal, then the target is said to be a guarded target. If the target of a concurrent
Copyright © 2002 IEEE. All rights reserved. 137

IEEE
Std 1076-2002 IEEE STANDARD VHDL

m of an
enoting a

he same
arget is a

rs on the

 assign-

e delay
rwise, it

escribed

urrent
s a
et, then

arget of
ws:

et
 as

t of the

 case
, then it
he alter-
to be

 (other
al, then

ensitiv-
 8.1 to
atement
signal assignment is a name that denotes a signal that is not a guarded signal, or if it is in the for
aggregate and the expression in each element association of the aggregate is a static signal name d
signal that is not a guarded signal, then the target is said to be an unguarded target. It is an error if the target
of a concurrent signal assignment is neither a guarded target nor an unguarded target.

For any concurrent signal assignment statement, there is an equivalent process statement with t
meaning. The process statement equivalent to a concurrent signal assignment statement whose t
signal name is constructed as follows:

a) If a label appears on the concurrent signal assignment statement, then the same label appea
process statement.

b) The equivalent process statement is a postponed process if and only if the concurrent signal
ment statement includes the reserved word postponed.

c) If the delay mechanism option appears in the concurrent signal assignment, then the sam
mechanism appears in every signal assignment statement in the process statement; othe
appears in no signal assignment statement in the process statement.

d) The statement part of the equivalent process statement consists of a statement transform [d
in item e)].

e) If the option guarded appears in the concurrent signal assignment statement, then the conc
signal assignment is called a guarded assignment. If the concurrent signal assignment statement i
guarded assignment, and if the target of the concurrent signal assignment is a guarded targ
the statement transform is as follows:

if GUARD then
 signal_transform
else
 disconnection_statements
end if ;

Otherwise, if the concurrent signal assignment statement is a guarded assignment, but if the t
the concurrent signal assignment is not a guarded target, then the statement transform is as follo

if GUARD then
 signal_transform
end if ;

Finally, if the concurrent signal assignment statement is not a guarded assignment, and if the targ
of the concurrent signal assignment is not a guarded target, then the statement transform is
follows:

signal_transform

It is an error if a concurrent signal assignment is not a guarded assignment and the targe
concurrent signal assignment is a guarded target.

A signal transform is either a sequential signal assignment statement, an if statement, a
statement, or a null statement. If the signal transform is an if statement or a case statement
contains either sequential signal assignment statements or null statements, one for each of t
native waveforms. The signal transform determines which of the alternative waveforms is
assigned to the output signals.

f) If the concurrent signal assignment statement is a guarded assignment, or if any expression
than a time expression) within the concurrent signal assignment statement references a sign
the process statement contains a final wait statement with an explicit sensitivity clause. The s
ity clause is constructed by taking the union of the sets constructed by applying the rule of
each of the aforementioned expressions. Furthermore, if the concurrent signal assignment st
138 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

. (The
r-
clause,

isconnec-
 null
ss state-
 target of
et of the

t, and the
licable

e trans-
r if any

tement.

process

quivalent
gh at the

 is an if
is a guarded assignment, then the sensitivity clause also contains the simple name GUARD
signals identified by these names are called the inputs of the signal assignment statement.) Othe
wise, the process statement contains a final wait statement that has no explicit sensitivity
condition clause, or timeout clause.

Under certain conditions (see above) the equivalent process statement may contain a sequence of d
tion statements. A disconnection statement is a sequential signal assignment statement that assigns a
transaction to its target. If a sequence of disconnection statements is present in the equivalent proce
ment, the sequence consists of one sequential signal assignment for each scalar subelement of the
the concurrent signal assignment statement. For each such sequential signal assignment, the targ
assignment is the corresponding scalar subelement of the target of the concurrent signal assignmen
waveform of the assignment is a null waveform element whose time expression is given by the app
disconnection specification (see 5.3).

If the target of a concurrent signal assignment statement is in the form of an aggregate, then the sam
formation applies. Such a target must contain only locally static signal names; moreover, it is an erro
signal is identified by more than one signal name.

It is an error if a null waveform element appears in a waveform of a concurrent signal assignment sta

Execution of a concurrent signal assignment statement is equivalent to execution of the equivalent
statement.

NOTES

1—A concurrent signal assignment statement whose waveforms and target contain only static expressions is e
to a process statement whose final wait statement has no explicit sensitivity clause, so it will execute once throu
beginning of simulation and then suspend permanently.

2—A concurrent signal assignment statement whose waveforms are all the reserved word unaffected has no drivers for
the target, since every waveform in the concurrent signal assignment statement is transformed to the statement

null ;

in the equivalent process statement (see 9.5.1).

9.5.1 Conditional signal assignments

The conditional signal assignment represents a process statement in which the signal transform
statement.

conditional_signal_assignment ::=
target <= options conditional_waveforms ;

conditional_waveforms ::=
{ waveform when condition else }
 waveform [when condition]

The options for a conditional signal assignment statement are discussed in 9.5.
Copyright © 2002 IEEE. All rights reserved. 139

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 to it as
 form

ocess

e null

be such
For a given conditional signal assignment, there is an equivalent process statement corresponding
defined for any concurrent signal assignment statement. If the conditional signal assignment is of the

target <= options
waveform1 when condition1 else
waveform2 when condition2 else

•
•
•

waveformN–1 when conditionN–1 else
waveformN when conditionN;

then the signal transform in the corresponding process statement is of the form

if condition1 then
wave_transform1

elsif condition2 then
wave_transform2

•
•
•

elsif conditionN–1 then
wave_transformN–1

elsif conditionN then
wave_transformN

end if ;

If the conditional waveform is only a single waveform, the signal transform in the corresponding pr
statement is of the form

wave_transform

For any waveform, there is a corresponding wave transform. If the waveform is of the form

waveform_element1, waveform_element2, ..., waveform_elementN

then the wave transform in the corresponding process statement is of the form

target <= [delay_mechanism] waveform_element1, waveform_element2, ...,
waveform_elementN;

If the waveform is of the form

unaffected

then the wave transform in the corresponding process statement is of the form

null ;

In this example, the final null causes the driver to be unchanged, rather than disconnected. (This is th
statement—not a null waveform element).

The characteristics of the waveforms and conditions in the conditional assignment statement must
that the if statement in the equivalent process statement is a legal statement.
140 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

s a case

 to it as
rm

ent state-
Example:

S <= unaffected when Input_pin = S'DrivingValue else
Input_pin after Buffer_Delay;

NOTE—The wave transform of a waveform of the form unaffected is the null statement, not the null transaction.

9.5.2 Selected signal assignments

The selected signal assignment represents a process statement in which the signal transform i
statement.

selected_signal_assignment ::=
with expression select

target <= options selected_waveforms ;

selected_waveforms ::=
{ waveform when choices , }

 waveform when choices

The options for a selected signal assignment statement are discussed in 9.5.

For a given selected signal assignment, there is an equivalent process statement corresponding
defined for any concurrent signal assignment statement. If the selected signal assignment is of the fo

with expression select
target <= options waveform1 when choice_list1 ,

waveform2 when choice_list2 ,
 •
 •
 •
waveformN–1 when choice_listN–1,
waveformN when choice_listN ;

then the signal transform in the corresponding process statement is of the form

case expression is
when choice_list1 =>

wave_transform1
when choice_list2 =>

wave_transform2
 •
 •
 •

when choice_listN–1 =>
wave_transformN–1

when choice_listN =>
wave_transformN

end case ;

Wave transforms are defined in 9.5.1.

The characteristics of the select expression, the waveforms, and the choices in the selected assignm
ment must be such that the case statement in the equivalent process statement is a legal statement.
Copyright © 2002 IEEE. All rights reserved. 141

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ppears,
cs of that
ponding

laration.
itecture
e of an
e. The
rchy to
e of a

ciates a
tion or
rly, the
reof) in
ust be

c-
. The
rchy to

gether,
to be
ort map
ecifica-

 and to
t design
ntiated

sign. By
lock may

ructural
unit is a

a design
 if the
9.6 Component instantiation statements

A component instantiation statement defines a subcomponent of the design entity in which it a
associates signals or values with the ports of that subcomponent, and associates values with generi
subcomponent. This subcomponent is one instance of a class of components defined by a corres
component declaration, design entity, or configuration declaration.

component_instantiation_statement ::=
instantiation_label :

instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

instantiated_unit ::=
 [component] component_name
| entity entity_name [(architecture_identifier)]
| configuration configuration_name

The component name, if present, must be the name of a component declared in a component dec
The entity name, if present, must be the name of a previously analyzed entity declaration; if an arch
identifier appears in the instantiated unit, then that identifier must be the same as the simple nam
architecture body associated with the entity declaration denoted by the corresponding entity nam
architecture identifier defines a simple name that is used during the elaboration of a design hiera
select the appropriate architecture body. The configuration name, if present, must be the nam
previously analyzed configuration declaration. The generic map aspect, if present, optionally asso
single actual with each local generic (or member thereof) in the corresponding component declara
entity declaration. Each local generic (or member thereof) must be associated at most once. Simila
port map aspect, if present, optionally associates a single actual with each local port (or member the
the corresponding component declaration or entity declaration. Each local port (or member thereof) m
associated at most once. The generic map and port map aspects are described in 5.2.1.2.

If an instantiated unit containing the reserved word entity does not contain an explicitly specified archite
ture identifier, then the architecture identifier is implicitly specified according to the rules given in 5.2.2
architecture identifier defines a simple name that is used during the elaboration of a design hiera
select the appropriate architecture body.

A component instantiation statement and a corresponding configuration specification, if any, taken to
imply that the block hierarchy within the design entity containing the component instantiation is
extended with a unique copy of the block defined by another design entity. The generic map and p
aspects in the component instantiation statement and in the binding indication of the configuration sp
tion identify the connections that are to be made in order to accomplish the extension.

NOTES

1—A configuration specification can be used to bind a particular instance of a component to a design entity
associate the local generics and local ports of the component with the formal generics and formal ports of tha
entity. A configuration specification can apply to a component instantiation statement only if the name in the insta
unit of the component instantiation statement denotes a component declaration. See 5.2.

2—The component instantiation statement may be used to imply a structural organization for a hardware de
using component declarations, signals, and component instantiation statements, a given (internal or external) b
be described in terms of subcomponents that are interconnected by signals.

3—Component instantiation provides a way of structuring the logical decomposition of a design. The precise st
or behavioral characteristics of a given subcomponent may be described later, provided that the instantiated
component declaration. Component instantiation also provides a mechanism for reusing existing designs in
library. A configuration specification can bind a given component instance to an existing design entity, even
142 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

tantiated
ponent,

d ports of

nent is
ign unit
e outer
ation to
 Each is

eric and
ort map
g of any

rence of
ely. The

ted block

nd port
 aspects
aration.
larative
 entity-
d block
pearing
e of the

 part of
 declar-
nding to
ponding
associ-

uration
generics and ports of the entity declaration do not precisely match those of the component (provided that the ins
unit is a component declaration); if the generics or ports of the entity declaration do not match those of the com
the configuration specification must contain a generic map or port map, as appropriate, to map the generics an
the entity declaration to those of the component.

9.6.1 Instantiation of a component

A component instantiation statement whose instantiated unit contains a name denoting a compo
equivalent to a triple of nested block statements that couple the block hierarchy in the containing des
to a unique copy of the block hierarchy contained in another design unit (i.e., the subcomponent). Th
block represents the component declaration; the intermediate block represents the entity declar
which the component is bound; and the inner block represents the corresponding architecure body.
defined by a block statement.

The header of the block statement corresponding to the component declaration consists of the gen
port clauses (if present) that appear in the component declaration, followed by the generic map and p
aspects (if present) that appear in the corresponding component instantiation statement. The meanin
identifier appearing in the header of this block statement is associated with the corresponding occur
the identifier in the generic clause, port clause, generic map aspect, or port map aspect, respectiv
statement part of the block statement corresponding to the component declaration consists of a nes
statement corresponding to the entity declaration.

The header of the block statement corresponding to the entity declaration consists of the generic a
clauses (if present) that appear in the entity declaration, followed by the generic map and port map
(if present) that appear in the binding indication that binds the component instance to that entity decl
The declarative part of the block statement corresponding to the entity declaration consists of the dec
items from the entity declarative part. The statement part of the block statement corresponding to the
declaration consists of the concurrent statements from the entity statement part, followed by a neste
statement corresponding to the corresponding architecture body. The meaning of any identifier ap
anywhere in this intermediate block statement is that associated with the corresponding occurrenc
identifier in the entity declaration.

The header of the block statement corresponding to the architecture body is empty. The declarative
the block statement corresponding to the architecture body consists of the declarative items from the
ative part of the corresponding architecture body. The statement part of the block statement correspo
the architecture body consists of the concurrent statements from the statement part of the corres
architecture body. The meaning of any identifier appearing anywhere in this block statement is that
ated with the corresponding occurrence of the identifier in the architecture body.

For example, consider the following component declaration, instantiation, and corresponding config
specification:

component
COMP port (A,B : inout BIT);

end component;

for C: COMP use
entity X(Y)
port map (P1 => A, P2 => B) ;

 •
 •
 •

C: COMP port map (A => S1, B => S2);
Copyright © 2002 IEEE. All rights reserved. 143

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ompo-
Given the following entity declaration and architecture declaration:

entity X is
port (P1, P2 : inout BIT);
constant Delay: Time := 1 ms;

begin
CheckTiming (P1, P2, 2*Delay);

end X ;

architecture Y of X is
signal P3: Bit;

begin
P3 <= P1 after Delay;
P2 <= P3 after Delay;
B: block

 •
 •
 •
begin
 •
 •
 •
end block;

end Y;

then the following block statements implement the coupling between the block hierarchy in which c
nent instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Component block.
port (A,B : inout BIT); -- Local ports.
port map (A => S1, B => S2); -- Actual/local binding.

begin
X: block -- Design entity block.
 port (P1, P2 : inout BIT); -- Formal ports.
 port map (P1 => A, P2 => B); -- Local/formal binding.
 constant Delay: Time := 1 ms; -- Entity declarative item.
 begin
 CheckTiming (P1, P2, 2*Delay); -- Entity statement.
 Y: block
 signal P3: Bit; -- Architecture declarative item.
 begin
 P3 <= P1 after Delay; -- Architecture statements.
 P2 <= P3 after Delay;
 B: block -- Internal block hierarchy.

•
•
•

 begin
•
•
•

 end block;
 end block Y;
 end block X ;

end block C;
144 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 design

guration
in the

e., the
te block
e corre-

 as is the
 to the

nd port
followed
ment that
ent cor-
rt. The
nt state-
espond-
is that

rt of the
larative
g to the
architec-
ed with
The block hierarchy extensions implied by component instantiation statements that are bound to
entities are accomplished during the elaboration of a design hierarchy (see Clause 12).

9.6.2 Instantiation of a design entity

A component instantiation statement whose instantiated unit denotes either a design entity or a confi
declaration is equivalent to a triple of nested block statements that couple the block hierarchy
containing design unit to a unique copy of the block hierarchy contained in another design unit (i.
subcomponent). The outer block represents the component instantiation statement; the intermedia
represents the entity declaration to which the instance is bound; and the inner block represents th
sponding architecture body. Each is defined by a block statement.

The header of the block statement corresponding to the component instantiation statement is empty,
declarative part of this block statement. The statement part of the block statement corresponding
component declaration consists of a nested block statement corresponding to the entity declaration.

The header of the block statement corresponding to the entity declaration consists of the generic a
clauses (if present) that appear in the entity declaration that defines the interface to the design entity,
by the generic map and port map aspects (if present) that appear in the component instantiation state
binds the component instance to a copy of that design entity. The declarative part of the block statem
responding to the entity declaration consists of the declarative items from the entity declarative pa
statement part of the block statement corresponding to the entity declaration consists of the concurre
ments from the entity statement part, followed by a nested block statement corresponding to the corr
ing architecture body. The meaning of any identifier appearing anywhere in this block statement
associated with the corresponding occurrence of the identifier in the entity declaration.

The header of the block statement corresponding to the architecture body is empty. The declarative pa
block statement corresponding to the architecture body consists of the declarative items from the dec
part of the corresponding architecture body. The statement part of the block statement correspondin
architecture body consists of the concurrent statements from the statement part of the corresponding
ture body. The meaning of any identifier appearing anywhere in this block statement is that associat
the corresponding occurrence of the identifier in the architecture body.

For example, consider the following design entity:

entity X is
port (P1, P2: inout BIT);
constant Delay: DELAY_LENGTH := 1 ms;
use WORK.TimingChecks.all;

begin
CheckTiming (P1, P2, 2*Delay);

end entity X;

architecture Y of X is
signal P3: BIT;

begin
P3 <= P1 after Delay;
P2 <= P3 after Delay;
B: block

•
•
•

begin
•
•
•

end block B;
end architecture Y;
Copyright © 2002 IEEE. All rights reserved. 145

IEEE
Std 1076-2002 IEEE STANDARD VHDL

onent

ration
This design entity is instantiated by the following component instantiation statement:

C: entity Work.X (Y) port map (P1 => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which comp
instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Instance block.
begin
X: block -- Design entity block.

port (P1, P2: inout BIT); -- Entity declaration ports.
port map (P1 => S1, P2 => S2); -- Instantiation statement port map.
constant Delay: DELAY_LENGTH := 1 ms; -- Entity declarative items.
use WORK.TimingChecks.all;

begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
Y: block
 signal P3: BIT; -- Architecture declarative item.
begin
 P3 <= P1 after Delay; -- Architecture statements.
 P2 <= P3 after Delay;
 B: block

 •
 •
 •
 begin
 •
 •
 •
 end block B;

end block Y;
end block X;

end block C;

Moreover, consider the following design entity, which is followed by an associated configuration decla
and component instantiation:

entity X is
port (P1, P2: inout BIT);
constant Delay: DELAY_LENGTH := 1 ms;
use WORK.TimingChecks.all;

begin
CheckTiming (P1, P2, 2*Delay);

end entity X;

architecture Y of X is
signal P3: BIT;

begin
P3 <= P1 after Delay;
P2 <= P3 after Delay;
B: block

•
•
•

begin
•
•
•

end block B;
end architecture Y;
146 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

onent

ap.

ign enti-
The configuration declaration is

configuration Alpha of X is
for Y

•
•
•

end for;
end configuration Alpha;

The component instantiation is

C: configuration Work.Alpha port map (P1 => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which comp
instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Instance block.
begin
X: block -- Design entity block.

port (P1, P2: inout BIT); -- Entity declaration ports.
port map (P1 => S1, P2 => S2); -- Instantiation statement port m
constant Delay: DELAY_LENGTH := 1 ms; -- Entity declarative items.
use WORK.TimingChecks.all;

begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
Y: block
 signal P3: BIT; -- Architecture declarative item.
begin
 P3 <= P1 after Delay; -- Architecture statements.
 P2 <= P3 after Delay;
 B: block

 •
 •
 •
 begin
 •
 •
 •
 end block B;

end block Y;
end block X;

end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to des
ties occur during the elaboration of a design hierarchy (see Clause 12).
Copyright © 2002 IEEE. All rights reserved. 147

IEEE
Std 1076-2002 IEEE STANDARD VHDL

n of a

clara-
hose

arly, the
9.7 Generate statements

A generate statement provides a mechanism for iterative or conditional elaboration of a portio
description.

generate_statement ::=
generate_label :

generation_scheme generate
 [{ block_declarative_item }
begin]
 { concurrent_statement }
end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
| if condition

label ::= identifier

If a label appears at the end of a generate statement, it must repeat the generate label.

For a generate statement with a for generation scheme, the generate parameter specification is the de
tion of the generate parameter with the given identifier. The generate parameter is a constant object w
type is the base type of the discrete range of the generate parameter specification.

The discrete range in a generation scheme of the first form must be a static discrete range; simil
condition in a generation scheme of the second form must be a static expression.

The elaboration of a generate statement is described in 12.4.2.

Example:

Gen: block
begin

L1: CELL port map (Top, Bottom, A(0), B(0)) ;
L2: for I in 1 to 3 generate

L3: for J in 1 to 3 generate
L4: if I+J>4 generate

L5: CELL port map (A(I–1),B(J–1),A(I),B(J)) ;
end generate ;

end generate ;
end generate ;

L6: for I in 1 to 3 generate
L7: for J in 1 to 3 generate

L8: if I+J<4 generate
L9: CELL port map (A(I+1),B(J+1),A(I),B(J)) ;

end generate ;
end generate ;

end generate ;
end block Gen;
148 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

various
ses the

rative

r
r-
ith the

ed as a
e text
 is the
e items

is of a
 region.
 region

clar-
e asso-

 the de-
10. Scope and visibility

The rules defining the scope of declarations and the rules defining which identifiers are visible at
points in the text of the description are presented in this clause. The formulation of these rules u
notion of a declarative region.

10.1 Declarative region

With two exceptions, a declarative region is a portion of the text of the description. A single decla
region is formed by the text of each of the following:

a) An entity declaration

b) An architecture body

c) A configuration declaration

d) A subprogram declaration, together with the corresponding subprogram body

e) A package declaration together with the corresponding body (if any)

f) A record type declaration

g) A component declaration

h) A block statement

i) A process statement

j) A loop statement

k) A block configuration

l) A component configuration

m) A generate statement

n) A protected type declaration, together with the corresponding body.

In each of these cases, the declarative region is said to be associated with the corresponding declaration o
statement. A declaration is said to occur immediately within a declarative region if this region is the inne
most region that encloses the declaration, not counting the declarative region (if any) associated w
declaration itself.

Certain declarative regions include disjoint parts. Each declarative region is nevertheless consider
(logically) continuous portion of the description text. Hence, if any rule defines a portion of text as th
that extends from some specific point of a declarative region to the end of this region, then this portion
corresponding subset of the declarative region (thus, it does not include intermediate declarativ
between the interface declaration and a corresponding body declaration).

In addition to the above declarative regions, there is a root declarative region, not associated with a portion
of the text of the description, but encompassing any given primary unit. At the beginning of the analys
given primary unit, there are no declarations whose scopes (see 10.2) are within the root declarative
Moreover, the root declarative region associated with any given secondary unit is the root declarative
of the corresponding primary unit.

There is also a library declarative region associated with each design library (see 11.2). Each library de
ative region has within its scope declarations corresponding to each primary unit contained within th
ciated design library.

The declarative region associated with an architecture body is considered to occur immediately within
clarative region associated with the entity declaration corresponding to the given architecture body.
Copyright © 2002 IEEE. All rights reserved. 149

IEEE
Std 1076-2002 IEEE STANDARD VHDL

eclarative
clarative
 architec-

lled the
red by
haracter
 of this
he asso-
lity and

ly clos-

ediate

program
n declara-

tends to

art of a
d by a

n that
 part of
larative
ration
at the
use is
along

 and to
NOTE—The fact that an architecture body has an associated root declarative region does not mean that the d
region associated with the architecture is directly within the associated root declarative region. Instead, the de
region associated with the corresponding entity declaration surrounds the declarative region associated with the
ture.

10.2 Scope of declarations

For each form of declaration, the language rules define a certain portion of the description text ca
scope of the declaration. The scope of a declaration is also called the scope of any named entity decla
the declaration. Furthermore, if the declaration associates some notation (either an identifier, a c
literal, or an operator symbol) with the named entity, this portion of the text is also called the scope
notation. Within the scope of a named entity, and only there, there are places where it is legal to use t
ciated notation in order to refer to the named entity. These places are defined by the rules of visibi
overloading.

The scope of a declaration extends from the beginning of the declaration to the end of the immediate
ing declarative region; this part of the scope of a declaration is called the immediate scope. Furthermore, for
any of the declarations in the following list, the scope of the declaration extends beyond the imm
scope:

a) A declaration that occurs immediately within a package declaration

b) An element declaration in a record type declaration

c) A formal parameter declaration in a subprogram declaration

d) A local generic declaration in a component declaration

e) A local port declaration in a component declaration

f) A formal generic declaration in an entity declaration

g) A formal port declaration in an entity declaration

h) A declaration that occurs immediately within a protected type declaration.

In the absence of a separate subprogram declaration, the subprogram specification given in the sub
body acts as the declaration, and rule c) applies also in such a case. In each of these cases, the give
tion occurs immediately within some enclosing declaration, and the scope of the given declaration ex
the end of the scope of the enclosing declaration.

In addition to the above rules, the scope of any declaration that includes the end of the declarative p
given block (whether it be an external block defined by a design entity or an internal block define
block statement) extends into a configuration declaration that configures the given block.

If a component configuration appears as a configuration item immediately within a block configuratio
configures a given block, and if the scope of a given declaration includes the end of the declarative
that block, then the scope of the given declaration extends from the beginning to the end of the dec
region associated with the given component configuration. A similar rule applies to a block configu
that appears as a configuration item immediately within another block configuration, provided th
contained block configuration configures an internal block. Furthermore, the scope of a use cla
similarly extended. Finally, the scope of a library unit contained within a design library is extended
with the scope of the logical library name corresponding to that design library.

NOTE—These scope rules apply to all forms of declaration. In particular, they apply also to implicit declarations
named design units.
150 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 rules
d in this
s a pre-
 an iden-
ms and

ith this
d to be
ssible

aration:

are
, or in
oint.

 the
r-

ration
ediately
This

s

 prefix

lace of

pecifi-
entity

itecture
.

 whose

elected
pound

 in an
iated.

formal
ciation
10.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility
and also, in the case of overloaded declarations, by the overloading rules. The identifiers considere
subclause include any identifier other than a reserved word or an attribute designator that denote
defined attribute. The places considered in this subclause are those where a lexical element (such as
tifier) occurs. The overloaded declarations considered in this subclause are those for subprogra
enumeration literals.

For each identifier and at each place in the text, the visibility rules determine a set of declarations (w
identifier) that define the possible meanings of an occurrence of the identifier. A declaration is sai
visible at a given place in the text when, according to the visibility rules, the declaration defines a po
meaning of this occurrence. The following two cases arise in determining the meaning of such a decl

— The visibility rules determine at most one possible meaning. In such a case, the visibility rules
sufficient to determine the declaration defining the meaning of the occurrence of the identifier
the absence of such a declaration, to determine that the occurrence is not legal at the given p

— The visibility rules determine more than one possible meaning. In such a case, the occurrence of
identifier is legal at this point if and only if exactly one visible declaration is acceptable for the ove
loading rules in the given context.

A declaration is visible only within a certain part of its scope; this part starts at the end of the decla
except in the declaration of a design unit or a protected type declaration, in which case it starts imm
after the reserved word is occurring after the identifier of the design unit or protected type declaration.
rule applies to both explicit and implicit declarations.

Visibility is either by selection or direct. A declaration is visible by selection at places that are defined a
follows:

a) For a primary unit contained in a library: at the place of the suffix in a selected name whose
denotes the library.

b) For an entity name in a configuration declaration whose entity name is a simple name: at the p
the simple name, and the context is that of the library "Work".

c) For an architecture body associated with a given entity declaration: at the place of the block s
cation in a block configuration for an external block whose interface is defined by that
declaration.

d) For an architecture body associated with a given entity declaration: at the place of an arch
identifier (between the parentheses) in the first form of an entity aspect in a binding indication

e) For a declaration given in a package declaration: at the place of the suffix in a selected name
prefix denotes the package.

f) For an element declaration of a given record type declaration: at the place of the suffix in a s
name whose prefix is appropriate for the type; also at the place of a choice (before the com
delimiter =>) in a named element association of an aggregate of the type.

g) For a user-defined attribute: at the place of the attribute designator (after the delimiter ')
attribute name whose prefix denotes a named entity with which that attribute has been assoc

h) For a formal parameter declaration of a given subprogram declaration: at the place of the
designator in a formal part (before the compound delimiter =>) of a named parameter asso
element of a corresponding subprogram call.
Copyright © 2002 IEEE. All rights reserved. 151

IEEE
Std 1076-2002 IEEE STANDARD VHDL

signa-
nt of a
ator in
 corre-

ator in
 corre-
r in an
pond-

ator in
 corre-
efore
instan-

r in a
corre-
 part
onent

tion.

 place
ciation

 of the

on or a
xtually
 prefix

ediate
llowing
an be

s a
e inner
e
 of the
 if they
sult type

gram is

, unless
defined
ation is
st); the
i) For a local generic declaration of a given component declaration: at the place of the formal de
tor in a formal part (before the compound delimiter =>) of a named generic association eleme
corresponding component instantiation statement; similarly, at the place of the actual design
an actual part (after the compound delimiter =>, if any) of a generic association element of a
sponding binding indication.

j) For a local port declaration of a given component declaration: at the place of the formal design
a formal part (before the compound delimiter =>) of a named port association element of a
sponding component instantiation statement; similarly, at the place of the actual designato
actual part (after the compound delimiter =>, if any) of a port association element of a corres
ing binding indication.

k) For a formal generic declaration of a given entity declaration: at the place of the formal design
a formal part (before the compound delimiter =>) of a named generic association element of a
sponding binding indication; similarly, at the place of the formal designator in a formal part (b
the compound delimiter =>) of a generic association element of a corresponding component
tiation statement when the instantiated unit is a design entity or a configuration declaration.

l) For a formal port declaration of a given entity declaration: at the place of the formal designato
formal part (before the compound delimiter =>) of a named port association element of a
sponding binding specification; similarly, at the place of the formal designator in a formal
(before the compound delimiter =>) of a port association element of a corresponding comp
instantiation statement when the instantiated unit is a design entity or a configuration declara

m) For a formal generic declaration or a formal port declaration of a given block statement: at the
of the formal designator in a formal part (before the compound delimiter =>) of a named asso
element of a corresponding generic or port map aspect.

n) For a subprogram declared immediately within a given protected type declaration: at the place
suffix in a selected name whose prefix denotes an object of the protected type.

Finally, within the declarative region associated with a construct other than a record type declarati
protected type, any declaration that occurs immediately within the region and that also occurs te
within the construct is visible by selection at the place of the suffix of an expanded name whose
denotes the construct.

Where it is not visible by selection, a visible declaration is said to be directly visible. A declaration is said to
be directly visible within a certain part of its immediate scope; this part extends to the end of the imm
scope of the declaration but excludes places where the declaration is hidden as explained in the fo
paragraphs. In addition, a declaration occurring immediately within the visible part of a package c
made directly visible by means of a use clause according to the rules described in 10.4.

A declaration is said to be hidden within (part of) an inner declarative region if the inner region contain
homograph of this declaration; the outer declaration is then hidden within the immediate scope of th
homograph. Each of two declarations is said to be a homograph of the other if both declarations have th
same identifier, operator symbol, or character literal, and if overloading is allowed for at most one
two. If overloading is allowed for both declarations, then each of the two is a homograph of the other
have the same identifier, operator symbol, or character literal, as well as the same parameter and re
profile (see 3.1.1).

Within the specification of a subprogram, every declaration with the same designator as the subpro
hidden. Where hidden in this manner, a declaration is visible neither by selection nor directly.

Two declarations that occur immediately within the same declarative region must not be homographs
exactly one of them is the implicit declaration of a predefined operation. In such cases, a pre
operation is always hidden by the other homograph. Where hidden in this manner, an implicit declar
hidden within the entire scope of the other declaration (regardless of which declaration occurs fir
implicit declaration is visible neither by selection nor directly.
152 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

amed
 are
 if the

of the
ration

ock is
clause
 config-
n items.
figura-
places,

n that
 part of
arative
ration
e con-

n that
 of that
arative
ration
at the
 made
rary
e rules
 visible
ll or part
 within
nal use

 associ-
larations
numer-
r formal
enclosing
rlapping

ral, or
erator

er hand,
r design
Whenever a declaration with a certain identifier is visible from a given point, the identifier and the n
entity (if any) are also said to be visible from that point. Direct visibility and visibility by selection
likewise defined for character literals and operator symbols. An operator is directly visible if and only
corresponding operator declaration is directly visible.

In addition to the aforementioned rules, any declaration that is visible by selection at the end
declarative part of a given (external or internal) block is visible by selection in a configuration decla
that configures the given block.

In addition, any declaration that is directly visible at the end of the declarative part of a given bl
directly visible in a block configuration that configures the given block. This rule holds unless a use
that makes a homograph of the declaration potentially visible (see 10.4) appears in the corresponding
uration declaration, and if the scope of that use clause encompasses all or part of those configuratio
If such a use clause appears, then the declaration will be directly visible within the corresponding con
tion items, except at those places that fall within the scope of the additional use clause. At such
neither name will be directly visible.

If a component configuration appears as a configuration item immediately within a block configuratio
configures a given block, and if a given declaration is visible by selection at the end of the declarative
that block, then the given declaration is visible by selection from the beginning to the end of the decl
region associated with the given component configuration. A similar rule applies to a block configu
that appears as a configuration item immediately within another block configuration, provided that th
tained block configuration configures an internal block.

If a component configuration appears as a configuration item immediately within a block configuratio
configures a given block, and if a given declaration is directly visible at the end of the declarative part
block, then the given declaration is visible by selection from the beginning to the end of the decl
region associated with the given component configuration. A similar rule applies to a block configu
that appears as a configuration item immediately within another block configuration, provided th
contained block configuration configures an internal block. Furthermore, the visibility of declarations
directly visible by a use clause within a block is similarly extended. Finally, the visibility of a logical lib
name corresponding to a design library directly visible at the end of a block is similarly extended. Th
of this paragraph hold unless a use clause that makes a homograph of the declaration potentially
appears in the corresponding block configuration, and if the scope of that use clause encompasses a
of those configuration items. If such a use clause appears, then the declaration will be directly visible
the corresponding configuration items, except at those places that fall within the scope of the additio
clause. At such places, neither name will be directly visible.

NOTES

1—The same identifier, character literal, or operator symbol may occur in different declarations and may thus be
ated with different named entities, even if the scopes of these declarations overlap. Overlap of the scopes of dec
with the same identifier, character literal, or operator symbol can result from overloading of subprograms and of e
ation literals. Such overlaps can also occur for named entities declared in the visible parts of packages and fo
generics and ports, record elements, and formal parameters, where there is overlap of the scopes of the
package declarations, entity declarations, record type declarations, or subprogram declarations. Finally, ove
scopes can result from nesting.

2—The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier, character lite
operator symbol within its own declaration is illegal (except for design units). The identifier, character literal, or op
symbol hides outer homographs within its immediate scope—that is, from the start of the declaration. On the oth
the identifier, character literal, or operator symbol is visible only after the end of the declaration (again, except fo
units). For this reason, all but the last of the following declarations are illegal:
Copyright © 2002 IEEE. All rights reserved. 153

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 directly
en the
symbol
 is the
age or

ts
scope of
xt clause
ated with
ion (see

onsider
n in this

isible

 the

 unless
ogram
constant K: INTEGER := K*K; -- Illegal
constant T: T; -- Illegal
procedure P (X: P); -- Illegal
function Q (X: REAL := Q) return Q; -- Illegal
procedure R (R: REAL); -- Legal (although perhaps confusing)

Example:

L1: block
signal A,B: Bit ;

begin
L2: block

signal B: Bit ; -- An inner homograph of B.
begin

A <= B after 5 ns; -- Means L1.A <= L2.B
B <= L1.B after 10 ns; -- Means L2.B <= L1.B

end block ;
B <= A after 15 ns; -- Means L1.B <= L1.A

end block ;

10.4 Use clauses

A use clause achieves direct visibility of declarations that are visible by selection.

use_clause ::=
use selected_name { , selected_name } ;

Each selected name in a use clause identifies one or more declarations that will potentially become
visible. If the suffix of the selected name is a simple name, character literal, or operator symbol, th
selected name identifies only the declaration(s) of that simple name, character literal, or operator
contained within the package or library denoted by the prefix of the selected name. If the suffix
reserved word all, then the selected name identifies all declarations that are contained within the pack
library denoted by the prefix of the selected name.

For each use clause, there is a certain region of text called the scope of the use clause. This region star
immediately after the use clause. If a use clause is a declarative item of some declarative region, the
the clause extends to the end of the given declarative region. If a use clause occurs within the conte
of a design unit, the scope of the use clause extends to the end of the root declarative region associ
the given design unit. The scope of a use clause may additionally extend into a configuration declarat
10.2).

In order to determine which declarations are made directly visible at a given place by use clauses, c
the set of declarations identified by all use clauses whose scopes enclose this place. Any declaratio
set is a potentially visible declaration. A potentially visible declaration is actually made directly v
except in the following two cases:

a) A potentially visible declaration is not made directly visible if the place considered is within
immediate scope of a homograph of the declaration.

b) Potentially visible declarations that have the same designator are not made directly visible
each of them is either an enumeration literal specification or the declaration of a subpr
(either by a subprogram declaration or by an implicit declaration).
154 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e directly

n of the
se "
red in

dentifier
 accept-
 of an

tly one

 syntax

s another

rly, any
harac-

m the
te, the
n to be

ns of
l type;

nd the
ee 2.4).

bol, or
e occur-

mple, the
n indexed

a) above.
ponding
NOTES

1—These rules guarantee that a declaration that is made directly visible by a use clause cannot hide an otherwis
visible declaration.

2—If a named entity X declared in package P is made potentially visible within a package Q (e.g., by the inclusio
clause "use P.X;" in the context clause of package Q), and the context clause for design unit R includes the clauuse
Q.all;", this does not imply that X will be potentially visible in R. Only those named entities that are actually decla
package Q will be potentially visible in design unit R (in the absence of any other use clauses).

10.5 The context of overload resolution

Overloading is defined for names, subprograms, and enumeration literals.

For overloaded entities, overload resolution determines the actual meaning that an occurrence of an i
or a character literal has whenever the visibility rules have determined that more than one meaning is
able at the place of this occurrence; overload resolution likewise determines the actual meaning
occurrence of an operator or basic operation (see the introduction to Clause 3).

At such a place, all visible declarations are considered. The occurrence is only legal if there is exac
interpretation of each constituent of the innermost complete context; a complete context is either a declara-
tion, a specification, or a statement.

When considering possible interpretations of a complete context, the only rules considered are the
rules, the scope and visibility rules, and the rules of the form described below:

a) Any rule that requires a name or expression to have a certain type or to have the same type a
name or expression.

b) Any rule that requires the type of a name or expression to be a type of a certain class; simila
rule that requires a certain type to be a discrete, integer, floating point, physical, universal, or c
ter type.

c) Any rule that requires a prefix to be appropriate for a certain type.

d) The rules that require the type of an aggregate or string literal to be determinable solely fro
enclosing complete context. Similarly, the rules that require the type of the prefix of an attribu
type of the expression of a case statement, or the type of the operand of a type conversio
determinable independently of the context.

e) The rules given for the resolution of overloaded subprogram calls; for the implicit conversio
universal expressions; for the interpretation of discrete ranges with bounds having a universa
and for the interpretation of an expanded name whose prefix denotes a subprogram.

f) The rules given for the requirements on the return type, the number of formal parameters, a
types of the formal parameters of the subprogram denoted by the resolution function name (s

NOTES

1—If there is only one possible interpretation of an occurrence of an identifier, character literal, operator sym
string, that occurrence denotes the corresponding named entity. However, this condition does not mean that th
rence is necessarily legal since other requirements exist that are not considered for overload resolution: for exa
fact that the expression is static, the parameter modes, conformance rules, the use of named association in a
name, the use of open in an indexed name, the use of a slice as an actual to a function call, and so forth.

2—A loop parameter specification is a declaration, and hence a complete context.

3—Rules that require certain constructs to have the same parameter and result type profile fall under category
The same holds for rules that require conformance of two constructs, since conformance requires that corres
names be given the same meaning by the visibility and overloading rules.
Copyright © 2002 IEEE. All rights reserved. 155

IEEE
Std 1076-2002 IEEE STANDARD VHDL
156 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

design

ucts are

nalysis

 from a

f the
e identi-
me
aration
ted with

Package

its. A
11. Design units and their analysis

The overall organization of descriptions, as well as their analysis and subsequent definition in a
library, are discussed in this clause.

11.1 Design units

Certain constructs may be independently analyzed and inserted into a design library; these constr
called design units. One or more design units in sequence comprise a design file.

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit

library_unit ::=
 primary_unit
| secondary_unit

primary_unit ::=
 entity_declaration
| configuration_declaration
| package_declaration

secondary_unit ::=
 architecture_body
| package_body

Design units in a design file are analyzed in the textual order of their appearance in the design file. A
of a design unit defines the corresponding library unit in a design library. A library unit is either a primary
unit or a secondary unit. A secondary unit is a separately analyzed body of a primary unit resulting
previous analysis.

The name of a primary unit is given by the first identifier after the initial reserved word of that unit. O
secondary units, only architecture bodies are named; the name of an architecture body is given by th
fier following the reserved word architecture. Each primary unit in a given library must have a simple na
that is unique within the given library, and each architecture body associated with a given entity decl
must have a simple name that is unique within the set of names of the architecture bodies associa
that entity declaration.

Entity declarations, architecture bodies, and configuration declarations are discussed in Clause 1.
declarations and package bodies are discussed in Clause 2.

11.2 Design libraries

A design library is an implementation-dependent storage facility for previously analyzed design un
given implementation is required to support any number of design libraries.

library_clause ::= library logical_name_list ;

logical_name_list ::= logical_name { , logical_name }

logical_name ::= identifier
Copyright © 2002 IEEE. All rights reserved. 157

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ppears
e
diately
sign unit
use is

 name

e same
me is true
a corre-

nment
a library

library
raries

ms as

XTIO
use makes
10.4).

ckage

ich the

es in the
n of the
also a
A library clause defines logical names for design libraries in the host environment. A library clause a
as part of a context clause at the beginning of a design unit. There is a certain region of text called thscope
of a library clause; this region, contained within the root declarative region (see 10.1), starts imme
after the library clause, and it extends to the end of the root declarative region associated with the de
in which the library clause appears. Within this scope each logical name defined by the library cla
directly visible, except where hidden in an inner declarative region by a homograph of the logical
according to the rules of 10.3.

If two or more logical names having the same identifier (see 13.3) appear in library clauses in th
context clause, the second and subsequent occurrences of the logical name have no effect. The sa
of logical names appearing both in the context clause of a primary unit and in the context clause of
sponding secondary unit.

Each logical name defined by the library clause denotes a design library in the host environment.

For a given library logical name, the actual name of the corresponding design library in the host enviro
may or may not be the same. A given implementation must provide some mechanism to associate
logical name with a host-dependent library. Such a mechanism is not defined by the language.

There are two classes of design libraries: working libraries and resource libraries. A working library is the
library into which the library unit resulting from the analysis of a design unit is placed. A resource library is
a library containing library units that are referenced within the design unit being analyzed. Only one
is the working library during the analysis of any given design unit; in contrast, any number of lib
(including the working library itself) may be resource libraries during such an analysis.

Every design unit except package STANDARD is assumed to contain the following implicit context ite
part of its context clause:

library STD, WORK ; use STD.STANDARD.all ;

Library logical name STD denotes the design library in which package STANDARD and package TE
reside; these are the only standard packages defined by the language (see Clause 14). (The use cla
all declarations within package STANDARD directly visible within the corresponding design unit; see
Library logical name WORK denotes the current working library during a given analysis.

The library denoted by the library logical name STD contains no library units other than pa
STANDARD and package TEXTIO.

A secondary unit corresponding to a given primary unit must be placed into the design library in wh
primary unit resides.

NOTE—The design of the language assumes that the contents of resource libraries named in all library claus
context clause of a design unit will remain unchanged during the analysis of that unit (with the possible exceptio
updating of the library unit corresponding to the analyzed design unit within the working library, if that library is
resource library).

11.3 Context clauses

A context clause defines the initial name environment in which a design unit is analyzed.

context_clause ::= { context_item }

context_item ::=
 library_clause
| use_clause
158 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ses are
 clauses

ry unit is

visibility

 to the

 by the

ted and

within
y unit.
ts that
n be used
A library clause defines library logical names that may be referenced in the design unit; library clau
described in 11.2. A use clause makes certain declarations directly visible within the design unit; use
are described in 10.4.

NOTE—The rules given for use clauses are such that the same effect is obtained whether the name of a libra
mentioned once or more than once by the applicable use clauses, or even within a given use clause.

11.4 Order of analysis

The rules defining the order in which design units can be analyzed are direct consequences of the
rules. In particular

a) A primary unit whose name is referenced within a given design unit must be analyzed prior
analysis of the given design unit.

b) A primary unit must be analyzed prior to the analysis of any corresponding secondary unit.

In each case, the second unit depends on the first unit.

The order in which design units are analyzed must be consistent with the partial ordering defined
above rules.

If any error is detected while attempting to analyze a design unit, then the attempted analysis is rejec
has no effect whatsoever on the current working library.

A given library unit is potentially affected by a change in any library unit whose name is referenced
the given library unit. A secondary unit is potentially affected by a change in its corresponding primar
If a library unit is changed (e.g., by reanalysis of the corresponding design unit), then all library uni
are potentially affected by such a change become obsolete and must be reanalyzed before they ca
again.
Copyright © 2002 IEEE. All rights reserved. 159

IEEE
Std 1076-2002 IEEE STANDARD VHDL
160 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 before

ncurrent
ately to

ation of
sists of

ollection

k state-
ntity is
 that is
nymous
block
f 5.2.2.
.1.

xternal
plicit
xternal

ternal

rchy to
r
p-level
n imple-

taining
rating
tion of a

 corre-

of other
ges by their
12. Elaboration and execution

The process by which a declaration achieves its effect is called the elaboration of the declaration. After its
elaboration, a declaration is said to be elaborated. Prior to the completion of its elaboration (including
the elaboration), the declaration is not yet elaborated.

Elaboration is also defined for design hierarchies, declarative parts, statement parts (containing co
statements), and concurrent statements. Elaboration of such constructs is necessary in order ultim
elaborate declarative items that are declared within those constructs.

In order to execute a model, the design hierarchy defining the model must first be elaborated. Initializ
nets (see 12.6.2) in the model then occurs. Finally, simulation of the model proceeds. Simulation con
the repetitive execution of the simulation cycle, during which processes are executed and nets updated.

12.1 Elaboration of a design hierarchy

The elaboration of a design hierarchy creates a collection of processes interconnected by nets; this c
of processes and nets can then be executed to simulate the behavior of the design.

A design hierarchy is defined either by a design entity or by a configuration.

Elaboration of a design hierarchy defined by a design entity consists of the elaboration of the bloc
ment equivalent to the external block defined by the design entity. The architecture of this design e
assumed to contain an implicit configuration specification (see 5.2) for each component instance
unbound in this architecture; each configuration specification has an entity aspect denoting an ano
configuration declaration identifying the visible entity declaration (see 5.2) and supplying an implicit
configuration (see 1.3.1) that binds and configures a design entity identified according to the rules o
The equivalent block statement is defined in 9.6.2. Elaboration of a block statement is defined in 12.4

Elaboration of a configuration consists of the elaboration of the block statement equivalent to the e
block defined by the design entity configured by the configuration. The configuration contains an im
component configuration (see 1.3.2) for each unbound component instance contained within the e
block and an implicit block configuration (see 1.3.1) for each internal block contained within the ex
block.

An implementation may allow, but is not required to allow, a design entity at the root of a design hiera
have generics and ports. If an implementation allows these top-level interface objects, it may restrict thei
allowed types and modes in an implementation-defined manner. Similarly, the means by which to
interface objects are associated with the external environment of the hierarchy are also defined by a
mentation supporting top-level interface objects.

Elaboration of a block statement involves first elaborating each not-yet-elaborated package con
declarations referenced by the block. Similarly, elaboration of a given package involves first elabo
each not-yet-elaborated package containing declarations referenced by the given package. Elabora
package consists additionally of the

a) Elaboration of the declarative part of the package declaration, eventually followed by

b) Elaboration of the declarative part of the corresponding package body, if the package has a
sponding package body.

Step b) above, the elaboration of a package body, may be deferred until the declarative parts
packages have been elaborated, if necessary, because of the dependencies created between packa
interpackage references.
Copyright © 2002 IEEE. All rights reserved. 161

IEEE
Std 1076-2002 IEEE STANDARD VHDL

Elaboration of a declarative part is defined in 12.3.

Examples:

-- In the following example, because of the dependencies between the packages, the
-- elaboration of either package body must follow the elaboration of both package
-- declarations.

package P1 is
constant C1: INTEGER := 42;
constant C2: INTEGER;

end package P1;

package P2 is
constant C1: INTEGER := 17;
constant C2: INTEGER;

end package P2;

package body P1 is
constant C2: INTEGER := Work.P2.C1;

end package body P1;

package body P2 is
constant C2: INTEGER := Work.P1.C1;

end package body P2;

-- If a design hierarchy is described by the following design entity:

entity E is end;

architecture A of E is
component comp

port (…);
end component;

begin
C: comp port map (…);
B: block

…
begin

…
end block B;

end architecture A;

-- then its architecture contains the following implicit configuration specification at the
-- end of its declarative part:

for C: comp use configuration anonymous;

-- and the following configuration declaration is assumed to exist when E(A) is
-- elaborated:

configuration anonymous of L.E is -- L is the library in which E(A) is found.
for A -- The most recently analyzed architecture

-- of L.E.
end for;

end configuration anonymous;
162 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

pect, the

generic
nsists of

or, in the
stant is

generic
plicitly

stant.

nt in the
al part
d by the
art. It
n of the
trained
r if the
 element

rations
ting the

t in the
sts
l part is
 a check

ation
 and the
ort of
alue of

pression
IVE,
12.2 Elaboration of a block header

Elaboration of a block header consists of the elaboration of the generic clause, the generic map as
port clause, and the port map aspect, in that order.

12.2.1 The generic clause

Elaboration of a generic clause consists of the elaboration of each of the equivalent single
declarations contained in the clause, in the order given. The elaboration of a generic declaration co
elaborating the subtype indication and then creating a generic constant of that subtype.

The value of a generic constant is not defined until a subsequent generic map aspect is evaluated
absence of a generic map aspect, until the default expression associated with the generic con
evaluated to determine the value of the constant.

12.2.2 The generic map aspect

Elaboration of a generic map aspect consists of elaborating the generic association list. The
association list contains an implicit association element for each generic constant that is not ex
associated with an actual or that is associated with the reserved word open; the actual part of such an
implicit association element is the default expression appearing in the declaration of that generic con

Elaboration of a generic association list consists of the elaboration of each generic association eleme
association list. Elaboration of a generic association element consists of the elaboration of the form
and the evaluation of the actual part. The generic constant or subelement or slice thereof designate
formal part is then initialized with the value resulting from the evaluation of the corresponding actual p
is an error if the value of the actual does not belong to the subtype denoted by the subtype indicatio
formal. If the subtype denoted by the subtype indication of the declaration of the formal is a cons
array subtype, then an implicit subtype conversion is performed prior to this check. It is also an erro
type of the formal is an array type and the value of each element of the actual does not belong to the
subtype of the formal.

12.2.3 The port clause

Elaboration of a port clause consists of the elaboration of each of the equivalent single port decla
contained in the clause, in the order given. The elaboration of a port declaration consists of elabora
subtype indication and then creating a port of that subtype.

12.2.4 The port map aspect

Elaboration of a port map aspect consists of elaborating the port association list.

Elaboration of a port association list consists of the elaboration of each port association elemen
association list whose actual is not the reserved word open. Elaboration of a port association element consi
of the elaboration of the formal part; the port or subelement or slice thereof designated by the forma
then associated with the signal or expression designated by the actual part. This association involves
that the restrictions on port associations (see 1.1.1.2) are met. It is an error if this check fails.

If a given port is a port of mode in whose declaration includes a default expression, and if no associ
element associates a signal or expression with that port, then the default expression is evaluated
effective and driving value of the port is set to the value of the default expression. Similarly, if a given p
mode in is associated with an expression, that expression is evaluated and the effective and driving v
the port is set to the value of the expression. In the event that the value of a port is derived from an ex
in either fashion, references to the predefined attributes 'DELAYED, 'STABLE, 'QUIET, 'EVENT, 'ACT
Copyright © 2002 IEEE. All rights reserved. 163

IEEE
Std 1076-2002 IEEE STANDARD VHDL

, then it
al part)
tical to

 expres-
an
n of the

d array
 formal.
version
d if the
y type,
r if the

 any
btype of
nt
es not

btype,
e record
n or type

order in
 three

ith the

ith the

efined

is subject

 appear
ust be

unction
tion call
notes a
ration of
s the
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE of the port return
values indicating that the port has the given driving value with no activity at any time (see 12.6.3).

If an actual signal is associated with a port of any mode, and if the type of the formal is a scalar type
is an error if (after applying any conversion function or type conversion expression present in the actu
the bounds and direction of the subtype denoted by the subtype indication of the formal are not iden
the bounds and direction of the subtype denoted by the subtype indication of the actual. If an actual
sion is associated with a formal port (of mode in), and if the type of the formal is a scalar type, then it is
error if the value of the expression does not belong to the subtype denoted by the subtype indicatio
declaration of the formal.

If an actual signal or expression is associated with a formal port, and if the formal is of a constraine
subtype, then it is an error if the actual does not contain a matching element for each element of the
In the case of an actual signal, this check is made after applying any conversion function or type con
that is present in the actual part. If an actual signal or expression is associated with a formal port, an
subtype denoted by the subtype indication of the declaration of the formal is an unconstrained arra
then the subtype of the formal is taken from the actual associated with that formal. It is also an erro
mode of the formal is in or inout and the value of each element of the actual array (after applying
conversion function or type conversion present in the actual part) does not belong to the element su
the formal. If the formal port is of mode out, inout, or buffer, it is also an error if the value of each eleme
of the formal (after applying any conversion function or type conversion present in the formal part) do
belong to the element subtype of the actual.

If an actual signal or expression is associated with a formal port, and if the formal is of a record su
then it is an error if the rules of the preceding three paragraphs do not apply to each element of th
subtype. In the case of an actual signal, these checks are made after applying any conversion functio
conversion that is present in the actual part.

12.3 Elaboration of a declarative part

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the
which they are given in the declarative part. This rule holds for all declarative parts, with the following
exceptions:

a) The entity declarative part of a design entity whose corresponding architecture is decorated w
'FOREIGN attribute defined in package STANDARD (see 5.1 and 14.2).

b) The architecture declarative part of a design entity whose architecture is decorated w
'FOREIGN attribute defined in package STANDARD.

c) A subprogram declarative part whose subprogram is decorated with the 'FOREIGN attribute d
in package STANDARD.

For these cases, the declarative items are not elaborated; instead, the design entity or subprogram
to implementation-dependent elaboration.

In certain cases, the elaboration of a declarative item involves the evaluation of expressions that
within the declarative item. The value of any object denoted by a primary in such an expression m
defined at the time the primary is read (see 4.3.2). In addition, if a primary in such an expression is a f
call, then the value of any object denoted by or appearing as a part of an actual designator in the func
must be defined at the time the expression is evaluated. Additionally, it is an error if a primary that de
shared variable, or a method of the protected type of a shared variable, is evaluated during the elabo
a declarative item. During static elaboration, the function STD.STANDARD.NOW (see 14.2) return
value 0 ns.
164 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 expres-
sed as a
 signal is
d within
led after

 either
n. For
ing type
dy is

of the
erface

n on, be

nd the
elabora-
subtype

g type.

f the
 is also
d by the

ubtype

eclara-
subtype

cation.

 decla-

, can be
NOTE—It is a consequence of this rule that the name of a signal declared within a block cannot be referenced in
sions appearing in declarative items within that block, an inner block, or process statement; nor can it be pas
parameter to a function called during the elaboration of the block. These restrictions exist because the value of a
not defined until after the design hierarchy is elaborated. However, a signal parameter name may be use
expressions in declarative items within a subprogram declarative part, provided that the subprogram is only cal
simulation begins, because the value of every signal will be defined by that time.

12.3.1 Elaboration of a declaration

Elaboration of a declaration has the effect of creating the declared item.

For each declaration, the language rules (in particular scope and visibility rules) are such that it is
impossible or illegal to use a given item before the elaboration of its corresponding declaratio
example, it is not possible to use the name of a type for an object declaration before the correspond
declaration is elaborated. Similarly, it is illegal to call a subprogram before its corresponding bo
elaborated.

12.3.1.1 Subprogram declarations and bodies

Elaboration of a subprogram declaration involves the elaboration of the parameter interface list
subprogram declaration; this in turn involves the elaboration of the subtype indication of each int
element to determine the subtype of each formal parameter of the subprogram.

Elaboration of a subprogram body has no effect other than to establish that the body can, from the
used for the execution of calls of the subprogram.

12.3.1.2 Type declarations

Elaboration of a type declaration generally consists of the elaboration of the definition of the type a
creation of that type. For a constrained array type declaration, however, elaboration consists of the
tion of the equivalent anonymous unconstrained array type followed by the elaboration of the named
of that unconstrained type.

Elaboration of an enumeration type definition has no effect other than the creation of the correspondin

Elaboration of an integer, floating point, or physical type definition consists of the elaboration o
corresponding range constraint. For a physical type definition, each unit declaration in the definition
elaborated. Elaboration of a physical unit declaration has no effect other than to create the unit define
unit declaration.

Elaboration of an unconstrained array type definition consists of the elaboration of the element s
indication of the array type.

Elaboration of a record type definition consists of the elaboration of the equivalent single element d
tions in the given order. Elaboration of an element declaration consists of elaboration of the element
indication.

Elaboration of an access type definition consists of the elaboration of the corresponding subtype indi

Elaboration of a protected type definition consists of the elaboration, in the order given, of each of the
rations occurring immediately within the protected type definition.

Elaboration of a protected type body has no effect other than to establish that the body, from then on
used during the elaboration of objects of the given protected type.
Copyright © 2002 IEEE. All rights reserved. 165

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ation of
pe is the
nstraint

he type

 defines
 of each

rotected

f the
es not

onver-
denotes

 check
eclara-

ect is a

ed by
call to

ication,
ach of

 outlined
12.3.1.3 Subtype declarations

Elaboration of a subtype declaration consists of the elaboration of the subtype indication. The elabor
a subtype indication creates a subtype. If the subtype does not include a constraint, then the subty
same as that denoted by the type mark. The elaboration of a subtype indication that includes a co
proceeds as follows:

a) The constraint is first elaborated.

b) A check is then made that the constraint is compatible with the type or subtype denoted by t
mark (see 3.1 and 3.2.1.1).

Elaboration of a range constraint consists of the evaluation of the range. The evaluation of a range
the bounds and direction of the range. Elaboration of an index constraint consists of the elaboration
of the discrete ranges in the index constraint in some order that is not defined by the language.

12.3.1.4 Object declarations

Elaboration of an object declaration that declares an object other than a file object or an object of a p
type proceeds as follows:

a) The subtype indication is first elaborated; this establishes the subtype of the object.

b) If the object declaration includes an explicit initialization expression, then the initial value o
object is obtained by evaluating the expression. It is an error if the value of the expression do
belong to the subtype of the object; if the object is an array object, then an implicit subtype c
sion is first performed on the value unless the object is a constant whose subtype indication
an unconstrained array type. Otherwise, any implicit initial value for the object is determined.

c) The object is created.

d) Any initial value is assigned to the object.

The initialization of such an object (either the declared object or one of its subelements) involves a
that the initial value belongs to the subtype of the object. For an array object declared by an object d
tion, an implicit subtype conversion is first applied as for an assignment statement, unless the obj
constant whose subtype is an unconstrained array type.

The elaboration of a file object declaration consists of the elaboration of the subtype indication follow
the creation of the object. If the file object declaration contains file open information, then the implicit
FILE_OPEN is then executed (see 4.3.1.4).

The elaboration of an object of a protected type consists of the elaboration of the subtype ind
followed by creation of the object. Creation of the object consists of elaborating, in the order given, e
the declarative items in the protected type body.

NOTES

1—These rules apply to all object declarations other than port and generic declarations, which are elaborated as
in 12.2.1 through 12.2.4.

2—The expression initializing a constant object need not be a static expression.

3—Each object whose type is a protected type creates an instance of the shared objects.
166 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ish the
 named
he alias

utes of

 compo-

clared

ttribute

 of the
then an
of the

 items.

s to the
conver-
te of an

ces are

onent

 use in
12.3.1.5 Alias declarations

Elaboration of an alias declaration consists of the elaboration of the subtype indication to establ
subtype associated with the alias, followed by the creation of the alias as an alternative name for the
entity. The creation of an alias for an array object involves a check that the subtype associated with t
includes a matching element for each element of the named object. It is an error if this check fails.

12.3.1.6 Attribute declarations

Elaboration of an attribute declaration has no effect other than to create a template for defining attrib
items.

12.3.1.7 Component declarations

Elaboration of a component declaration has no effect other than to create a template for instantiating
nent instances.

12.3.2 Elaboration of a specification

Elaboration of a specification has the effect of associating additional information with a previously de
item.

12.3.2.1 Attribute specifications

Elaboration of an attribute specification proceeds as follows:

a) The entity specification is elaborated in order to determine which items are affected by the a
specification.

b) The expression is evaluated to determine the value of the attribute. It is an error if the value
expression does not belong to the subtype of the attribute; if the attribute is of an array type,
implicit subtype conversion is first performed on the value, unless the subtype indication
attribute denotes an unconstrained array type.

c) A new instance of the designated attribute is created and associated with each of the affected

d) Each new attribute instance is assigned the value of the expression.

The assignment of a value to an instance of a given attribute involves a check that the value belong
subtype of the designated attribute. For an attribute of a constrained array type, an implicit subtype
sion is first applied as for an assignment statement. No such conversion is necessary for an attribu
unconstrained array type; the constraints on the value determine the constraints on the attribute.

NOTE—The expression in an attribute specification need not be a static expression.

12.3.2.2 Configuration specifications

Elaboration of a configuration specification proceeds as follows:

a) The component specification is elaborated in order to determine which component instan
affected by the configuration specification.

b) The binding indication is elaborated to identify the design entity to which the affected comp
instances will be bound.

c) The binding information is associated with each affected component instance label for later
instantiating those component instances.
Copyright © 2002 IEEE. All rights reserved. 167

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ponding
 this

discon-

ffected

iscon-
ls.

xecution
atement
 design
ckage

entation-

 by the

ular, a
ence
nding
aration,
orated

icit or
 1.3.2)
tions

 or more
the gen-
 generate
te-
As part of this elaboration process, a check is made that both the entity declaration and the corres
architecture body implied by the binding indication exist within the specified library. It is an error if
check fails.

12.3.2.3 Disconnection specifications

Elaboration of a disconnection specification proceeds as follows:

a) The guarded signal specification is elaborated in order to identify the signals affected by the
nection specification.

b) The time expression is evaluated to determine the disconnection time for drivers of the a
signals.

c) The disconnection time is associated with each affected signal for later use in constructing d
nection statements in the equivalent processes for guarded assignments to the affected signa

12.4 Elaboration of a statement part

Concurrent statements appearing in the statement part of a block must be elaborated before e
begins. Elaboration of the statement part of a block consists of the elaboration of each concurrent st
in the order given. This rule holds for all block statement parts except for those blocks equivalent to a
entity whose corresponding architecture is decorated with the 'FOREIGN attribute defined in pa
STANDARD (see 14.2).

For this case, the statements are not elaborated; instead, the design entity is subject to implem
dependent elaboration.

12.4.1 Block statements

Elaboration of a block statement consists of the elaboration of the block header, if present, followed
elaboration of the block declarative part, followed by the elaboration of the block statement part.

Elaboration of a block statement may occur under the control of a configuration declaration. In partic
block configuration, whether implicit or explicit, within a configuration declaration may supply a sequ
of additional implicit configuration specifications to be applied during the elaboration of the correspo
block statement. If a block statement is being elaborated under the control of a configuration decl
then the sequence of implicit configuration specifications supplied by the block configuration is elab
as part of the block declarative part, following all other declarative items in that part.

The sequence of implicit configuration specifications supplied by a block configuration, whether impl
explicit, consists of each of the configuration specifications implied by component configurations (see
occurring immediately within the block configuration, in the order in which the component configura
themselves appear.

12.4.2 Generate statements

Elaboration of a generate statement consists of the replacement of the generate statement with zero
copies of a block statement whose declarative part consists of the declarative items contained within
erate statement and whose statement part consists of the concurrent statements contained within the
statement. These block statements are said to be represented by the generate statement. Each block sta
ment is then elaborated.
168 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 discrete
tements

onstant
nstant is
 type of
ter. The

 within

hin the

 Boolean
 TRUE,

nerate

in the
For a generate statement with a for generation scheme, elaboration consists of the elaboration of the
range, followed by the generation of one block statement for each value in the range. The block sta
all have the following form:

a) The label of the block statement is the same as the label of the generate statement.

b) The block declarative part has, as its first item, a single constant declaration that declares a c
with the same simple name as that of the applicable generate parameter; the value of the co
the value of the generate parameter for the generation of this particular block statement. The
this declaration is determined by the base type of the discrete range of the generate parame
remainder of the block declarative part consists of a copy of the declarative items contained
the generate statement.

c) The block statement part consists of a copy of the concurrent statements contained wit
generate statement.

For a generate statement with an if generation scheme, elaboration consists of the evaluation of the
expression, followed by the generation of exactly one block statement if the expression evaluates to
and no block statement otherwise. If generated, the block statement has the following form:

— The block label is the same as the label of the generate statement.

— The block declarative part consists of a copy of the declarative items contained within the ge
statement.

— The block statement part consists of a copy of the concurrent statements contained with
generate statement.

Examples:

-- The following generate statement:

LABL : for I in 1 to 2 generate
signal s1 : INTEGER;

begin
s1 <= p1;
Inst1 : and_gate port map (s1, p2(I), p3);

end generate LABL;

-- is equivalent to the following two block statements:

LABL : block
constant I : INTEGER := 1;
signal s1 : INTEGER;

begin
s1 <= p1;
Inst1 : and_gate port map (s1, p2(I), p3);

end block LABL;

LABL : block
constant I : INTEGER := 2;
signal s1 : INTEGER;

begin
s1 <= p1;
Inst1 : and_gate port map (s1, p2(I), p3);

end block LABL;
Copyright © 2002 IEEE. All rights reserved. 169

IEEE
Std 1076-2002 IEEE STANDARD VHDL

larations
 constitute

o effect
ion and
 bound,
n of the
k state-
k state-

entity or
ing the
ing the
 9.6.2.

n equiva-

 by the

nsists of
process
-- The following generate statement:

LABL : if (g1 = g2) generate
signal s1 : INTEGER;

begin
s1 <= p1;
Inst1 : and_gate port map (s1, p4, p3);

end generate LABL;

-- is equivalent to the following statement if g1 = g2;
-- otherwise, it is equivalent to no statement at all:

LABL : block
signal s1 : INTEGER;

begin
s1 <= p1;
Inst1 : and_gate port map (s1, p4, p3);

end block LABL;

NOTE—The repetition of the block labels in the case of a for generation scheme does not produce multiple dec
of the label on the generate statement. The multiple block statements represented by the generate statement
multiple references to the same implicitly declared label.

12.4.3 Component instantiation statements

Elaboration of a component instantiation statement that instantiates a component declaration has n
unless the component instance is either fully bound to a design entity defined by an entity declarat
architecture body or bound to a configuration of such a design entity. If a component instance is so
then elaboration of the corresponding component instantiation statement consists of the elaboratio
implied block statement representing the component instance and (within that block) the implied bloc
ments representing the design entity to which the component instance is bound. The implied bloc
ments are defined in 9.6.1.

Elaboration of a component instantiation statement whose instantiated unit denotes either a design
a configuration declaration consists of the elaboration of the implied block statement represent
component instantiation statement and (within that block) the implied block statements represent
design entity to which the component instance is bound. The implied block statements are defined in

12.4.4 Other concurrent statements

All other concurrent statements are either process statements or are statements for which there is a
lent process statement.

Elaboration of a process statement proceeds as follows:

a) The process declarative part is elaborated.

b) The drivers required by the process statement are created.

c) The initial transaction defined by the default value associated with each scalar signal driven
process statement is inserted into the corresponding driver.

Elaboration of all concurrent signal assignment statements and concurrent assertion statements co
the construction of the equivalent process statement followed by the elaboration of the equivalent
statement.
170 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ents also

e are as

 loop
9). This

 corre-
tion to
 formal
plicitly
ll
r to the
tor of

D, the
tements
 'FOR-
men-

ubtype

am body
eclarative
ations of

t may not
tions are

ign
act with

efined
uses the
ible for
e events.

riable
ves the
rocess
ponding
12.5 Dynamic elaboration

The execution of certain constructs that involve sequential statements rather than concurrent statem
involves elaboration. Such elaboration occurs during the execution of the model.

There are three particular instances in which elaboration occurs dynamically during simulation. Thes
follows:

a) Execution of a loop statement with a for iteration scheme involves the elaboration of the
parameter specification prior to the execution of the statements enclosed by the loop (see 8.
elaboration creates the loop parameter and evaluates the discrete range.

b) Execution of a subprogram call involves the elaboration of the parameter interface list of the
sponding subprogram declaration; this involves the elaboration of each interface declara
create the corresponding formal parameters. Actual parameters are then associated with
parameters. Next, if the subprogram is a method of a protected type (see 3.5.1) or an im
declared file operation (see 3.4.1), the elaboration blocks (suspends execution while retaining a
state), if necessary, until exclusive access to the object denoted by the prefix of the method o
file object denoted by the file parameter of the file operation is secured. Finally, if the designa
the subprogram is not decorated with the 'FOREIGN attribute defined in package STANDAR
declarative part of the corresponding subprogram body is elaborated and the sequence of sta
in the subprogram body is executed. If the designator of the subprogram is decorated with the
EIGN attribute defined in package STANDARD, then the subprogram body is subject to imple
tation-dependent elaboration and execution.

c) Evaluation of an allocator that contains a subtype indication involves the elaboration of the s
indication prior to the allocation of the created object.

NOTES

1—It is a consequence of these rules that declarative items appearing within the declarative part of a subprogr
are elaborated each time the corresponding subprogram is called; thus, successive elaborations of a given d
item appearing in such a place may create items with different characteristics. For example, successive elabor
the same subtype declaration appearing in a subprogram body may create subtypes with different constraints.

2—If two or more processes access the same set of shared variables, livelock or deadlock may occur. That is, i
be possible to ever grant exclusive access to the shared variable as outlined in item b), above. Implementa
allowed to, but not required to, detect and, if possible, resolve such conditions.

12.6 Execution of a model

The elaboration of a design hierarchy produces a model that can be executed in order to simulate the des
represented by the model. Simulation involves the execution of user-defined processes that inter
each other and with the environment.

The kernel process is a conceptual representation of the agent that coordinates the activity of user-d
processes during a simulation. This agent causes the propagation of signal values to occur and ca
values of implicit signals [such as S'Stable(T)] to be updated. Furthermore, this process is respons
detecting events that occur and for causing the appropriate processes to execute in response to thos

For any given signal that is explicitly declared within a model, the kernel process contains a va
representing the current value of that signal. Any evaluation of a name denoting a given signal retrie
current value of the corresponding variable in the kernel process. During simulation, the kernel p
updates these variables from time to time, based upon the current values of sources of the corres
signal.
Copyright © 2002 IEEE. All rights reserved. 171

IEEE
Std 1076-2002 IEEE STANDARD VHDL

clared
urther-

 of, any
r any

east one
 signal of
ent. Each
nt

lue
 that the

in time.

 given

 simula-
f the
 the first
e of the

 12.6.1)
is way,

rom a

nd the

version
belement
posite
r type

at port is
In addition, the kernel process contains a variable representing the current value of any implicitly de
GUARD signal resulting from the appearance of a guard expression on a given block statement. F
more, the kernel process contains both a driver for, and a variable representing the current value
signal S'Stable(T), for any prefix S and any time T, that is referenced within the model; likewise, fo
signal S'Quiet(T) or S'Transaction.

12.6.1 Drivers

Every signal assignment statement in a process statement defines a set of drivers for certain scalar signals.
There is a single driver for a given scalar signal S in a process statement, provided that there is at l
signal assignment statement in that process statement and that the longest static prefix of the target
that signal assignment statement denotes S or denotes a composite signal of which S is a subelem
such signal assignment statement is said to be associated with that driver. Execution of a signal assignme
statement affects only the associated driver(s).

A driver for a scalar signal is represented by a projected output waveform. A projected output waveform
consists of a sequence of one or more transactions, where each transaction is a pair consisting of a va
component and a time component. For a given transaction, the value component represents a value
driver of the signal is to assume at some point in time, and the time component specifies which point
These transactions are ordered with respect to their time components.

A driver always contains at least one transaction. The initial contents of a driver associated with a
signal are defined by the default value associated with the signal (see 4.3.1.2).

For any driver, there is exactly one transaction whose time component is not greater than the current
tion time. The current value of the driver is the value component of this transaction. If, as the result o
advance of time, the current time becomes equal to the time component of the next transaction, then
transaction is deleted from the projected output waveform and the next becomes the current valu
driver.

12.6.2 Propagation of signal values

As simulation time advances, the transactions in the projected output waveform of a given driver (see
will each, in succession, become the value of the driver. When a driver acquires a new value in th
regardless of whether the new value is different from the previous value, that driver is said to beactive
during that simulation cycle. For the purposes of defining driver activity, a driver acquiring a value f
null transaction is assumed to have acquired a new value. A signal is said to be active during a given simula-
tion cycle if

— One of its sources is active

— One of its subelements is active

— The signal is named in the formal part of an association element in a port association list a
corresponding actual is active

— The signal is a subelement of a resolved signal and the resolved signal is active.

If a signal of a given composite type has a source that is of a different type (and therefore a con
function or type conversion appears in the corresponding association element), then each scalar su
of that signal is considered to be active if the source itself is active. Similarly, if a port of a given com
type is associated with a signal that is of a different type (and therefore a conversion function o
conversion appears in the corresponding association element), then each scalar subelement of th
considered to be active if the actual signal itself is active.
172 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

lation

 driving
ons and

S (see

g value

 is the
rt (see
 If no
of the
riving
 type
ed by

of S are
lement
 are not
s

 value.
ith S,
riving
alue is

lement

gate of
In addition to the preceding information, an implicit signal is said to be active during a given simu
cycle if the kernel process updates that implicit signal within the given cycle.

If a signal is not active during a given simulation cycle, then the signal is said to be quiet during that
simulation cycle.

The kernel process determines two values for certain signals during any given simulation cycle. The driving
value of a given signal is the value that signal provides as a source of other signals. The effective value of a
given signal is the value obtainable by evaluating a reference to the signal within an expression. The
value and the effective value of a signal are not always the same, especially when resolution functi
conversion functions or type conversions are involved in the propagation of signal values.

A basic signal is a signal that has all of the following properties:

— It is either a scalar signal or a resolved signal (see 4.3.1.2)

— It is not a subelement of a resolved signal

— Is not an implicit signal of the form S'Stable(T), S'Quiet(T), or S'Transaction (see 14.1)

— It is not an implicit signal GUARD (see 9.1).

Basic signals are those that determine the driving values for all other signals.

The driving value of any basic signal S is determined as follows:

— If S has no source, then the driving value of S is given by the default value associated with
4.3.1.2).

— If S has one source that is a driver and S is not a resolved signal (see 4.3.1.2), then the drivin
of S is the current value of that driver.

— If S has one source that is a port and S is not a resolved signal, then the driving value of S
driving value of the formal part of the association element that associates S with that po
4.3.2.2). The driving value of a formal part is obtained by evaluating the formal part as follows:
conversion function or type conversion is present in the formal part, then the driving value
formal part is the driving value of the signal denoted by the formal designator. Otherwise, the d
value of the formal part is the value obtained by applying either the conversion function or
conversion (whichever is contained in the formal part) to the driving value of the signal denot
the formal designator.

— If S is a resolved signal and has one or more sources, then the driving values of the sources
examined. It is an error if any of these driving values is a composite where one or more sube
values are determined by the null transaction (see 8.4.1) and one or more subelement values
determined by the null transaction. If S is of signal kind register and all the sources of S have value
determined by the null transaction, then the driving value of S is unchanged from its previous
Otherwise, the driving value of S is obtained by executing the resolution function associated w
where that function is called with an input parameter consisting of the concatenation of the d
values of the sources of S, with the exception of the value of any source of S whose current v
determined by the null transaction.

The driving value of any signal S that is not a basic signal is determined as follows:

— If S is a subelement of a resolved signal R, the driving value of S is the corresponding sube
value of the driving value of R.

— Otherwise (S is a nonresolved, composite signal), the driving value of S is equal to the aggre
the driving values of each of the basic signals that are the subelements of S.
Copyright © 2002 IEEE. All rights reserved. 173

IEEE
Std 1076-2002 IEEE STANDARD VHDL

f

tive
.2). The

alue of

ci-

the sub-

l. For a
nt of R,

driving
nt value

ate the
n error
repre-

ed to
atching
f this

 =
e T. If

g to the
n event
cycle in
e event

mulation
ion
tions.

, and
 on the

re not
2.6.3.
For a scalar signal S, the effective value of S is determined in the following manner:

— If S is a signal declared by a signal declaration, a port of mode buffer, or an unconnected port o
mode inout, then the effective value of S is the same as the driving value of S.

— If S is a connected port of mode in or inout, then the effective value of S is the same as the effec
value of the actual part of the association element that associates an actual with S (see 4.3.2
effective value of an actual part is obtained by evaluating the actual part, using the effective v
the signal denoted by the actual designator in place of the actual designator.

— If S is an unconnected port of mode in, the effective value of S is given by the default value asso
ated with S (see 4.3.1.2).

For a composite signal R, the effective value of R is the aggregate of the effective values of each of
elements of R.

For a scalar signal S, both the driving and effective values must belong to the subtype of the signa
composite signal R, an implicit subtype conversion is performed to the subtype of R; for each eleme
there must be a matching element in both the driving and the effective value, and vice versa.

In order to update a signal during a given simulation cycle, the kernel process first determines the
and effective values of that signal. The kernel process then updates the variable containing the curre
of the signal with the newly determined effective value, as follows:

a) If S is a signal of some type that is not an array type, the effective value of S is used to upd
current value of S. A check is made that the effective value of S belongs to the subtype of S. A
occurs if this subtype check fails. Finally, the effective value of S is assigned to the variable
senting the current value of the signal.

b) If S is an array signal (including a slice of an array), the effective value of S is implicitly convert
the subtype of S. The subtype conversion checks that for each element of S there is a m
element in the effective value and vice versa. An error occurs if this check fails. The result o
subtype conversion is then assigned to the variable representing the current value of S.

Updating a signal S of type T is said to change the current value of S if and only if the expression “S
S’Delayed” evaluates to False, where the "=" operator in the expression is the predefined "=" on typ
updating a signal causes the current value of that signal to change, then an event is said to have occurred on
the signal. This definition applies to any updating of a signal, whether such updating occurs accordin
above rules or according to the rules for updating implicit signals given in 12.6.3. The occurrence of a
will cause the resumption and subsequent execution of certain processes during the simulation
which the event occurs, if and only if those processes are currently sensitive to the signal on which th
has occurred.

For any signal other than one declared with the signal kind register, the driving and effective values of the
signal are determined and the current value of that signal is updated as described above in every si
cycle. A signal declared with the signal kind register is updated in the same fashion during every simulat
cycle except those in which all of its sources have current values that are determined by null transac

A net is a collection of drivers, signals (including ports and implicit signals), conversion functions
resolution functions that, taken together, determine the effective and driving values of every signal
net.

Implicit signals GUARD, S'Stable(T), S'Quiet(T), and S'Transaction, for any prefix S and any time T, a
updated according to the above rules; such signals are updated according to the rules described in 1
174 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e signal

sociated
her
 matching
atching

 signal

ultiple

rt S of
 can be

urrent
ivers is

d signal

ent that
table(T),
ers of

ding
ycle. In
ion and

of the

 to the
aveform
g the

neither

ate of
NOTES

1—In a given simulation cycle, simulations can occur where a subelement of a composite signal is quiet, and th
itself is active.

2—The rules concerning association of actuals with formals (see 4.3.2.2) imply that, if a composite signal is as
with a composite port of mode out, inout, or buffer, and if no conversion function or type conversion appears in eit
the actual or formal part of the association element, then each scalar subelement of the formal is a source of the
subelement of the actual. In such a case, a given subelement of the actual will be active if and only if the m
subelement of the formal is active.

3—The algorithm for computing the driving value of a scalar signal S is recursive. For example, if S is a local
appearing as an actual in a port association list whose formal is of mode out or inout, the driving value of S can only be
obtained after the driving value of the corresponding formal part is computed. This computation may involve m
executions of the above algorithm.

4—Similarly, the algorithm for computing the effective value of a signal S is recursive. For example, if a formal po
mode in corresponds to an actual A, the effective value of A must be computed before the effective value of S
computed. The actual A may itself appear as a formal port in a port association list.

5—No effective value is specified for out and linkage ports, since these ports cannot be read.

6—Overloading the operator “=” has no effect on the propagation of signal values.

7—A signal of kind register may be active even if its associated resolution function does not execute in the c
simulation cycle if the values of all of its drivers are determined by the null transaction and at least one of its dr
also active.

8—The definition of the driving value of a basic signal exhausts all cases, with the exception of a non-resolve
with more than one source. This condition is defined as an error in 4.3.1.2.

12.6.3 Updating implicit signals

The kernel process updates the value of each implicit signal GUARD associated with a block statem
has a guard expression. Similarly, the kernel process updates the values of each implicit signal S'S
S'Quiet(T), or S'Transaction for any prefix S and any time T; this also involves updating the driv
S'Stable(T) and S'Quiet(T).

For any implicit signal GUARD, the current value of the signal is modified if and only if the correspon
guard expression contains a reference to a signal S and if S is active during the current simulation c
such a case, the implicit signal GUARD is updated by evaluating the corresponding guard express
assigning the result of that evaluation to the variable representing the current value of the signal.

For any implicit signal S'Stable(T), the current value of the signal (and likewise the current state
corresponding driver) is modified if and only if one of the following statements is true:

— An event has occurred on S in this simulation cycle

— The driver of S'Stable(T) is active.

If an event has occurred on signal S, then S'Stable(T) is updated by assigning the value FALSE
variable representing the current value of S'Stable(T), and the driver of S'Stable(T) is assigned the w
TRUE after T. Otherwise, if the driver of S'Stable(T) is active, then S'Stable(T) is updated by assignin
current value of the driver to the variable representing the current value of S'Stable(T). Otherwise,
the variable nor the driver is modified.

Similarly, for any implicit signal S'Quiet(T), the current value of the signal (and likewise the current st
the corresponding driver) is modified if and only if one of the following statements is true:

— S is active

— The driver of S'Quiet(T) is active.
Copyright © 2002 IEEE. All rights reserved. 175

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ting the

iver to
river is

 S is
on (
ignment

ated by

r

uard

by the
upon the
ulation

e value
river of
) will be
ver be

rocess

n event
xecuted

nd the
e value

ue of
If signal S is active, then S'Quiet(T) is updated by assigning the value FALSE to the variable represen
current value of S'Quiet(T), and the driver of S'Quiet(T) is assigned the waveform TRUE after T. Otherwise,
if the driver of S'Quiet(T) is active, then S'Quiet(T) is updated by assigning the current value of the dr
the variable representing the current value of S'Quiet(T). Otherwise, neither the variable nor the d
modified.

Finally, for any implicit signal S'Transaction, the current value of the signal is modified if and only if
active. If signal S is active, then S'Transaction is updated by assigning the value of the expressinot
S'Transaction) to the variable representing the current value of S'Transaction. At most one such ass
will occur during any given simulation cycle.

For any implicit signal S'Delayed(T), the signal is not updated by the kernel process. Instead, it is upd
constructing an equivalent process (see 14.1) and executing that process.

The current value of a given implicit signal denoted by R is said to depend upon the current value of anothe
signal S if one of the following statements is true:

— R denotes an implicit GUARD signal and S is any other implicit signal named within the g
expression that defines the current value of R.

— R denotes an implicit signal S'Stable(T).

— R denotes an implicit signal S'Quiet(T).

— R denotes an implicit signal S'Transaction.

— R denotes an implicit signal S'Delayed(T).

These rules define a partial ordering on all signals within a model. The updating of implicit signals
kernel process is guaranteed to proceed in such a manner that, if a given implicit signal R depends
current value of another signal S, then the current value of S will be updated during a particular sim
cycle prior to the updating of the current value of R.

NOTE—These rules imply that, if the driver of S'Stable(T) is active, then the new current value of that driver is th
TRUE. Furthermore, these rules imply that, if an event occurs on S during a given simulation cycle, and if the d
S'Stable(T) becomes active during the same cycle, the variable representing the current value of S'Stable(T
assigned the value FALSE, and the current value of the driver of S'Stable(T) during the given cycle will ne
assigned to that signal.

12.6.4 The simulation cycle

The execution of a model consists of an initialization phase followed by the repetitive execution of p
statements in the description of that model. Each such repetition is said to be a simulation cycle. In each
cycle, the values of all signals in the description are computed. If as a result of this computation a
occurs on a given signal, process statements that are sensitive to that signal will resume and will be e
as part of the simulation cycle.

At the beginning of initialization, the current time, Tc, is assumed to be 0 ns.

The initialization phase consists of the following steps:

— The driving value and the effective value of each explicitly declared signal are computed, a
current value of the signal is set to the effective value. This value is assumed to have been th
of the signal for an infinite length of time prior to the start of simulation.

— The value of each implicit signal of the form S'Stable(T) or S'Quiet(T) is set to True. The val
each implicit signal of the form S'Delayed(T) is set to the initial value of its prefix, S.
176 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

guard

S in this

 until it

rwise,
mption is
r if
 current

 processes
ave been
re always

ery simu-

 in inter-
another
 of an
— The value of each implicit GUARD signal is set to the result of evaluating the corresponding
expression.

— Each nonpostponed process in the model is executed until it suspends.

— Each postponed process in the model is executed until it suspends.

— The time of the next simulation cycle (which in this case is the first simulation cycle), Tn, is
calculated according to the rules of step f) of the simulation cycle, below.

A simulation cycle consists of the following steps:

a) The current time, Tc, is set equal to Tn. Simulation is complete when Tn = TIME'HIGH and there are
no active drivers or process resumptions at Tn.

b) Each active explicit signal in the model is updated. (Events may occur on signals as a result.)

c) Each implicit signal in the model is updated. (Events may occur on signals as a result.)

d) For each process, P, if P is currently sensitive to a signal, S, and if an event has occurred on
simulation cycle, then P resumes.

e) Each nonpostponed process that has resumed in the current simulation cycle is executed
suspends.

f) If the break flag is set, the time of the next simulation cycle, Tn, is determined by setting it to the
earliest of

1) TIME'HIGH,

2) The next time at which a driver becomes active, or

3) The next time at which a process resumes.

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.

g) If the next simulation cycle will be a delta cycle, the remainder of this step is skipped. Othe
each postponed process that has resumed but has not been executed since its last resu
executed until it suspends. Then Tn is recalculated according to the rules of step f). It is an erro
the execution of any postponed process causes a delta cycle to occur immediately after the
simulation cycle.

NOTES

1—The initial value of any implicit signal of the form S'Transaction is not defined.

2—Updating of explicit signals is described in 12.6.2; updating of implicit signals is described in 12.6.3.

3—When a process resumes, it is added to one of two sets of processes to be executed (the set of postponed
and the set of nonpostponed processes). However, no process actually begins to execute until all signals h
updated and all executable processes for this simulation cycle have been identified. Nonpostponed processes a
executed during step e) of every simulation cycle, while postponed processes are executed during step g) of ev
lation cycle that does not immediately precede a delta cycle.

4—The second and third steps of the initialization phase and steps b) and c) of the simulation cycle may occur
leaved fashion. This interleaving may occur because the implicit signal GUARD may be used as the prefix of
implicit signal; moreover, implicit signals may be associated as actuals with explicit signals, making the value
explicit signal a function of an implicit signal.
Copyright © 2002 IEEE. All rights reserved. 177

IEEE
Std 1076-2002 IEEE STANDARD VHDL
178 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

f lexical

re the
 the ISO
ymbol.

 of the

arriage

ows:

, a cont

 pr
13. Lexical elements

The text of a description consists of one or more design files. The text of a design file is a sequence o
elements, each composed of characters; the rules of composition are given in this clause.

13.1 Character set

The only characters allowed in the text of a VHDL description (except within comments—see 13.8) a
graphic characters and format effectors. Each graphic character corresponds to a unique code of
eight-bit coded character set (ISO 8859-1: 1987 [B11]) and is represented (visually) by a graphical s

basic_graphic_character ::=
upper_case_letter | digit | special_character | space_character

graphic_character ::=
basic_graphic_character | lower_case_letter | other_special_character

basic_character ::=
basic_graphic_character | format_effector

The basic character set is sufficient for writing any description. The characters included in each
categories of basic graphic characters are defined as follows:

a) Uppercase letters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î

Ï D. Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü ́Y P'

b) Digits

0 1 2 3 4 5 6 7 8 9

c) Special characters

" # & ' () * + , - . / : ; < = > [] _ |

d) The space characters

SPACE2 NBSP3

Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical tabulation, c
return, line feed, and form feed.

The characters included in each of the remaining categories of graphic characters are defined as foll

e) Lowercase letters

a b c d e f g h i j k l m n o p q r s t u v w x y z ß à á â ã ä å æ ç è é ê ë ì í î ï∂́ ñ ò ó ô

õ ö ø ù ú û ǘy 'p ÿ

f) Other special characters

! $ % @ ? \ ^ ` { } ~ ¡ ¢ £ € ¥ || § ¨ © ª « ¬ -® ¯ ° ± 2 3 ´ µ ¶ • ¸ 1 º » 1/4 1/2 3/4 ¿ × ÷ - (soft hyphen)

2The visual representation of the space is the absence of a graphic symbol. It may be interpreted as a graphic characterrol
character, or both.
3The visual representation of the nonbreaking space is the absence of a graphic symbol. It is used when a line break is to beevented
in the text as presented.
Copyright © 2002 IEEE. All rights reserved. 179

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ark (")

of ISO

ode for
Allowable replacements for the special characters vertical line (|), number sign (#), and quotation m
are defined in 13.10.

NOTES

1—The font design of graphical symbols (for example, whether they are in italic or bold typeface) is not part
8859-1:1987 [B11].

2—The meanings of the acronyms used in this clause are as follows: ASCII stands for American Standard C
Information Interchange, ISO stands for International Organization for Standardization.

3—There are no uppercase equivalents for the characters ß and ÿ.

4—The following names are used when referring to special characters:

Character Name

" Quotation mark

Number sign

& Ampersand

' Apostrophe, tick

(Left parenthesis

) Right parenthesis

* Asterisk, multiply

+ Plus sign

, Comma

- Hyphen, minus sign

. Dot, point, period, full stop

/ Slash, divide, solidus

: Colon

; Semicolon

< Less-than sign

= Equals sign

> Greater-than sign

_ Underline, low line

| Vertical line, vertical bar

! Exclamation mark

$ Dollar sign

% Percent sign

? Question mark

@ Commercial at

[Left square bracket

 \ Backslash, reverse solidus

] Right square bracket

^ Circumflex accent

` Grave accent
180 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
{ Left curly bracket

} Right curly bracket

~ Tilde

¡ Inverted exclamation mark

¢ Cent sign

£ Pound sign

€ Currency sign

¥ Yen sign

|
|
 Broken bar

§ Paragraph sign, clause sign

¨ Diaeresis

© Copyright sign

ª Feminine ordinal indicator

« Left angle quotation mark

¬ Not sign

- Soft hyphen*

® Registered trade mark sign

¯ Macron

° Ring above, degree sign

± Plus-minus sign
2 Superscript two
3 Superscript three

´ Acute accent

µ Micro sign

¶ Pilcrow sign

• Middle dot

¸ Cedilla
1 Superscript one

º Masculine ordinal indicator

» Right angle quotation mark
1/4 Vulgar fraction one quarter
1/2 Vulgar fraction one half
3/4 Vulgar fraction three quarters

¿ Inverted question mark

× Multiplication sign

÷ Division sign

*The soft hyphen is a graphic character that is repre-
sented by a graphic symbol identical with, or similar
to, that representing a hyphen, for use when a line
break has been established within a word.

Character Name
Copyright © 2002 IEEE. All rights reserved. 181

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 either a
 literal,

, without
haracter
parator

 However
aracters
 format

of each
een an

charac-
omment,

sign, and
nts.
13.2 Lexical elements, separators, and delimiters

The text of each design unit is a sequence of separate lexical elements. Each lexical element is
delimiter, an identifier (which may be a reserved word), an abstract literal, a character literal, a string
a bit string literal, or a comment.

In some cases an explicit separator is required to separate adjacent lexical elements (namely when
separation, interpretation as a single lexical element is possible). A separator is either a space c
(SPACE or NBSP), a format effector, or the end of a line. A space character (SPACE or NBSP) is a se
except within an extended identifier, a comment, a string literal, or a space character literal.

The end of a line is always a separator. The language does not define what causes the end of a line.
if, for a given implementation, the end of a line is signified by one or more characters, then these ch
must be format effectors other than horizontal tabulation. In any case, a sequence of one or more
effectors other than horizontal tabulation must cause at least one end-of-line.

One or more separators are allowed between any two adjacent lexical elements, before the first
design unit or after the last lexical element of a design file. At least one separator is required betw
identifier or an abstract literal and an adjacent identifier or abstract literal.

A delimiter is either one of the following special characters (in the basic character set):

& ' () * + , - . / : ; < = > | []

or one of the following compound delimiters, each composed of two adjacent special characters:

=> ** := /= >= <= <>

Each of the special characters listed for single character delimiters is a single delimiter except if this
ter is used as a character of a compound delimiter or as a character of a an extended identifier, c
string literal, character literal, or abstract literal.

The remaining forms of lexical elements are described in subclauses of this clause.

NOTES

1—Each lexical element must fit on one line, since the end of a line is a separator. The quotation mark, number
underline characters, likewise two adjacent hyphens, are not delimiters, but may form part of other lexical eleme

2—The following names are used when referring to compound delimiters:

Delimiter Name

=> Arrow

** Double star, exponentiate

:= Variable assignment

/= Inequality (pronounced “not equal”)

>= Greater than or equal

<= Less than or equal; signal assignment

<> Box
182 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 a letter
ercase

bled. All
racter).

distinct.

t literal
 of the
13.3 Identifiers

Identifiers are used as names and also as reserved words.

identifier ::= basic_identifier | extended_identifier

13.3.1 Basic identifiers

A basic identifier consists only of letters, digits, and underlines.

basic_identifier ::=
letter { [underline] letter_or_digit }

letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

All characters of a basic identifier are significant, including any underline character inserted between
or digit and an adjacent letter or digit. Basic identifiers differing only in the use of corresponding upp
and lowercase letters are considered the same.

Examples:

COUNT X c_out FFT Decoder
VHSIC X1 PageCount STORE_NEXT_ITEM

NOTE—No space (SPACE or NBSP) is allowed within a basic identifier, since a space is a separator.

13.3.2 Extended identifiers

Extended identifiers may contain any graphic character.

extended_identifier ::=
\ graphic_character { graphic_character } \

If a backslash is to be used as one of the graphic characters of an extended literal, it must be dou
characters of an extended identifier are significant (a doubled backslash counting as one cha
Extended identifiers differing only in the use of corresponding uppercase and lowercase letters are
Moreover, every extended identifier is distinct from any basic identifier.

Examples:

\BUS \bus\ -- Two different identifiers, neither of which is
-- the reserved word bus.

\a\\b\ -- An identifier containing three characters.

VHDL \VHDL\ \vhdl\ -- Three distinct identifiers.

13.4 Abstract literals

There are two classes of abstract literals: real literals and integer literals. A real literal is an abstrac
that includes a point; an integer literal is an abstract literal without a point. Real literals are the literals
type universal_real. Integer literals are the literals of the type universal_integer.

abstract_literal ::= decimal_literal | based_literal
Copyright © 2002 IEEE. All rights reserved. 183

IEEE
Std 1076-2002 IEEE STANDARD VHDL

base is

 of this
e, with

t is to
literal

etween

ust be at

 of this
wed as
 (either
with the

igit of a
 value of
ith the
13.4.1 Decimal literals

A decimal literal is an abstract literal expressed in the conventional decimal notation (that is, the
implicitly ten).

decimal_literal ::= integer [. integer] [exponent]

integer ::= digit { [underline] digit }

exponent ::= E [+] integer | E – integer

An underline character inserted between adjacent digits of a decimal literal does not affect the value
abstract literal. The letter E of the exponent, if any, can be written either in lowercase or in uppercas
the same meaning.

An exponent indicates the power of ten by which the value of the decimal literal without the exponen
be multiplied to obtain the value of the decimal literal with the exponent. An exponent for an integer
must not have a minus sign.

Examples:

12 0 1E6 123_456 -- Integer literals.
12.0 0.0 0.456 3.14159_26 -- Real literals.
1.34E–12 1.0E+6 6.023E+24 -- Real literals with exponents.

NOTE—Leading zeros are allowed. No space (SPACE or NBSP) is allowed in an abstract literal, not even b
constituents of the exponent, since a space is a separator. A zero exponent is allowed for an integer literal.

13.4.2 Based literals

A based literal is an abstract literal expressed in a form that specifies the base explicitly. The base m
least two and at most sixteen.

based_literal ::=
base # based_integer [. based_integer] # [exponent]

base ::= integer

based_integer ::=
extended_digit { [underline] extended_digit }

extended_digit ::= digit | letter

An underline character inserted between adjacent digits of a based literal does not affect the value
abstract literal. The base and the exponent, if any, are in decimal notation. The only letters allo
extended digits are the letters A through F for the digits ten through fifteen. A letter in a based literal
an extended digit or the letter E of an exponent) can be written either in lowercase or in uppercase,
same meaning.

The conventional meaning of based notation is assumed; in particular the value of each extended d
based literal must be less than the base. An exponent indicates the power of the base by which the
the based literal without the exponent is to be multiplied to obtain the value of the based literal w
exponent. An exponent for a based integer literal must not have a minus sign.
184 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

nd non-
elongs to

 quota-

acters of
 in the
ponding

arks is

 doubled

charac-
to obtain
DARD
oncatena-
Examples:

-- Integer literals of value 255:
2#1111_1111# 16#FF# 016#0FF#

-- Integer literals of value 224:
16#E#E1 2#1110_0000#

-- Real literals of value 4095.0:
16#F.FF#E+2 2#1.1111_1111_111#E11

13.5 Character literals

A character literal is formed by enclosing one of the 191 graphic characters (including the space a
breaking space characters) between two apostrophe characters. A character literal has a value that b
a character type.

character_literal ::= ' graphic_character '

Examples:

'A' '*' ''' ' '

13.6 String literals

A string literal is formed by a sequence of graphic characters (possibly none) enclosed between two
tion marks used as string brackets.

string_literal ::= " { graphic_character } "

A string literal has a value that is a sequence of character values corresponding to the graphic char
the string literal apart from the quotation mark itself. If a quotation-mark value is to be represented
sequence of character values, then a pair of adjacent quotation marks must be written at the corres
place within the string literal. (This means that a string literal that includes two adjacent quotation m
never interpreted as two adjacent string literals.)

The length of a string literal is the number of character values in the sequence represented. (Each
quotation mark is counted as a single character.)

Examples:

"Setup time is too short" -- An error message.
"" -- An empty string literal.
" " "A" """" -- Three string literals of length 1.
"Characters such as $, %, and } are allowed in string literals."

NOTE—A string literal must fit on one line, since it is a lexical element (see 13.2). Longer sequences of graphic
ter values can be obtained by concatenation of string literals. The concatenation operation may also be used
string literals containing nongraphic character values. The predefined type CHARACTER in package STAN
specifies the enumeration literals denoting both graphic and nongraphic characters. Examples of such uses of c
tion are

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"Sequence that includes the" & ACK & "control character"
Copyright © 2002 IEEE. All rights reserved. 185

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 quota-

 of this
rough

ther in

ecifier is
e digits
ugh F.

e base
f after

ned by
) values
 specifier

r is
13.7 Bit string literals

A bit string literal is formed by a sequence of extended digits (possibly none) enclosed between two
tions used as bit string brackets, preceded by a base specifier.

bit_string_literal ::= base_specifier " [bit_value] "

bit_value ::= extended_digit { [underline] extended_digit }

base_specifier ::= B | O | X

An underline character inserted between adjacent digits of a bit string literal does not affect the value
literal. The only letters allowed as extended digits are the letters A through F for the digits ten th
fifteen. A letter in a bit string literal (either an extended digit or the base specifier) can be written ei
lowercase or in uppercase, with the same meaning.

If the base specifier is 'B', the extended digits in the bit value are restricted to 0 and 1. If the base sp
'O', the extended digits in the bit value are restricted to legal digits in the octal number system, i.e., th
0 through 7. If the base specifier is 'X', the extended digits are all digits together with the letters A thro

A bit string literal has a value that is a string literal consisting of the character literals '0' and '1'. If th
specifier is 'B', the value of the bit string literal is the sequence given explicitly by the bit value itsel
any underlines have been removed.

If the base specifier is 'O' (respectively 'X'), the value of the bit string literal is the sequence obtai
replacing each extended digit in the bit_value by a sequence consisting of the three (respectively four
representing that extended digit taken from the character literals '0' and '1'; as in the case of the base
'B', underlines are first removed. Each extended digit is replaced as follows:

Extended digit Replacement when the base specifier is Replacement when the base specifie
'O' 'X'

0 000 0000

1 001 0001

2 010 0010

3 011 0011

4 100 0100

5 101 0101

6 110 0110

7 111 0111

8 (illegal) 1000

9 (illegal) 1001

A (illegal) 1010

B (illegal) 1011

C (illegal) 1100

D (illegal) 1101

E (illegal) 1110

F (illegal) 1111
186 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

pear on
b, car-
hether a
odule;

e spaces

ay inter-
an imple-
haracter
The length of a bit string literal is the length of its string literal value.

Example:

B"1111_1111_1111" -- Equivalent to the string literal "111111111111".
X"FFF" -- Equivalent to B"1111_1111_1111".
O"777" -- Equivalent to B"111_111_111".
X"777" -- Equivalent to B"0111_0111_0111".

constant c1: STRING := B"1111_1111_1111";

constant c2: BIT_VECTOR := X"FFF";

type MVL is ('X', '0', '1', 'Z');
type MVL_VECTOR is array (NATURAL range <>) of MVL;
constant c3: MVL_VECTOR := O"777";

assert c1'LENGTH = 12 and
c2'LENGTH = 12 and
c3 = "111111111";

13.8 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment can ap
any line of a VHDL description and may contain any character except the format effectors vertical ta
riage return, line feed, and form feed. The presence or absence of comments has no influence on w
description is legal or illegal. Furthermore, comments do not influence the execution of a simulation m
their sole purpose is to enlighten the human reader.

Examples:

-- The last sentence above echoes the Algol 68 report.

end; -- Processing of LINE is complete.

-- A long comment may be split onto
-- two or more consecutive lines.

----------- The first two hyphens start the comment.

NOTES

1—Horizontal tabulation can be used in comments, after the double hyphen, and is equivalent to one or mor
(SPACE characters) (see 13.2).

2—Comments may contain characters that, according to 13.1, are non-printing characters. Implementations m
pret the characters of a comment as members of ISO 8859-1 : 1987, or of any other character set; for example,
mentation may interpret multiple consecutive characters within a comment as single characters of a multi-byte c
set.
Copyright © 2002 IEEE. All rights reserved. 187

IEEE
Std 1076-2002 IEEE STANDARD VHDL

For

d as the

tical to a
ed word
13.9 Reserved words

The identifiers listed below are called reserved words and are reserved for significance in the language.
readability of this standard, the reserved words appear in lowercase boldface.

A reserved word must not be used as an explicitly declared identifier.

NOTES

1—Reserved words differing only in the use of corresponding uppercase and lowercase letters are considere
same (see 13.3.1). The reserved word range is also used as the name of a predefined attribute.

2—An extended identifier whose sequence of characters inside the leading and trailing backslashes is iden
reserved word is not a reserved word. For example, \next\ is a legal (extended) identifier and is not the reserv
next.

abs
access
after
alias
all
and
architecture
array
assert
attribute

begin
block
body
buffer
bus

case
component
configuration
constant

disconnect
downto

else
elsif
end
entity
exit

file
for
function

generate
generic
group
guarded

if
impure
in
inertial
inout
is

label
library
linkage
literal
loop

map
mod

nand
new
next
nor
not
null

of
on
open
or
others
out

package
port
postponed
procedural
procedure
process
protected
pure

range
record
reference
register
reject
rem
report
return
rol
ror

select
severity
signal
shared
sla
sll
sra
srl
subtype

then
to
transport
type

unaffected
units
until
use

variable

wait
when
while
with

xnor
xor
188 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

basic

ment is

ced by
 marks,
charac-
cent sign
ckets

estricted
roken line

d indiffer-

uage. See
13.10 Allowable replacements of characters

The following replacements are allowed for the vertical line, number sign, and quotation mark
characters:

— A vertical line (|) can be replaced by an exclamation mark (!) where used as a delimiter.

— The number sign (#) of a based literal can be replaced by colons (:), provided that the replace
done for both occurrences.

— The quotation marks (") used as string brackets at both ends of a string literal can be repla
percent signs (%), provided that the enclosed sequence of characters contains no quotation
and provided that both string brackets are replaced. Any percent sign within the sequence of
ters must then be doubled, and each such doubled percent sign is interpreted as a single per
value. The same replacement is allowed for a bit string literal, provided that both bit string bra
are replaced.

These replacements do not change the meaning of the description.

NOTES

1—It is recommended that use of the replacements for the vertical line, number sign, and quotation marks be r
to cases where the corresponding graphical symbols are not available. Note that the vertical line appears as a b
on some equipment; replacement is not recommended in this case.

2—The rules given for identifiers and abstract literals are such that lowercase and uppercase letters can be use
ently; these lexical elements can thus be written using only characters of the basic character set.

3—The use of these characters as replacement characters may be removed from a future version of the lang
Annex F.
Copyright © 2002 IEEE. All rights reserved. 189

IEEE
Std 1076-2002 IEEE STANDARD VHDL
190 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

tations

f named
d:

 of
14. Predefined language environment

This clause describes the predefined attributes of VHDL and the packages that all VHDL implemen
must provide.

14.1 Predefined attributes

Predefined attributes denote values, functions, types, and ranges associated with various kinds o
entities. These attributes are described below. For each attribute, the following information is provide

— The kind of attribute: value, type, range, function, or signal

— The prefixes for which the attribute is defined

— A description of the parameters or argument, if one exists

— The result of evaluating the attribute, and the result type (if applicable)

— Any further restrictions or comments that apply.

T'BASE

Kind: Type.
Prefix: Any type or subtype T.
Result: The base type of T.
Restrictions: This attribute is allowed only as the prefix of the name

another attribute; for example, T'BASE'LEFT.

T'LEFT

Kind: Value.
Prefix: Any scalar type or subtype T.
Result Type: Same type as T.
Result: The left bound of T.

T'RIGHT

Kind: Value.
Prefix: Any scalar type or subtype T.
Result Type: Same type as T.
Result: The right bound of T.

T'HIGH

Kind: Value.
Prefix: Any scalar type or subtype T.
Result Type: Same type as T.
Result: The upper bound of T.

T'LOW

Kind: Value.
Prefix: Any scalar type or subtype T.
Result Type: Same type as T.
Result: The lower bound of T.
Copyright © 2002 IEEE. All rights reserved. 191

IEEE
Std 1076-2002 IEEE STANDARD VHDL

E

out
 or
tifier
ing
an

cter
ck-
 If T
 is a
har-
sed
out
y to
e-
and
r is
 as a
the
the
d in
the
 in
pe,
e-
ITS
ee
ters

 sub-
T'ASCENDING

Kind: Value.
Prefix: Any scalar type or subtype T.
Result Type: Type Boolean
Result: It is TRUE if T is defined with an ascending range; FALS

otherwise.

T'IMAGE(X)

Kind: Function.
Prefix: Any scalar type or subtype T.
Parameter: An expression whose type is the base type of T.
Result Type: Type String.
Result: The string representation of the parameter value, with

leading or trailing whitespace. If T is an enumeration type
subtype and the parameter value is either an extended iden
or a character literal, the result is expressed with both a lead
and trailing reverse solidus (backslash) (in the case of
extended identifier) or apostrophe (in the case of a chara
literal); in the case of an extended identifier that has a ba
slash, the backslash is doubled in the string representation.
is an enumeration type or subtype and the parameter value
basic identifier, then the result is expressed in lowercase c
acters. If T is a numeric type or subtype, the result is expres
as the decimal representation of the parameter value with
underlines or leading or trailing zeros (except as necessar
form the image of a legal literal with the proper value); mor
over, an exponent may (but is not required to) be present
the language does not define under what conditions it is o
not present. If the exponent is present, the “e” is expressed
lowercase character. If T is a physical type or subtype,
result is expressed in terms of the primary unit of T unless
base type of T is TIME, in which case the result is expresse
terms of the resolution limit (see 3.1.3.1); in either case, if
unit is a basic identifier, the image of the unit is expressed
lowercase characters. If T is a floating point type or subty
the number of digits to the right of the decimal point corr
sponds to the standard form generated when the DIG
parameter to TextIO. Write for type REAL is set to 0 (s
14.3). The result never contains the replacement charac
described in 13.10.

Restrictions: It is an error if the parameter value does not belong to the
type implied by the prefix.
192 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 in
ing
 or
cimal
pe,
ation
act
any
ters

tion
b-

OW

f the

 to
T'VALUE(X)

Kind: Function.
Prefix: Any scalar type or subtype T.
Parameter: An expression of type String.
Result Type: The base type of T.
Result: The value of T whose string representation (as defined

Clause 13) is given by the parameter. Leading and trail
whitespace is allowed and ignored. If T is a numeric type
subtype, the parameter must be expressed either as a de
literal or as a based literal. If T is a physical type or subty
the parameter must be expressed using a string represent
of any of the unit names of T, with or without a leading abstr
literal. The parameter must have whitespace between
abstract literal and the unit name. The replacement charac
of 13.10 are allowed in the parameter.

Restrictions: It is an error if the parameter is not a valid string representa
of a literal of type T or if the result does not belong to the su
type implied by T.

T'POS(X)

Kind: Function.
Prefix: Any discrete or physical type or subtype T.
Parameter: An expression whose type is the base type of T.
Result Type: universal_integer.
Result: The position number of the value of the parameter.

T'VAL(X)

Kind: Function.
Prefix: Any discrete or physical type or subtype T.
Parameter: An expression of any integer type.
Result Type: The base type of T.
Result: The value whose position number is the universal_integer

value corresponding to X.
Restrictions: It is an error if the result does not belong to the range T'L

to T'HIGH.

T'SUCC(X)

Kind: Function.
Prefix: Any discrete or physical type or subtype T.
Parameter: An expression whose type is the base type of T.
Result Type: The base type of T.
Result: The value whose position number is one greater than that o

parameter.
Restrictions: An error occurs if X equals T'HIGH or if X does not belong

the range T'LOW to T'HIGH.
Copyright © 2002 IEEE. All rights reserved. 193

IEEE
Std 1076-2002 IEEE STANDARD VHDL

f the

 to

 T.
 to

f T.
 to

ias

 it

an
ex

ias

 it

an
ex
T'PRED(X)

Kind: Function.
Prefix: Any discrete or physical type or subtype T.
Parameter: An expression whose type is the base type of T.
Result Type: The base type of T.
Result: The value whose position number is one less than that o

parameter.
Restrictions: An error occurs if X equals T'LOW or if X does not belong

the range T'LOW to T'HIGH.

T'LEFTOF(X)

Kind: Function.
Prefix: Any discrete or physical type or subtype T.
Parameter: An expression whose type is the base type of T.
Result Type: The base type of T.
Result: The value that is to the left of the parameter in the range of
Restrictions: An error occurs if X equals T'LEFT or if X does not belong

the range T'LOW to T'HIGH.

T'RIGHTOF(X)

Kind: Function.
Prefix: Any discrete or physical type or subtype T.
Parameter: An expression whose type is the base type of T.
Result Type: The base type of T.
Result: The value that is to the right of the parameter in the range o
Restrictions: An error occurs if X equals T'RIGHT or if X does not belong

the range T'LOW to T'HIGH.

A'LEFT [(N)]

Kind: Function.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: Type of the left bound of the Nth index range of A.
Result: Left bound of the Nth index range of A. (If A is an alias for

array object, then the result is the left bound of the Nth ind
range from the declaration of A, not that of the object.)

A'RIGHT [(N)]

Kind: Function.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: Type of the Nth index range of A.
Result: Right bound of the Nth index range of A. (If A is an alias for

array object, then the result is the right bound of the Nth ind
range from the declaration of A, not that of the object.)
194 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ias

 it

for
Nth
)

ias

 it

or
th

)

ias

 it

s
 the
e

ias

 it

s
 the
e

A'HIGH [(N)]

Kind: Function.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: Type of the Nth index range of A.
Result: Upper bound of the Nth index range of A. (If A is an alias

an array object, then the result is the upper bound of the
index range from the declaration of A, not that of the object.

A'LOW [(N)]

Kind: Function.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: Type of the Nth index range of A.
Result: Lower bound of the Nth index range of A. (If A is an alias f

an array object, then the result is the lower bound of the N
index range from the declaration of A, not that of the object.

A'RANGE [(N)]

Kind: Range.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: The type of the Nth index range of A.
Result: The range A'LEFT(N) to A'RIGHT(N) if the Nth index range

of A is ascending, or the range A'LEFT(N) downto
A'RIGHT(N) if the Nth index range of A is descending. (If A i
an alias for an array object, then the result is determined by
Nth index range from the declaration of A, not that of th
object.)

A'REVERSE_RANGE [(N)]

Kind: Range.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: The type of the Nth index range of A.
Result: The range A'RIGHT(N) downto A'LEFT(N) if the Nth index

range of A is ascending, or the range A'RIGHT(N) to
A'LEFT(N) if the Nth index range of A is descending. (If A i
an alias for an array object, then the result is determined by
Nth index range from the declaration of A, not that of th
object.)
Copyright © 2002 IEEE. All rights reserved. 195

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ias

 it

ex
the
)

ias

 the

ing

ega-

e form

ribute

ega-

not
E

A'LENGTH [(N)]

Kind: Value.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal_integer, the value

of which must not exceed the dimensionality of A. If omitted,
defaults to 1.

Result Type: universal_integer.
Result: Number of values in the Nth index range; i.e., if the Nth ind

range of A is a null range, then the result is 0. Otherwise,
result is the value of T'POS(A'HIGH(N)) – T'POS(A'LOW(N)
+ 1, where T is the subtype of the Nth index of A.

A'ASCENDING [(N)]

Kind: Value.
Prefix: Any prefix A that is appropriate for an array object, or an al

thereof, or that denotes a constrained array subtype.
Parameter: A locally static expression of type universal integer, the value

of which must be greater than zero and must not exceed
dimensionality of A. If omitted, it defaults to 1.

Result Type: Type Boolean.
Result: TRUE if the Nth index range of A is defined with an ascend

range; FALSE otherwise.

S'DELAYED [(T)]

Kind: Signal.
Prefix: Any signal denoted by the static signal name S.
Parameter: A static expression of type TIME that evaluates to a nonn

tive value. If omitted, it defaults to 0 ns.
Result Type: The base type of S.
Result: A signal equivalent to signal S delayed T units of time.

Let R be of the same subtype as S, let T >= 0 ns, and let P be a process statement of th

P: process (S)

 begin
R <= transport S after T;

 end process ;

Assuming that the initial value of R is the same as the initial value of S, then the att
'DELAYED is defined such that S'DELAYED(T) = R for any T.

S'STABLE [(T)]

Kind: Signal.
Prefix: Any signal denoted by the static signal name S.
Parameter: A static expression of type TIME that evaluates to a nonn

tive value. If omitted, it defaults to 0 ns.
Result Type: Type Boolean.
Result: A signal that has the value TRUE when an event has

occurred on signal S for T units of time, and the value FALS
otherwise (see 12.6.2).
196 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ega-

een
ee

ous
es

 of

d on

during

scalar

ly:

rrent

ctive

vent

ENT
e, it
S'QUIET [(T)]

Kind: Signal.
Prefix: Any signal denoted by the static signal name S.
Parameter: A static expression of type TIME that evaluates to a nonn

tive value. If omitted, it defaults to 0 ns.
Result Type: Type Boolean.
Result: A signal that has the value TRUE when the signal has b

quiet for T units of time, and the value FALSE otherwise (s
12.6.2).

S'TRANSACTION

Kind: Signal.
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Bit.
Result: A signal whose value toggles to the inverse of its previ

value in each simulation cycle in which signal S becom
active.

Restriction: A description is erroneous if it depends on the initial value
S'Transaction.

S'EVENT

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Boolean.
Result: A value that indicates whether an event has just occurre

signal S. Specifically:

For a scalar signal S, S'EVENT returns the value TRUE if an event has occurred on S
the current simulation cycle; otherwise, it returns the value FALSE.
For a composite signal S, S'EVENT returns TRUE if an event has occurred on any
subelement of S during the current simulation cycle; otherwise, it returns FALSE.

S'ACTIVE

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Boolean.
Result: A value that indicates whether signal S is active. Specifical

For a scalar signal S, S'ACTIVE returns the value TRUE if signal S is active during the cu
simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, S'ACTIVE returns TRUE if any scalar subelement of S is a
during the current simulation cycle; otherwise, it returns FALSE.

S'LAST_EVENT

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Time.
Result: The amount of time that has elapsed since the last e

occurred on signal S. Specifically:

For a signal S, S'LAST_EVENT returns the smallest value T of type TIME such that S'EV
= True during any simulation cycle at time NOW – T, if such a value exists; otherwis
returns TIME'HIGH.
Copyright © 2002 IEEE. All rights reserved. 197

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e at

that
her-

e of

 the
ter-
fix
 if

lse
he

cur-
. If

ave

t a
 the
f a

fix
 not
S'LAST_ACTIVE

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Time.
Result: The amount of time that has elapsed since the last tim

which signal S was active. Specifically:

For a signal S, S'LAST_ACTIVE returns the smallest value T of type TIME such
S'ACTIVE = True during any simulation cycle at time NOW – T, if such value exists; ot
wise, it returns TIME'HIGH.

S'LAST_VALUE

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: The base type of S.
Result: The previous value of S, immediately before the last chang

S.

S'DRIVING

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Boolean.
Result: If the prefix denotes a scalar signal, the result is False if

current value of the driver for S in the current process is de
mined by the null transaction; True otherwise. If the pre
denotes a composite signal, the result is True if and only
R'DRIVING is True for every scalar subelement R of S; Fa
otherwise. If the prefix denotes a null slice of a signal, t
result is True.

Restrictions: This attribute is available only from within a process, a con
rent statement with an equivalent process, or a subprogram
the prefix denotes a port, it is an error if the port does not h
a mode of inout, out, or buffer. It is also an error if the
attribute name appears in a subprogram body that is no
declarative item contained within a process statement and
prefix is not a formal parameter of the given subprogram or o
parent of that subprogram. Finally, it is an error if the pre
denotes a subprogram formal parameter whose mode is
inout or out.
198 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 the
al,
of
ll

cur-
. If

ave

t a
 the
f a

fix
 not
-

 the
ta-
cter
ck-
of a
rted
en-
rse
pre-

of a

t of
tity,
s.
S'DRIVING_VALUE

Kind: Function.
Prefix: Any signal denoted by the static signal name S.
Result Type: The base type of S.
Result: If S is a scalar signal S, the result is the current value of

driver for S in the current process. If S is a composite sign
the result is the aggregate of the values
R'DRIVING_VALUE for each element R of S. If S is a nu
slice, the result is a null slice.

Restrictions: This attribute is available only from within a process, a con
rent statement with an equivalent process, or a subprogram
the prefix denotes a port, it is an error if the port does not h
a mode of inout, out, or buffer. It is also an error if the
attribute name appears in a subprogram body that is no
declarative item contained within a process statement and
prefix is not a formal parameter of the given subprogram or o
parent of that subprogram. Finally, it is an error if the pre
denotes a subprogram formal parameter whose mode is
inout or out, or if S'DRIVING is False at the time of the evalu
ation of S'DRIVING_VALUE.

E'SIMPLE_NAME

Kind: Value.
Prefix: Any named entity as defined in 5.1.
Result Type: Type String.
Result: The simple name, character literal, or operator symbol of

named entity, without leading or trailing whitespace or quo
tion marks but with apostrophes (in the case of a chara
literal) and both a leading and trailing reverse solidus (ba
slash) (in the case of an extended identifier). In the case
simple name or operator symbol, the characters are conve
to their lowercase equivalents. In the case of an extended id
tifier, the case of the identifier is preserved, and any reve
solidus characters appearing as part of the identifier are re
sented with two consecutive reverse solidus characters.

E'INSTANCE_NAME

Kind: Value.
Prefix: Any named entity other than the local ports and generics

component declaration.
Result Type: Type String.
Result: A string describing the hierarchical path starting at the roo

the design hierarchy and descending to the named en
including the names of instantiated design entitie
Specifically:

The result string has the following syntax:

instance_name ::= package_based_path | full_instance_based_path

package_based_path ::=
leader library_logical_name leader

[package_simple_name leader]
{ subprogram_simple_name signature leader }
[local_item_name]
Copyright © 2002 IEEE. All rights reserved. 199

IEEE
Std 1076-2002 IEEE STANDARD VHDL

e]

s iden-

gical

s a
or full

ment,
een the

tecture
re, the
s the
tity.

h a for

equiv-
ring in
ted with
full_instance_based_path ::= leader full_path_to_instance [local_item_nam

full_path_to_instance ::= { full_path_instance_element leader }

local_item_name ::=
simple_name
character_literal
operator_symbol

full_path_instance_element ::=
[component_instantiation_label @]

entity_simple_name (architecture_simple_name)
| block_label
| generate_label
| process_label
| loop_label
| subprogram_simple_name signature

generate_label ::= generate_label [(literal)]

process_label ::= [process_label]

leader ::= :

Package-based paths identify items declared within packages. Full-instance-based path
tify items within an elaborated design hierarchy.

A library logical name denotes a library (see 11.2). Since it is possible for multiple lo
names to denote the same library, the library logical name may not be unique.

The local item name in E’INSTANCE_NAME equals E’SIMPLE_NAME, unless E denote
library, package, subprogram, or label. In this latter case, the package based path
instance based path, as appropriate, will not contain a local item name.

There is one full path instance element for each component instantiation, block state
generate statement, process statement, or subprogram body in the design hierarchy betw
root design entity and the named entity denoted by the prefix.

In a full path instance element, the architecture simple name must denote an archi
associated with the entity declaration designated by the entity simple name; furthermo
component instantiation label (and the commercial at following it) are required unles
entity simple name and the architecture simple name together denote the root design en

The literal in a generate label is required if the label denotes a generate statement wit
generation scheme; the literal must denote one of the values of the generate parameter.

A process statement with no label is denoted by an empty process label.

All characters in basic identifiers appearing in the result are converted to their lowercase
alents. Both a leading and trailing reverse solidus surround an extended identifier appea
the result; any reverse solidus characters appearing as part of the identifier are represen
two consecutive reverse solidus characters.
200 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

of a

t of
tity,
lly:

identify

s a
nstance

enerate
he root
E'PATH_NAME

Kind: Value.
Prefix: Any named entity other than the local ports and generics

component declaration.
Result Type: Type String.
Result: A string describing the hierarchical path starting at the roo

the design hierarchy and descending to the named en
excluding the name of instantiated design entities. Specifica

The result string has the following syntax:

path_name ::= package_based_path | instance_based_path

instance_based_path ::=
leader path_to_instance [local_item_name]

path_to_instance ::= { path_instance_element leader }

path_instance_element ::=
component_instantiation_label

| entity_simple_name
| block_label
| generate_label
| process_label
| subprogram_simple_name signature

Package-based paths identify items declared within packages. Instance-based paths
items within an elaborated design hierarchy.

The local item name in E’PATH_NAME equals E’SIMPLE_NAME, unless E denote
library, package, subprogram, or label. In this latter case, the package based path or i
based path, as appropriate, will not contain a local item name.

There is one path instance element for each component instantiation, block statement, g
statement, process statement, or subprogram body in the design hierarchy between t
design entity and the named entity denoted by the prefix.

Examples:

library Lib; -- All design units are in this library:
package P is -- P'PATH_NAME = ":lib:p:"

-- P'INSTANCE_NAME = ":lib:p:"
procedure Proc (F: inout INTEGER); -- Proc'PATH_NAME = ":lib:p:proc [integer]:"

-- Proc'INSTANCE_NAME = ":lib:p:proc [integer]:"
constant C: INTEGER := 42; -- C'PATH_NAME = ":lib:p:c"

end package P; -- C'INSTANCE_NAME = ":lib:p:c"

package body P is
procedure Proc (F: inout INTEGER) is

variable x: INTEGER; -- x'PATH_NAME = ":lib:p:proc [integer]:x"
begin -- x'INSTANCE_NAME = ":lib:p:proc [integer]:x"

•
•
•

end;
end;
Copyright © 2002 IEEE. All rights reserved. 201

IEEE
Std 1076-2002 IEEE STANDARD VHDL
library Lib;
use Lib.P.all; -- Assume that E is in Lib and
entity E is -- E is the top-level design entity:

-- E'PATH_NAME = ":e:"
-- E'INSTANCE_NAME = ":e(a):"

generic (G: INTEGER); -- G'PATH_NAME = ":e:g"
-- G'INSTANCE_NAME = ":e(a):g"

port (P: in INTEGER); -- P'PATH_NAME = ":e:p"
end entity E; -- P'INSTANCE_NAME = ":e(a):p"

architecture A of E is
signal S: BIT_VECTOR (1 to G); -- S'PATH_NAME = ":e:s"

-- S'INSTANCE_NAME = ":e(a):s"
procedure Proc1 (signal sp1: NATURAL; C: out INTEGER) is

-- Proc1'PATH_NAME = ":e:proc1[natural,integer]:"
-- Proc1'INSTANCE_NAME =

":e(a):proc1[natural,integer]:"
-- C'PATH_NAME = ":e:proc1[natural,integer]:c"
-- C'INSTANCE_NAME =

":e(a):proc1[natural,integer]:c"
variable max: DELAY_LENGTH; -- max'PATH_NAME =

":e:proc1[natural,integer]:max"
-- max'INSTANCE_NAME =
-- ":e(a):proc1[natural,integer]:max"

begin
max := sp1 * ns;
wait on sp1 for max;
c := sp1;

end procedure Proc1;

begin
p1: process

variable T: INTEGER := 12; -- T'PATH_NAME = ":e:p1:t"
begin -- T'INSTANCE_NAME = ":e(a):p1:t"

•
•
•

end process p1;

process
variable T: INTEGER := 12; -- T'PATH_NAME = ":e::t"

begin -- T'INSTANCE_NAME = ":e(a)::t"
•
•
•

end process ;
end architecture;
202 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
entity Bottom is
generic(GBottom : INTEGER);
port (PBottom : INTEGER);

end entity Bottom;

architecture BottomArch of Bottom is
signal SBottom : INTEGER;

begin
ProcessBottom : process

variable V : INTEGER;
begin

if GBottom = 4 then
assert V'Simple_Name = "v"

and V'Path_Name = ":top:b1:b2:g1(4):b3:l1:processbottom:v"
and V'Instance_Name =

":top(top):b1:b2:g1(4):b3:l1@bottom(bottomarch):processbottom:v";
assert GBottom'Simple_Name = "gbottom"

and GBottom'Path_Name = ":top:b1:b2:g1(4):b3:l1:gbottom"
and GBottom'Instance_Name =

":top(top):b1:b2:g1(4):b3:l1@bottom(bottomarch):gbottom";

elsif GBottom = -1 then
assert V'Simple_Name = "v"

and V'Path_Name = ":top:l2:processbottom:v"
and V'Instance_Name =

":top(top):l2@bottom(bottomarch):processbottom:v";
assert GBottom'Simple_Name = "gbottom"

and GBottom'Path_Name = "top:l2:gbottom"
and GBottom'Instance_Name =

":top(top):l2@bottom(bottomarch):gbottom";
end if;

wait;
end process ProcessBottom;

end architecture BottomArch;

entity Top is end Top;

architecture Top of Top is
component BComp is

generic (GComp : INTEGER)
port (PComp : INTEGER);

end component BComp;

signal S : INTEGER;
begin

B1 : block
signal S : INTEGER;
Copyright © 2002 IEEE. All rights reserved. 203

IEEE
Std 1076-2002 IEEE STANDARD VHDL

";
begin
B2 : block
 signal S : INTEGER;
begin
 G1 : for I in 1 to 10 generate

B3 : block
signal S : INTEGER;
for L1 : BComp use entity Work.Bottom(BottomArch)

generic map (GBottom => GComp)
port map (PBottom => PComp);

begin

L1 : BComp generic map (I) port map (S);
P1 : process

variable V : INTEGER;
begin
 if I = 7 then
 assert V'Simple_Name = "v"

and V'Path_Name = ":top:b1:b2:g1(7):b3:p1:v"
andV'Instance_Name=":top(top):b1:b2:g1(7):b3:p1:v";

 assert P1'Simple_Name = "p1"
and P1'Path_Name = ":top:b1:b2:g1(7):b3:p1:"
and P1'Instance_Name = ":top(top):b1:b2:g1(7):b3:p1:

 assert S'Simple_Name = "s"
and S'Path_Name = ":top:b1:b2:g1(7):b3:s"
and S'Instance_Name = ":top(top):b1:b2:g1(7):b3:s";

 assert B1.S'Simple_Name = "s"
and B1.S'Path_Name = ":top:b1:s"
and B1.S'Instance_Name = ":top(top):b1:s";

 end if;
wait;

 end process P1;
end block B3;

end generate;
end block B2;

end block B1;
L2 : BComp generic map (-1) port map (S);

end architecture Top;

configuration TopConf of Top is
for Top

for L2 : BComp use
entity Work.Bottom(BottomArch)

generic map (GBottom => GComp)
port map (PBottom => PComp);

end for;
end for;

end configuration TopConf;
204 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

:

nc-
ction may
IET, or

ent signal

hich

ostponed
 be used

iffer-
and named

sult

clause
 cannot

ments
uch as
NOTES

1—The relationship between the values of the LEFT, RIGHT, LOW, and HIGH attributes is expressed as follows

2—Since the attributes S'EVENT, S'ACTIVE, S'LAST_EVENT, S'LAST_ACTIVE, and S'LAST_VALUE are fu
tions, not signals, they cannot cause the execution of a process, even though the value returned by such a fun
change dynamically. It is thus recommended that the equivalent signal-valued attributes S'STABLE and S'QU
expressions involving those attributes, be used in concurrent contexts such as guard expressions or concurr
assignments. Similarly, function STANDARD.NOW should not be used in concurrent contexts.

3—S'DELAYED(0 ns) is not equal to S during any simulation cycle where S'EVENT is true.

4—S'STABLE(0 ns) = (S'DELAYED(0 ns) = S), and S'STABLE(0 ns) is FALSE only during a simulation cycle in w
S has had a transaction.

5—For a given simulation cycle, S'QUIET(0 ns) is TRUE if and only if S is quiet for that simulation cycle.

6—If S'STABLE(T) is FALSE, then, by definition, for some t where 0 ns < t < T, S'DELAYED(t) /= S.

7—If Ts is the smallest value such that S'STABLE (Ts) is FALSE, then for all t where 0 ns < t < Ts, S'DELAYED(t) = S.

8—S'EVENT should not be used within a postponed process (or a concurrent statement that has an equivalent p
process) to determine if the prefix signal S caused the process to resume. However, S'LAST_EVENT = 0 ns can
for this purpose.

9—The values of E'PATH_NAME and E'INSTANCE_NAME are not unique. Specifically, named entities in two d
ent, unlabelled processes may have the same path names or instance names. Overloaded subprograms,
entities within them, may also have the same path names or instance names.

10—If the prefix to the attributes 'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME denotes an alias, the re
is respectively the simple name, path name or instance name of the alias. See 6.6.

11—For all values V of any scalar type T except a real type, the following relation holds:

V = T'Value(T'Image(V))

14.2 Package STANDARD

Package STANDARD predefines a number of types, subtypes, and functions. An implicit context
naming this package is assumed to exist at the beginning of each design unit. Package STANDARD
be modified by the user.

The operators that are predefined for the types declared for package STANDARD are given in com
since they are implicitly declared. Italics are used for pseudo-names of anonymous types (s
universal_integer), formal parameters, and undefined information (such as implementation_defined).

package STANDARD is

-- Predefined enumeration types:

type BOOLEAN is (FALSE, TRUE);

Ascending range Descending range

T'LEFT = T'LOW T'HIGH

T'RIGHT = T'HIGH T'LOW
Copyright © 2002 IEEE. All rights reserved. 205

IEEE
Std 1076-2002 IEEE STANDARD VHDL
-- The predefined operators for this type are as follows:

-- function "and" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "or" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "nand" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "nor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "xor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "xnor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;

-- function "not" (anonymous: BOOLEAN) return BOOLEAN;

-- function "=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "/=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "<" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "<=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function ">" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function ">=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;

type BIT is ('0', '1');

-- The predefined operators for this type are as follows:

-- function "and" (anonymous, anonymous: BIT) return BIT;
-- function "or" (anonymous, anonymous: BIT) return BIT;
-- function "nand" (anonymous, anonymous: BIT) return BIT;
-- function "nor" (anonymous, anonymous: BIT) return BIT;
-- function "xor" (anonymous, anonymous: BIT) return BIT;
-- function "xnor" (anonymous, anonymous: BIT) return BIT;

-- function "not" (anonymous: BIT) return BIT;

-- function "=" (anonymous, anonymous: BIT) return BOOLEAN;
-- function "/=" (anonymous, anonymous: BIT) return BOOLEAN;
-- function "<" (anonymous, anonymous: BIT) return BOOLEAN;
-- function "<=" (anonymous, anonymous: BIT) return BOOLEAN;
-- function ">" (anonymous, anonymous: BIT) return BOOLEAN;
-- function ">=" (anonymous, anonymous: BIT) return BOOLEAN;

type CHARACTER is (

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

' ', '!', '"', '#', '$', '%', '&', ''',
'(', ')', '*', '+', ',', '-', '.', '/',
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?',

'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
'X', 'Y', 'Z', '[', ' \ ', ']', '^', '_',

'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
'x', 'y', 'z', '{', '|', '}', '~', DEL,
206 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
C128, C129, C130, C131, C132, C133, C134, C135,
C136, C137, C138, C139, C140, C141, C142, C143,
C144, C145, C146, C147, C148, C149, C150, C151,
C152, C153, C154, C155, C156, C157, C158, C159,

' ', 4 '¡', '¢', '£', '€ ', '¥', |
|' ', '§',

'¨', '©', 'ª', '«', '¬', '-', 5 '®', '¯',

'°', '±', '2', '3', '´', 'µ', '¶', '•',

'¸', '1', 'º', '»', '1/4', '1/2', '3/4', '¿',

'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç',
'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï',

'D. ', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×',

'Ø', 'Ù', 'Ú', 'Û', 'Ü', '́Y', ''P', 'ß',

'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç',
'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï',
'∂', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷',
'ø', 'ù', 'ú', 'û', 'ü', '́y', ' 'p', 'ÿ');

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
-- function "/=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
-- function "<" (anonymous, anonymous: CHARACTER) return BOOLEAN;
-- function "<=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
-- function ">" (anonymous, anonymous: CHARACTER) return BOOLEAN;
-- function ">=" (anonymous, anonymous: CHARACTER) return BOOLEAN;

type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
-- function "/=" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
-- function "<" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
-- function "<=" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
-- function ">" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
-- function ">=" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;

-- type universal_integer is range implementation_defined;

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: universal_integer) return BOOLEAN;
-- function "/=" (anonymous, anonymous: universal_integer) return BOOLEAN;
-- function "<" (anonymous, anonymous: universal_integer) return BOOLEAN;
-- function "<=" (anonymous, anonymous: universal_integer) return BOOLEAN;
-- function ">" (anonymous, anonymous: universal_integer) return BOOLEAN;
-- function ">=" (anonymous, anonymous: universal_integer) return BOOLEAN;

4The nonbreaking space character.
5The soft hyphen character.
Copyright © 2002 IEEE. All rights reserved. 207

IEEE
Std 1076-2002 IEEE STANDARD VHDL
-- function "+" (anonymous: universal_integer) return universal_integer;
-- function "-" (anonymous: universal_integer) return universal_integer;
-- function "abs" (anonymous: universal_integer) return universal_integer;

-- function "+" (anonymous, anonymous: universal_integer) return universal_integer;
-- function "–" (anonymous, anonymous: universal_integer) return universal_integer;
-- function "*" (anonymous, anonymous: universal_integer) return universal_integer;
-- function "/" (anonymous, anonymous: universal_integer) return universal_integer;
-- function "mod" (anonymous, anonymous: universal_integer) return universal_integer;
-- function "rem" (anonymous, anonymous: universal_integer) return universal_integer;

-- type universal_real is range implementation_defined;

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: universal_real) return BOOLEAN;
-- function "/=" (anonymous, anonymous: universal_real) return BOOLEAN;
-- function "<" (anonymous, anonymous: universal_real) return BOOLEAN;
-- function "<=" (anonymous, anonymous: universal_real) return BOOLEAN;
-- function ">" (anonymous, anonymous: universal_real) return BOOLEAN;
-- function ">=" (anonymous, anonymous: universal_real) return BOOLEAN;

-- function "+" (anonymous: universal_real) return universal_real;
-- function "–" (anonymous: universal_real) return universal_real;
-- function "abs" (anonymous: universal_real) return universal_real;

-- function "+" (anonymous, anonymous: universal_real) return universal_real;
-- function "–" (anonymous, anonymous: universal_real) return universal_real;
-- function "*" (anonymous, anonymous: universal_real) return universal_real;
-- function "/" (anonymous, anonymous: universal_real) return universal_real;

-- function "*" (anonymous: universal_real; anonymous: universal_integer)
-- return universal_real;
-- function "*" (anonymous: universal_integer; anonymous: universal_real)
-- return universal_real;
-- function "/" (anonymous: universal_real; anonymous: universal_integer)
-- return universal_real;

-- Predefined numeric types:

type INTEGER is range implementation_defined;

-- The predefined operators for this type are as follows:

-- function "**" (anonymous: universal_integer; anonymous: INTEGER)
-- return universal_integer;
-- function "**" (anonymous: universal_real; anonymous: INTEGER)
-- return universal_real;

-- function "=" (anonymous, anonymous: INTEGER) return BOOLEAN;
-- function "/=" (anonymous, anonymous: INTEGER) return BOOLEAN;
-- function "<" (anonymous, anonymous: INTEGER) return BOOLEAN;
-- function "<=" (anonymous, anonymous: INTEGER) return BOOLEAN;
-- function ">" (anonymous, anonymous: INTEGER) return BOOLEAN;
-- function ">=" (anonymous, anonymous: INTEGER) return BOOLEAN;
208 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
-- function "+" (anonymous: INTEGER) return INTEGER;
-- function "–" (anonymous: INTEGER) return INTEGER;
-- function "abs" (anonymous: INTEGER) return INTEGER;

-- function "+" (anonymous, anonymous: INTEGER) return INTEGER;
-- function "–" (anonymous, anonymous: INTEGER) return INTEGER;
-- function "*" (anonymous, anonymous: INTEGER) return INTEGER;
-- function "/" (anonymous, anonymous: INTEGER) return INTEGER;
-- function "mod" (anonymous, anonymous: INTEGER) return INTEGER;
-- function "rem" (anonymous, anonymous: INTEGER) return INTEGER;

-- function "**" (anonymous: INTEGER; anonymous: INTEGER) return INTEGER;

type REAL is range implementation_defined;

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: REAL) return BOOLEAN;
-- function "/=" (anonymous, anonymous: REAL) return BOOLEAN;
-- function "<" (anonymous, anonymous: REAL) return BOOLEAN;
-- function "<=" (anonymous, anonymous: REAL) return BOOLEAN;
-- function ">" (anonymous, anonymous: REAL) return BOOLEAN;
-- function ">=" (anonymous, anonymous: REAL) return BOOLEAN;

-- function "+" (anonymous: REAL) return REAL;
-- function "–" (anonymous: REAL) return REAL;
-- function "abs" (anonymous: REAL) return REAL;

-- function "+" (anonymous, anonymous: REAL) return REAL;
-- function "–" (anonymous, anonymous: REAL) return REAL;
-- function "*" (anonymous, anonymous: REAL) return REAL;
-- function "/" (anonymous, anonymous: REAL) return REAL;

-- function "**" (anonymous: REAL; anonymous: INTEGER) return REAL;

-- Predefined type TIME:

type TIME is range implementation_defined

units
fs; -- femtosecond
ps = 1000 fs; -- picosecond
ns = 1000 ps; -- nanosecond
us = 1000 ns; -- microsecond
ms = 1000 us; -- millisecond
sec = 1000 ms; -- second
min = 60 sec; -- minute
hr = 60 min; -- hour

end units;

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: TIME) return BOOLEAN;
-- function "/=" (anonymous, anonymous: TIME) return BOOLEAN;
-- function "<" (anonymous, anonymous: TIME) return BOOLEAN;
-- function "<=" (anonymous, anonymous: TIME) return BOOLEAN;
-- function ">" (anonymous, anonymous: TIME) return BOOLEAN;
-- function ">=" (anonymous, anonymous: TIME) return BOOLEAN;
Copyright © 2002 IEEE. All rights reserved. 209

IEEE
Std 1076-2002 IEEE STANDARD VHDL
-- function "+" (anonymous: TIME) return TIME;
-- function "–" (anonymous: TIME) return TIME;
-- function "abs" (anonymous: TIME) return TIME;

-- function "+" (anonymous, anonymous: TIME) return TIME;
-- function "–" (anonymous, anonymous: TIME) return TIME;

-- function "*" (anonymous: TIME; anonymous: INTEGER) return TIME;
-- function "*" (anonymous: TIME; anonymous: REAL) return TIME;
-- function "*" (anonymous: INTEGER; anonymous: TIME) return TIME;
-- function "*" (anonymous: REAL; anonymous: TIME) return TIME;
-- function "/" (anonymous: TIME; anonymous: INTEGER) return TIME;
-- function "/" (anonymous: TIME; anonymous: REAL) return TIME;

-- function "/" (anonymous, anonymous: TIME) return universal_integer;

subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH;

-- A function that returns universal_to_physical_time (Tc), (see 12.6.4):

pure function NOW return DELAY_LENGTH;

-- Predefined numeric subtypes:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

-- Predefined array types:

type STRING is array (POSITIVE range <>) of CHARACTER;

-- The predefined operators for these types are as follows:

-- function "=" (anonymous, anonymous: STRING) return BOOLEAN;
-- function "/=" (anonymous, anonymous: STRING) return BOOLEAN;
-- function "<" (anonymous, anonymous: STRING) return BOOLEAN;
-- function "<=" (anonymous, anonymous: STRING) return BOOLEAN;
-- function ">" (anonymous, anonymous: STRING) return BOOLEAN;
-- function ">=" (anonymous, anonymous: STRING) return BOOLEAN;

-- function "&" (anonymous: STRING; anonymous: STRING) return STRING;
-- function "&" (anonymous: STRING; anonymous: CHARACTER) return STRING;
-- function "&" (anonymous: CHARACTER; anonymous: STRING) return STRING;
-- function "&" (anonymous: CHARACTER; anonymous: CHARACTER)
-- return STRING;

type BIT_VECTOR is array (NATURAL range <>) of BIT;

-- The predefined operators for this type are as follows:

-- function "and" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
-- function "or" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
-- function "nand" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
-- function "nor" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
-- function "xor" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
-- function "xnor" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;

-- function "not" (anonymous: BIT_VECTOR) return BIT_VECTOR;
210 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

.

-- function "sll" (anonymous: BIT_VECTOR; anonymous: INTEGER)
-- return BIT_VECTOR;
-- function "srl" (anonymous: BIT_VECTOR; anonymous: INTEGER)
-- return BIT_VECTOR;
-- function "sla" (anonymous: BIT_VECTOR; anonymous: INTEGER)
-- return BIT_VECTOR;
-- function "sra" (anonymous: BIT_VECTOR; anonymous: INTEGER)
-- return BIT_VECTOR;
-- function "rol" (anonymous: BIT_VECTOR; anonymous: INTEGER)
-- return BIT_VECTOR;
-- function "ror" (anonymous: BIT_VECTOR; anonymous: INTEGER)
-- return BIT_VECTOR;

-- function "=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
-- function "/=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
-- function "<" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
-- function "<=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
-- function ">" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
-- function ">=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;

-- function "&" (anonymous: BIT_VECTOR; anonymous: BIT_VECTOR)
-- return BIT_VECTOR;
-- function "&" (anonymous: BIT_VECTOR; anonymous: BIT) return BIT_VECTOR;
-- function "&" (anonymous: BIT; anonymous: BIT_VECTOR) return BIT_VECTOR;
-- function "&" (anonymous: BIT; anonymous: BIT) return BIT_VECTOR;

-- The predefined types for opening files:

type FILE_OPEN_KIND is (
READ_MODE, -- Resulting access mode is read-only.
WRITE_MODE, -- Resulting access mode is write-only.
APPEND_MODE); -- Resulting access mode is write-only; information

-- is appended to the end of the existing file.

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
-- function "/=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
-- function "<" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
-- function "<=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
-- function ">" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
-- function ">=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;

type FILE_OPEN_STATUS is (

OPEN_OK, -- File open was successful.
STATUS_ERROR, -- File object was already open.
NAME_ERROR, -- External file not found or inaccessible.
MODE_ERROR); -- Could not open file with requested access mode
Copyright © 2002 IEEE. All rights reserved. 211

IEEE
Std 1076-2002 IEEE STANDARD VHDL

. In the
declared

tor (US)
he units

d with the
 12.3 and

ula-

tions on
-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: FILE_OPEN_STATUS)
-- return BOOLEAN;
-- function "/=" (anonymous, anonymous: FILE_OPEN_STATUS)
-- return BOOLEAN;
-- function "<" (anonymous, anonymous: FILE_OPEN_STATUS)
-- return BOOLEAN;
-- function "<=" (anonymous, anonymous: FILE_OPEN_STATUS)
-- return BOOLEAN;
-- function ">" (anonymous, anonymous: FILE_OPEN_STATUS)
-- return BOOLEAN;
-- function ">=" (anonymous, anonymous: FILE_OPEN_STATUS)
-- return BOOLEAN;

-- The 'FOREIGN attribute:

attribute FOREIGN: STRING;

end STANDARD;

The 'FOREIGN attribute must be associated only with architectures (see 1.2) or with subprograms
latter case, the attribute specification must appear in the declarative part in which the subprogram is
(see 2.1).

NOTES

1—The ASCII mnemonics for file separator (FS), group separator (GS), record separator (RS), and unit separa
are represented by FSP, GSP, RSP, and USP, respectively, in type CHARACTER in order to avoid conflict with t
of type TIME.

2—The declarative parts and statement parts of design entities whose corresponding architectures are decorate
'FOREIGN attribute and subprograms that are likewise decorated are subject to special elaboration rules. See
12.4.

3—The function STD.STANDARD.NOW is pure only within a single discrete time step; that is, within a set of sim
tion cycles whose Tcs are equal (see 12.6.4).

14.3 Package TEXTIO

Package TEXTIO contains declarations of types and subprograms that support formatted I/O opera
text files.

package TEXTIO is

-- Type definitions for text I/O:

type LINE is access STRING; -- A LINE is a pointer to a STRING value.

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: LINE) return BOOLEAN;
-- function "/=" (anonymous, anonymous: LINE) return BOOLEAN;

type TEXT is file of STRING; -- A file of variable-length ASCII records.
212 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
-- The predefined operators for this type are as follows:

-- procedure FILE_OPEN (file F: TEXT; External_Name; in STRING;
-- Open_Kind: in FILE_OPEN_KIND := READ_MODE);
-- procedure FILE_OPEN (Status: out FILE_OPEN_STATUS; file F: TEXT;
-- External_Name: in STRING;
-- Open_Kind: in FILE_OPEN_KIND := READ_MODE);
-- procedure FILE_CLOSE (file F: TEXT);
-- procedure READ (file F: TEXT; VALUE: out STRING);
-- procedure WRITE (file F: TEXT; VALUE: in STRING);
-- function ENDFILE (file F: TEXT) return BOOLEAN;

type SIDE is (RIGHT, LEFT); -- For justifying output data within fields.

-- The predefined operators for this type are as follows:

-- function "=" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function "/=" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function "<" (anonymous, anonymous: SIDE return BOOLEAN;
-- function "<=" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function ">" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function ">=" (anonymous, anonymous: SIDE) return BOOLEAN;

subtype WIDTH is NATURAL; -- For specifying widths of output fields.

-- Standard text files:

file INPUT: TEXT open READ_MODE is "STD_INPUT";

file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";

-- Input routines for standard types:

procedure READLINE (file F: TEXT; L: inout LINE);

procedure READ (L: inout LINE; VALUE: out BIT; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out BIT);

procedure READ (L: inout LINE; VALUE: out BIT_VECTOR; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);

procedure READ (L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out CHARACTER; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out CHARACTER);

procedure READ (L: inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out INTEGER);

procedure READ (L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out REAL);

procedure READ (L: inout LINE; VALUE: out STRING; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out STRING);

procedure READ (L: inout LINE; VALUE: out TIME; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out TIME);
Copyright © 2002 IEEE. All rights reserved. 213

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 a file
alue of
ntains a
 the new
line. It is
e other
 L to be
ntains
 speci-
.

llow all
tation
ot be

 value
 line on
-- Output routines for standard types:

procedure WRITELINE (file F: TEXT; L: inout LINE);

procedure WRITE (L: inout LINE; VALUE: in BIT;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in INTEGER;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in REAL;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
DIGITS: in NATURAL:= 0);

procedure WRITE (L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in TIME;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
UNIT: in TIME:= ns);

-- File position predicate:

 -- function ENDFILE (file F: TEXT) return BOOLEAN;

end TEXTIO;

Procedures READLINE and WRITELINE declared in package TEXTIO read and write entire lines of
of type TEXT. Procedure READLINE causes the next line to be read from the file and returns as the v
parameter L an access value that designates an object representing that line. If parameter L co
nonnull access value at the start of the call, the object designated by that value is deallocated before
object is created. The representation of the line does not contain the representation of the end of the
an error if the file specified in a call to READLINE is not open or, if open, the file has an access mod
than read-only (see 3.4.1). Procedure WRITELINE causes the current line designated by parameter
written to the file and returns with the value of parameter L designating a null string. If parameter L co
a null access value at the start of the call, then a null string is written to the file. It is an error if the file
fied in a call to WRITELINE is not open or, if open, the file has an access mode other than write-only

The language does not define the representation of the end of a line. An implementation must a
possible values of types CHARACTER and STRING to be written to a file. However, as an implemen
is permitted to use certain values of types CHARACTER and STRING as line delimiters, it might n
possible to read these values from a TEXT file.

Each READ procedure declared in package TEXTIO extracts data from the beginning of the string
designated by parameter L and modifies the value so that it designates the remaining portion of the
exit.
214 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

pping
a hori-
ed from
d string
e lexical
e value.
can be
NG and
 Again
 specified
g repre-
if the

railing

r 0. No

, with
ut it is
sign and
present
e does
 “e” is
eet the

element

g the
that is
an be
ercase

ter L; in
t of the

 write

first has
an flag
 IntVal,
type
llows a
d oper-
The READ procedures defined for a given type other than CHARACTER and STRING begin by ski
leading whitespace characters. A whitespace character is defined as a space, a nonbreaking space, or
zontal tabulation character (SP, NBSP, or HT). For all READ procedures, characters are then remov
L and composed into a string representation of the value of the specified type. Character removal an
composition stops when a character is encountered that cannot be part of the value according to th
rules of 13.2; this character is not removed from L and is not added to the string representation of th
The READ procedures for types INTEGER and REAL also accept a leading sign; additionally, there
no space between the sign and the remainder of the literal. The READ procedures for types STRI
BIT_VECTOR also terminate acceptance when VALUE'LENGTH characters have been accepted.
using the rules of 13.2, the accepted characters are then interpreted as a string representation of the
type. The READ does not succeed if the sequence of characters removed from L is not a valid strin
sentation of a value of the specified type or, in the case of types STRING and BIT_VECTOR,
sequence does not contain VALUE'LENGTH characters.

The definitions of the string representation of the value for each data type are as follows:

— The representation of a BIT value is formed by a single character, either 1 or 0. No leading or t
quotation characters are present.

— The representation of a BIT_VECTOR value is formed by a sequence of characters, either 1 o
leading or trailing quotation characters are present.

— The representation of a BOOLEAN value is formed by an identifier, either FALSE or TRUE.

— The representation of a CHARACTER value is formed by a single character.

— The representation of both INTEGER and REAL values is that of a decimal literal (see 13.4.1)
the addition of an optional leading sign. The sign is never written if the value is nonnegative, b
accepted during a read even if the value is nonnegative. No spaces can occur between the
the remainder of the value. The decimal point is absent in the case of an INTEGER literal and
in the case of a REAL literal. An exponent may optionally be present; moreover, the languag
not define under what conditions it is or is not present. However, if the exponent is present, the
written as a lowercase character. Leading and trailing zeroes are written as necessary to m
requirements of the FIELD and DIGITS parameters, and they are accepted during a read.

— The representation of a STRING value is formed by a sequence of characters, one for each
of the string. No leading or trailing quotation characters are present.

— The representation of a TIME value is formed by an optional decimal literal composed followin
rules for INTEGER and REAL literals described above, one or more blanks, and an identifier
a unit of type TIME, as defined in package STANDARD (see 14.2). When read, the identifier c
expressed with characters of either case; when written, the identifier is expressed in low
characters.

Each WRITE procedure similarly appends data to the end of the string value designated by parame
this case, however, L continues to designate the entire line after the value is appended. The forma
appended data is defined by the string representations defined above for the READ procedures.

The READ and WRITE procedures for the types BIT_VECTOR and STRING respectively read and
the element values in left-to-right order.

For each predefined data type there are two READ procedures declared in package TEXTIO. The
three parameters: L, the line to read from; VALUE, the value read from the line; and GOOD, a Boole
that indicates whether the read operation succeeded or not. For example, the operation READ (L,
OK) would return with OK set to FALSE, L unchanged, and IntVal undefined if IntVal is a variable of
INTEGER and L designates the line "ABC". The success indication returned via parameter GOOD a
process to recover gracefully from unexpected discrepancies in input format. The second form of rea
Copyright © 2002 IEEE. All rights reserved. 215

IEEE
Std 1076-2002 IEEE STANDARD VHDL

line L,
f type

of these
itional
oper-
data
t least

rameter
eading
hin the
ber of

writing
isting of
mber is
 digits

ust be
alue is
 name
ure call
string
being

rt of

read or
y been
g read
ression

y input
pe Line
ation has only the parameters L and VALUE. If the requested type cannot be read into VALUE from
then an error occurs. Thus, the operation READ (L, IntVal) would cause an error to occur if IntVal is o
INTEGER and L designates the line "ABC".

For each predefined data type there is one WRITE procedure declared in package TEXTIO. Each
has at least two parameters: L, the line to which to write; and VALUE, the value to be written. The add
parameters JUSTIFIED, FIELD, DIGITS, and UNIT control the formatting of output data. Each write
ation appends data to a line formatted within a field that is at least as long as required to represent the
value. Parameter FIELD specifies the desired field width. Since the actual field width will always be a
large enough to hold the string representation of the data value, the default value 0 for the FIELD pa
has the effect of causing the data value to be written out in a field of exactly the right width (i.e., no l
or trailing spaces). Parameter JUSTIFIED specifies whether values are to be right- or left-justified wit
field; the default is right-justified. If the FIELD parameter describes a field width larger than the num
characters necessary for a given value, blanks are used to fill the remaining characters in the field.

Parameter DIGITS specifies how many digits to the right of the decimal point are to be output when
a real number; the default value 0 indicates that the number should be output in standard form, cons
a normalized mantissa plus exponent (e.g., 1.079236E–23). If DIGITS is nonzero, then the real nu
output as an integer part followed by '.' followed by the fractional part, using the specified number of
(e.g., 3.14159).

Parameter UNIT specifies how values of type TIME are to be formatted. The value of this parameter m
equal to one of the units declared as part of the declaration of type TIME; the result is that the TIME v
formatted as an integer or real literal representing the number of multiples of this unit, followed by the
of the unit itself. The name of the unit is formatted using only lowercase characters. Thus the proced
WRITE(Line, 5 ns, UNIT=>us) would result in the string value "0.005 us" being appended to the
value designated by Line, whereas WRITE(Line, 5 ns) would result in the string value "5 ns"
appended (since the default UNIT value is ns).

Function ENDFILE is defined for files of type TEXT by the implicit declaration of that function as pa
the declaration of the file type.

NOTES

1—For a variable L of type Line, attribute L'Length gives the current length of the line, whether that line is being
written. For a line L that is being written, the value of L'Length gives the number of characters that have alread
written to the line; this is equivalent to the column number of the last character of the line. For a line L that is bein,
the value of L'Length gives the number of characters on that line remaining to be read. In particular, the exp
L'Length = 0 is true precisely when the end of the current line has been reached.

2—The execution of a read or write operation may modify or even deallocate the string object designated b
parameter L of type Line for that operation; thus, a dangling reference may result if the value of a variable L of ty
is assigned to another access variable and then a read or write operation is performed on L.
216 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

t-hand
uction is
Annex A

(informative)

Syntax summary

This annex provides a summary of the syntax for VHDL. Productions are ordered alphabetically by lef
nonterminal name. The number listed to the right indicates the clause or subclause where the prod
given.

abstract_literal ::= decimal_literal | based_literal [§ 13.4]

access_type_definition ::= access subtype_indication [§ 3.3]

actual_designator ::= [§ 4.3.2.2]
 expression
| signal_name
| variable_name
| file_name
| open

actual_parameter_part ::= parameter_association_list [§ 7.3.3]

actual_part ::= [§ 4.3.2.2]
 actual_designator
| function_name (actual_designator)
| type_mark (actual_designator)

adding_operator ::= + | – | & [§ 7.2]

aggregate ::= [§ 7.3.2]
(element_association { , element_association })

alias_declaration ::= [§ 4.3.3]
alias alias_designator [: subtype_indication] is name [signature] ;

alias_designator ::= identifier | character_literal | operator_symbol [§ 4.3.3]

allocator ::= [§ 7.3.6]
 new subtype_indication
| new qualified_expression

architecture_body ::= [§ 1.2]
architecture identifier of entity_name is

architecture_declarative_part
begin

architecture_statement_part
end [architecture] [architecture_simple_name] ;

architecture_declarative_part ::= [§ 1.2.1]
{ block_declarative_item }
Copyright © 2002 IEEE. All rights reserved. 217

IEEE
Std 1076-2002 IEEE STANDARD VHDL
architecture_statement_part ::= [§ 1.2.2]
{ concurrent_statement }

array_type_definition ::= [§ 3.2.1]
unconstrained_array_definition | constrained_array_definition

assertion ::= [§ 8.2]
assert condition

[report expression]
[severity expression]

assertion_statement ::= [label :] assertion ; [§ 8.2]

association_element ::= [§ 4.3.2.2]
[formal_part =>] actual_part

association_list ::= [§ 4.3.2.2]
association_element { , association_element }

attribute_declaration ::= [§ 4.4]
attribute identifier : type_mark ;

attribute_designator ::= attribute_simple_name [§ 6.6]

attribute_name ::= [§ 6.6]
prefix [signature] ' attribute_designator [(expression)]

attribute_specification ::= [§ 5.1]
attribute attribute_designator of entity_specification is expression ;

base ::= integer [§ 13.4.2]

base_specifier ::= B | O | X [§ 13.7]

based_integer ::= [§ 13.4.2]
extended_digit { [underline] extended_digit }

based_literal ::= [§ 13.4.2]
base # based_integer [. based_integer] # [exponent]

basic_character ::= [§ 13.1]
basic_graphic_character | format_effector

basic_graphic_character ::= [§ 13.1]
upper_case_letter | digit | special_character| space_character

basic_identifier ::= letter { [underline] letter_or_digit } [§ 13.3.1]

binding_indication ::= [§ 5.2.1]
[use entity_aspect]
[generic_map_aspect]
[port_map_aspect]

bit_string_literal ::= base_specifier " [bit_value] " [§ 13.7]
218 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
bit_value ::= extended_digit { [underline] extended_digit } [§ 13.7]

block_configuration ::= [§ 1.3.1]
for block_specification

{ use_clause }
{ configuration_item }

end for ;

block_declarative_item ::= [§ 1.2.1]
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| configuration_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

block_declarative_part ::= [§ 9.1]
{ block_declarative_item }

block_header ::= [§ 9.1]
[generic_clause
[generic_map_aspect ;]]
[port_clause
[port_map_aspect ;]]

block_specification ::= [§ 1.3.1]
 architecture_name
| block_statement_label
| generate_statement_label [(index_specification)]

block_statement ::= [§ 9.1]
block_label :

block [(guard_expression)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block [block_label] ;

block_statement_part ::= [§ 9.1]
{ concurrent_statement }
Copyright © 2002 IEEE. All rights reserved. 219

IEEE
Std 1076-2002 IEEE STANDARD VHDL
case_statement ::= [§ 8.8]
[case_label :]

case expression is
case_statement_alternative
{ case_statement_alternative }

end case [case_label] ;

case_statement_alternative ::= [§ 8.8]
when choices =>

sequence_of_statements

character_literal ::= ' graphic_character ' [§ 13.5]

choice ::= [§ 7.3.2]
 simple_expression
| discrete_range
| element_simple_name
| others

choices ::= choice { | choice } [§ 7.3.2]

component_configuration ::= [§ 1.3.2]
for component_specification

[binding_indication ;]
[block_configuration]

end for ;

component_declaration ::= [§ 4.5]
component identifier [is]

[local_generic_clause]
[local_port_clause]

end component [component_simple_name] ;

component_instantiation_statement ::= [§ 9.6]
instantiation_label :

instantiated_unit
[generic_map_aspect]
[port_map_aspect] ;

component_specification ::= [§ 5.2]
instantiation_list : component_name

composite_type_definition ::= [§ 3.2]
 array_type_definition
| record_type_definition

concurrent_assertion_statement ::= [§ 9.4]
[label :] [postponed] assertion ;

concurrent_procedure_call_statement ::= [§ 9.3]
[label :] [postponed] procedure_call ;
220 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
concurrent_signal_assignment_statement ::= [§ 9.5]
 [label :] [postponed] conditional_signal_assignment
| [label :] [postponed] selected_signal_assignment

concurrent_statement ::= [§ 9]
 block_statement
| process_statement
| concurrent_procedure_call_statement
| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

condition ::= boolean_expression [§ 8.1]

condition_clause ::= until condition [§ 8.1]

conditional_signal_assignment ::= [§ 9.5.1]
target <= options conditional_waveforms ;

conditional_waveforms ::= [§ 9.5.1]
{ waveform when condition else }
 waveform [when condition]

configuration_declaration ::= [§ 1.3]
configuration identifier of entity_name is

configuration_declarative_part
block_configuration

end [configuration] [configuration_simple_name] ;

configuration_declarative_item ::= [§ 1.3]
 use_clause
| attribute_specification
| group_declaration

configuration_declarative_part ::= [§ 1.3]
{ configuration_declarative_item }

configuration_item ::= [§ 1.3.1]
 block_configuration
| component_configuration

configuration_specification ::= [§ 5.2]
for component_specification binding_indication ;

constant_declaration ::= [§ 4.3.1.1]
constant identifier_list : subtype_indication [:= expression] ;

constrained_array_definition ::= [§ 3.2.1]
array index_constraint of element_subtype_indication

constraint ::= [§ 4.2]
 range_constraint
| index_constraint
Copyright © 2002 IEEE. All rights reserved. 221

IEEE
Std 1076-2002 IEEE STANDARD VHDL
context_clause ::= { context_item } [§ 11.3]

context_item ::= [§ 11.3]
 library_clause
| use_clause

decimal_literal ::= integer [. integer] [exponent] [§ 13.4.1]

declaration ::= [§ 4]
 type_declaration
| subtype_declaration
| object_declaration
| interface_declaration
| alias_declaration
| attribute_declaration
| component_declaration
| group_template_declaration
| group_declaration
| entity_declaration
| configuration_declaration
| subprogram_declaration
| package_declaration
| primary_unit
| architecture_body

delay_mechanism ::= [§ 8.4]
 transport

| [reject time_expression] inertial

design_file ::= design_unit { design_unit } [§ 11.1]

design_unit ::= context_clause library_unit [§ 11.1]

designator ::= identifier | operator_symbol [§ 2.1]

direction ::= to | downto [§ 3.1]

disconnection_specification ::= [§ 5.3]
disconnect guarded_signal_specification after time_expression ;

discrete_range ::= discrete_subtype_indication | range [§ 3.2.1]

element_association ::= [§ 7.3.2]
[choices =>] expression

element_declaration ::= [§ 3.2.2]
identifier_list : element_subtype_definition ;

element_subtype_definition ::= subtype_indication [§ 3.2.2]

entity_aspect ::= [§ 5.2.1.1]
 entity entity_name [(architecture_identifier)]
| configuration configuration_name
| open
222 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
entity_class ::= [§ 5.1]
 entity | architecture | configuration
| procedure | function | package
| type | subtype | constant
| signal | variable | component
| label | literal | units

entity_class_entry ::= entity_class [<>] [§ 4.6]

entity_class_entry_list ::= [§ 4.6]
entity_class_entry { , entity_class_entry }

entity_declaration ::= [§ 1.1]
entity identifier is

entity_header
entity_declarative_part

 [begin
entity_statement_part]

end [entity] [entity_simple_name] ;

entity_declarative_item ::= [§ 1.1.2]
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

entity_declarative_part ::= [§ 1.1.2]
{ entity_declarative_item }

entity_designator ::= entity_tag [signature] [§ 5.1]

entity_header ::= [§ 1.1.1]
[formal_generic_clause]
[formal_port_clause]

entity_name_list ::= [§ 5.1]
 entity_designator { , entity_designator }
| others
| all

entity_specification ::= [§ 5.1]
entity_name_list : entity_class
Copyright © 2002 IEEE. All rights reserved. 223

IEEE
Std 1076-2002 IEEE STANDARD VHDL
entity_statement ::= [§ 1.1.3]
 concurrent_assertion_statement
| passive_concurrent_procedure_call
| passive_process_statement

entity_statement_part ::= [§ 1.1.3]
{ entity_statement }

entity_tag ::= simple_name | character_literal | operator_symbol [§ 5.1]

enumeration_literal ::= identifier | character_literal [§ 3.1.1]

enumeration_type_definition ::= [§ 3.1.1]
(enumeration_literal { , enumeration_literal })

exit_statement ::= [§ 8.11]
[label :] exit [loop_label] [when condition] ;

exponent ::= E [+] integer | E – integer [§ 13.4.1]

expression ::= [§ 7.1]
 relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| relation { xnor relation }

extended_digit ::= digit | letter [§ 13.4.2]

extended_identifier ::= \ graphic_character { graphic_character } \ [§ 13.3.2]

factor ::= [§ 7.1]
 primary [** primary]
| abs primary
| not primary

file_declaration ::= [§ 4.3.1.4]
file identifier_list : subtype_indication [file_open_information] ;

file_logical_name ::= string_expression [§ 4.3.1.4]

file_open_information ::= [§ 4.3.1.4]
[open file_open_kind_expression] is file_logical_name

file_type_definition ::= [§ 3.4]
file of type_mark

floating_type_definition ::= range_constraint [§ 3.1.4]

formal_designator ::= [§ 4.3.2.2]
 generic_name
| port_name
| parameter_name
224 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
formal_parameter_list ::= parameter_interface_list [§ 2.1.1]

formal_part ::= [§ 4.3.2.2]
 formal_designator
| function_name (formal_designator)
| type_mark (formal_designator)

full_type_declaration ::= [§ 4.1]
type identifier is type_definition ;

function_call ::= [§ 7.3.3]
function_name [(actual_parameter_part)]

generate_statement ::= [§ 9.7]
generate_label :

generation_scheme generate
 [{ block_declarative_item }
begin]
 { concurrent_statement }
end generate [generate_label] ;

generation_scheme ::= [§ 9.7]
 for generate_parameter_specification
| if condition

generic_clause ::= [§ 1.1.1]
generic (generic_list) ;

generic_list ::= generic_interface_list [§ 1.1.1.1]

generic_map_aspect ::= [§ 5.2.1.2]
generic map (generic_association_list)

graphic_character ::= [§ 13.1]
basic_graphic_character | lower_case_letter | other_special_character

group_constituent ::= name | character_literal [§ 4.7]

group_constituent_list ::= group_constituent { , group_constituent } [§ 4.7]

group_declaration ::= [§ 4.7]
group identifier : group_template_name (group_constituent_list) ;

group_template_declaration ::= [§ 4.6]
group identifier is (entity_class_entry_list) ;

guarded_signal_specification ::= [§ 5.3]
guarded_signal_list : type_mark

identifier ::= basic_identifier | extended_identifier [§ 13.3]

identifier_list ::= identifier { , identifier } [§ 3.2.2]
Copyright © 2002 IEEE. All rights reserved. 225

IEEE
Std 1076-2002 IEEE STANDARD VHDL
if_statement ::= [§ 8.7]
[if_label :]

if condition then
 sequence_of_statements
{ elsif condition then
 sequence_of_statements }
[else

sequence_of_statements]
end if [if_label] ;

incomplete_type_declaration ::= type identifier ; [§ 3.3.1]

index_constraint ::= (discrete_range { , discrete_range }) [§ 3.2.1]

index_specification ::= [§ 1.3.1]
 discrete_range
| static_expression

index_subtype_definition ::= type_mark range <> [§ 3.2.1]

indexed_name ::= prefix (expression { , expression }) [§ 6.4]

instantiated_unit ::= [§ 9.6]
 [component] component_name
| entity entity_name [(architecture_identifier)]
| configuration configuration_name

instantiation_list ::= [§ 5.2]
 instantiation_label { , instantiation_label }
| others
| all

integer ::= digit { [underline] digit } [§ 13.4.1]

integer_type_definition ::= range_constraint [§ 3.1.2]

interface_constant_declaration ::= [§ 4.3.2]
[constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_declaration ::= [§ 4.3.2]
 interface_constant_declaration
| interface_signal_declaration
| interface_variable_declaration
| interface_file_declaration

interface_element ::= interface_declaration [§ 4.3.2.1]

interface_file_declaration ::= [§ 4.3.2]
file identifier_list : subtype_indication

interface_list ::= [§ 4.3.2.1]
interface_element { ; interface_element }
226 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
interface_signal_declaration ::= [§ 4.3.2]
[signal] identifier_list : [mode] subtype_indication [bus] [:= static_expression]

interface_variable_declaration ::= [§ 4.3.2]
[variable] identifier_list : [mode] subtype_indication [:= static_expression]

iteration_scheme ::= [§ 8.9]
 while condition
| for loop_parameter_specification

label ::= identifier [§ 9.7]

letter ::= upper_case_letter | lower_case_letter [§ 13.3.1]

letter_or_digit ::= letter | digit [§ 13.3.1]

library_clause ::= library logical_name_list ; [§ 11.2]

library_unit ::= [§ 11.1]
 primary_unit
| secondary_unit

literal ::= [§ 7.3.1]
 numeric_literal
| enumeration_literal
| string_literal
| bit_string_literal
| null

logical_name ::= identifier [§ 11.2]

logical_name_list ::= logical_name { , logical_name } [§ 11.2]

logical_operator ::= and | or | nand | nor | xor | xnor [§ 7.2]

loop_statement ::= [§ 8.9]
[loop_label :]

[iteration_scheme] loop
 sequence_of_statements
end loop [loop_label] ;

miscellaneous_operator ::= ** | abs | not [§ 7.2]

mode ::= in | out | inout | buffer | linkage [§ 4.3.2]

multiplying_operator ::= * | / | mod | rem [§ 7.2]

name ::= [§ 6.1]
 simple_name
| operator_symbol
| selected_name
| indexed_name
| slice_name
| attribute_name
Copyright © 2002 IEEE. All rights reserved. 227

IEEE
Std 1076-2002 IEEE STANDARD VHDL
next_statement ::= [§ 8.10]
[label :] next [loop_label] [when condition] ;

null_statement ::= [label :] null ; [§ 8.13]

numeric_literal ::= [§ 7.3.1]
 abstract_literal
| physical_literal

object_declaration ::= [§ 4.3.1]
 constant_declaration
| signal_declaration
| variable_declaration
| file_declaration

operator_symbol ::= string_literal [§ 2.1]

options ::= [guarded] [delay_mechanism] [§ 9.5]

package_body ::= [§ 2.6]
package body package_simple_name is

package_body_declarative_part
end [package body] [package_simple_name] ;

package_body_declarative_item ::= [§ 2.6]
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| use_clause
| group_template_declaration
| group_declaration

package_body_declarative_part ::= [§ 2.6]
{ package_body_declarative_item }

package_declaration ::= [§ 2.5]
package identifier is

package_declarative_part
end [package] [package_simple_name] ;
228 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
package_declarative_item ::= [§ 2.5]
 subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

package_declarative_part ::= [§ 2.5]
{ package_declarative_item }

parameter_specification ::= [§ 8.9]
identifier in discrete_range

physical_literal ::= [abstract_literal] unit_name [§ 3.1.3]

physical_type_definition ::= [§ 3.1.3]
range_constraint

units
primary_unit_declaration
{ secondary_unit_declaration }

end units [physical_type_simple_name]

port_clause ::= [§ 1.1.1]
port (port_list) ;

port_list ::= port_interface_list [§ 1.1.1.2]

port_map_aspect ::= [§ 5.2.1.2]
port map (port_association_list)

prefix ::= [§ 6.1]
 name
| function_call

primary ::= [§ 7.1]
 name
| literal
| aggregate
| function_call
| qualified_expression
| type_conversion
| allocator
| (expression)
Copyright © 2002 IEEE. All rights reserved. 229

IEEE
Std 1076-2002 IEEE STANDARD VHDL
primary_unit ::= [§ 11.1]
 entity_declaration
| configuration_declaration
| package_declaration

primary_unit_declaration ::= identifier ; [§ 3.1.3]

procedure_call ::= procedure_name [(actual_parameter_part)] [§ 8.6]

procedure_call_statement ::= [label :] procedure_call ; [§ 8.6]

process_declarative_item ::= [§ 9.2]
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

process_declarative_part ::= [§ 9.2]
{ process_declarative_item }

process_statement ::= [§ 9.2]
[process_label :]

[postponed] process [(sensitivity_list)] [is]
 process_declarative_part
begin
 process_statement_part
end [postponed] process [process_label] ;

process_statement_part ::= [§ 9.2]
{ sequential_statement }

protected_type_body ::= [§ 3.5.2]
protected body

protected_type_body_declarative_part
end protected body [protected_type_simple name]
230 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
protected_type_body_declarative_item ::= [§ 3.5.2]
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

protected_type_body_declarative_part ::= [§ 3.5.2]
{ protected_type_body_declarative_item }

protected_type_declaration ::= [§ 3.5.1]
protected

protected_type_declarative_part
end protected [protected_type_simple_name]

protected_type_declarative_item ::= [§ 3.5.1]
 subprogram_specification
| attribute_specification
| use_clause

protected_type_declarative_part ::= [§ 3.5.1]
{ protected_type_declarative_item }

protected_type_definition ::= [§ 3.5]
 protected_type_declaration
| protected_type_body

qualified_expression ::= [§ 7.3.4]
 type_mark ' (expression)
| type_mark ' aggregate

range ::= [§ 3.1]
 range_attribute_name
| simple_expression direction simple_expression

range_constraint ::= range range [§ 3.1]

record_type_definition ::= [§ 3.2.2]
record

 element_declaration
{ element_declaration }

end record [record_type_simple_name]

relation ::= [§ 7.1]
shift_expression [relational_operator shift_expression]
Copyright © 2002 IEEE. All rights reserved. 231

IEEE
Std 1076-2002 IEEE STANDARD VHDL
relational_operator ::= = | /= | < | <= | > | >= [§ 7.2]

report_statement ::= [§ 8.3]
[label :]

report expression
[severity expression] ;

return_statement ::= [§ 8.12]
[label :] return [expression] ;

scalar_type_definition ::= [§ 3.1]
 enumeration_type_definition | integer_type_definition
| floating_type_definition | physical_type_definition

secondary_unit ::= [§ 11.1]
 architecture_body
| package_body

secondary_unit_declaration ::= identifier = physical_literal ; [§ 3.1.3]

selected_name ::= prefix . suffix [§ 6.3]

selected_signal_assignment ::= [§ 9.5.2]
with expression select

target <= options selected_waveforms ;

selected_waveforms ::= [§ 9.5.2]
{ waveform when choices , }
 waveform when choices

sensitivity_clause ::= on sensitivity_list [§ 8.1]

sensitivity_list ::= signal_name { , signal_name } [§ 8.1]

sequence_of_statements ::= [§ 8]
{ sequential_statement }

sequential_statement ::= [§ 8]
 wait_statement
| assertion_statement
| report_statement
| signal_assignment_statement
| variable_assignment_statement
| procedure_call_statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

shift_expression ::= [§ 7.1]
simple_expression [shift_operator simple_expression]
232 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
shift_operator ::= sll | srl | sla | sra | rol | ror [§ 7.2]

sign ::= + | – [§ 7.2]

signal_assignment_statement ::= [§ 8.4]
[label :] target <= [delay_mechanism] waveform ;

signal_declaration ::= [§ 4.3.1.2]
signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus [§ 4.3.1.2]

signal_list ::= [§ 5.3]
 signal_name { , signal_name }
| others
| all

signature ::= [[type_mark { , type_mark }] [return type_mark]] [§ 2.3.2]

simple_expression ::= [§ 7.1]
[sign] term { adding_operator term }

simple_name ::= identifier [§ 6.2]

slice_name ::= prefix (discrete_range) [§ 6.5]

string_literal ::= “{ graphic_character } “ " [§ 13.6]

subprogram_body ::= [§ 2.2]
subprogram_specification is

subprogram_declarative_part
begin

subprogram_statement_part
end [subprogram_kind] [designator] ;

subprogram_declaration ::= [§ 2.1]
subprogram_specification ;

subprogram_declarative_item ::= [§ 2.2]
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration
Copyright © 2002 IEEE. All rights reserved. 233

IEEE
Std 1076-2002 IEEE STANDARD VHDL
subprogram_declarative_part ::= [§ 2.2]
{ subprogram_declarative_item }

subprogram_kind ::= procedure | function [§ 2.2]

subprogram_specification ::= [§ 2.1]
 procedure designator [(formal_parameter_list)]

| [pure | impure] function designator [(formal_parameter_list)]
return type_mark

subprogram_statement_part ::= [§ 2.2]
{ sequential_statement }

subtype_declaration ::= [§ 4.2]
subtype identifier is subtype_indication ;

subtype_indication ::= [§ 4.2]
[resolution_function_name] type_mark [constraint]

suffix ::= [§ 6.3]
 simple_name
| character_literal
| operator_symbol
| all

target ::= [§ 8.4]
name

| aggregate

term ::= [§ 7.1]
factor { multiplying_operator factor }

timeout_clause ::= for time_expression [§ 8.1]

type_conversion ::= type_mark (expression) [§ 7.3.5]

type_declaration ::= [§ 4.1]
 full_type_declaration
| incomplete_type_declaration

type_definition ::= [§ 4.1]
 scalar_type_definition
| composite_type_definition
| access_type_definition
| file_type_definition
| protected_type_definition

type_mark ::= [§ 4.2]
 type_name
| subtype_name

unconstrained_array_definition ::= [§ 3.2.1]
array (index_subtype_definition { , index_subtype_definition })

of element_subtype_indication
234 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
use_clause ::= [§ 10.4]
use selected_name { , selected_name } ;

variable_assignment_statement ::= [§ 8.5]
[label :] target := expression ;

variable_declaration ::= [§ 4.3.1.3]
[shared] variable identifier_list : subtype_indication [:= expression] ;

wait_statement ::= [§ 8.1]
[label :] wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

waveform ::= [§ 8.4]
 waveform_element { , waveform_element }
| unaffected

waveform_element ::= [§ 8.4.1]
value_expression [after time_expression]

| null [after time_expression]
Copyright © 2002 IEEE. All rights reserved. 235

IEEE
Std 1076-2002 IEEE STANDARD VHDL
236 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ne this
of the

 clauses
 of the
ultiple

ject is

 object
lue can
 object

r the

ter, or

ed by
 named

et is then

access

tion of
Annex B

(informative)

Glossary

This glossary contains brief, informal descriptions for a number of terms and phrases used to defi
language. The complete, formal definition of each term or phrase is provided in the main body
standard.

For each entry, the relevant clause numbers in the text are given. Some descriptions refer to multiple
in which the single concept is discussed; for these, the clause number containing the definition
concept is given in italics. Other descriptions contain multiple clause numbers when they refer to m
concepts; for these, none of the clause numbers are italicized.

B.1 abstract literal: A literal of the universal_real abstract type or the universal_integer abstract type.
(§13.2, §13.4)

B.2 access mode: The mode in which a file object is opened, which can be either read-only or write-only.
The access mode depends on the value supplied to the Open_Kind parameter. (§3.4.1, §14.3)

B.3 access type: A type that provides access to an object of a given type. Access to such an ob
achieved by an access value returned by an allocator; the access value is said to designate the object.
(§3, §3.3)

B.4 access value: A value of an access type. This value is returned by an allocator and designates an
(which must be a variable) of a given type. A null access value designates no object. An access va
only designate an object created by an allocator; it cannot designate an object declared by an
declaration. (§3, §3.3)

B.5 active driver: A driver that acquires a new value during a simulation cycle regardless of whethe
new value is different from the previous value. (§12.6.2, §12.6.4)

B.6 actual: An expression, a port, a signal, or a variable associated with a formal port, formal parame
formal generic. (§1.1.1.1, §1.1.1.2, §3.2.1.1, §4.3.1.2, §4.3.2.2, §5.2.1, §5.2.1.2)

B.7 aggregate: (A) The kind of expression, denoting a value of a composite type. The value is specifi
giving the value of each of the elements of the composite type. Either a positional association or a
association must be used to indicate which value is associated with which element. (B) A kind of target of a
variable assignment statement or signal assignment statement assigning a composite value. The targ
said to be in the form of an aggregate. (§7.3.1, §7.3.2. §7.3.4, §7.3.5, §7.5.2)

B.8 alias: An alternate name for a named entity. (§4.3.3)

B.9 allocator: An operation used to create anonymous, variable objects accessible by means of
values. (§3.3, §7.3.6)

B.10 analysis: The syntactic and semantic analysis of source code in a VHDL design file and the inser
intermediate form representations of design units into a design library. (§11.1, §11.2, §11.4)
Copyright © 2002 IEEE. All rights reserved. 237

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 of a
nymous.

ered,

ation
tructure

hence,
 or by a
nd must

ins the
§3.1.1,

tes to

ent

with
ociation

iation

2)

meter

d for
 always

r the

as a
B.11 anonymous: The undefined simple name of an item, which is created implicitly. The base type
numeric type or an array type is anonymous; similarly, the object denoted by an access value is ano
(§4.1)

B.12 appropriate: A prefix is said to be appropriate for a type if the type of the prefix is the type consid
or if the type of the prefix is an access type whose designated type is the type considered. (§6.1)

B.13 architecture body: A body associated with an entity declaration to describe the internal organiz
or operation of a design entity. An architecture body is used to describe the behavior, data flow, or s
of a design entity. (§1, §1.2)

B.14 array object: An object of an array type. (§3)

B.15 array type: A type, the value of which consists of elements that are all of the same subtype (and
of the same type). Each element is uniquely distinguished by an index (for a one-dimensional array)
sequence of indexes (for a multidimensional array). Each index must be a value of a discrete type a
lie in the correct index range. (§3.2.1)

B.16 ascending range: A range L to R. (§3.1)

B.17 ASCII: The American Standard Code for Information Interchange. The package Standard conta
definition of the type character, the first 128 values of which represent the ASCII character set. (
§14.2)

B.18 assertion violation: A violation that occurs when the condition of an assertion statement evalua
false. (§8.2)

B.19 associated driver: The single driver for a signal in the (explicit or equivalent) process statem
containing the signal assignment statement. (§12.6.1)

B.20 associated individually: A property of a formal port, generic, or parameter of a composite type
respect to some association list. A composite formal whose association is defined by multiple ass
elements in a single association list is said to be associated individually in that list. The formats of such
association elements must denote non-overlapping subelements or slices of the formal. (§4.3.2.2)

B.21 associated in whole: When a single association element of a composite formal supplies the assoc
for the entire formal. (§4.3.2.2)

B.22 association element: An element that associates an actual or local with a local or formal. (§4.3.2.

B.23 association list: A list that establishes correspondences between formal or local port or para
names and local or actual names or expressions. (§4.3.2.2)

B.24 attribute: A definition of some characteristic of a named entity. Some attributes are predefine
types, ranges, values, signals, and functions. The remaining attributes are user defined and are
constants. (§4.4)

B.25 augmentation set: A set of characteristic expressions, each corresponding to some quantity o
scalar subelement thereof, used to determine an analog solution point. (§12.6.5)

B.26 base specifier: A lexical element that indicates whether a bit string literal is to be interpreted
binary, octal, or hexadecimal value. (§13.7)
238 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

n as a
 type of

type. If
 subtype,

se is

nator

tring

d to
wer

nce of

on (")
context.

k or an

ccess to

erent
B.27 base type: The type from which a subtype defines a subset of possible values, otherwise know
constraint. This subset is not required to be proper. The base type of a type is the type itself. The base
a subtype is found by recursively examining the type mark in the subtype indication defining the sub
the type mark denotes a type, that type is the base type of the subtype; otherwise, the type mark is a
and this procedure is repeated on that subtype. (§3) See also: subtype.

B.28 based literal: An abstract literal expressed in a form that specifies the base explicitly. The ba
restricted to the range 2 to 16. (§13.4.2)

B.29 basic operation: An operation that is inherent in one of the following:

— An assignment (in an assignment statement or initialization)

— An allocator

— A selected name, an indexed name, or a slice name

— A qualification (in a qualified expression), an explicit type conversion, a formal or actual desig
in the form of a type conversion, or an implicit type conversion of a value of type universal_integer
or universal_real to the corresponding value of another numeric type, or

— A numeric literal (for a universal type), the literal null (for an access type), a string literal, a bit s
literal, an aggregate, or a predefined attribute. (§3)

B.30 basic signal: A signal that determines the driving values for all other signals. A basic signal is

— Either a scalar signal or a resolved signal

— Not a subelement of a resolved signal

— Not an implicit signal of the form S'Stable(T), S'Quiet(T), or S'Transaction, and

— Not an implicit signal GUARD. (§12.6.2)

B.31 belong (A) (to a range): A property of a value with respect to some range. The value V is sai
belong to a range if the relations (lower bound <= V) and (V <= upper bound) are both true, where lo
bound and upper bound are the lower and upper bounds, respectively, of the range. (§3.1, §3.2.1) (B) (to a
subtype): A property of a value with respect to some subtype. A value is said to belong to a subtype of a
given type if it belongs to the type and satisfies the applicable constraint. (§3, §3.2.1)

B.32 binding: The process of associating a design entity and, optionally, an architecture with an insta
a component. A binding can be specified in an explicit or a default binding indication. (§1.3, §5.2.1, §5.2.2,
§12.3.2.2, §12.4.3)

B.33 bit string literal: A literal formed by a sequence of extended digits enclosed between two quotati
characters and preceded by a base specifier. The type of a bit string literal is determined from the
(§7.3.1, §13.7)

B.34 block:

a) The representation of a portion of the hierarchy of a design. A block is either an external bloc
internal block. (§1, §1.1.1.1, §1.1.1.2, §1.2.1, §1.3, §1.3.1, §1.3.2)

b) The act of suspending the execution of a process for the purposes of guaranteeing exclusive a
either a file object or an object of a protected type. (§3.4.1, §12.5)

B.35 bound: A label that is identified in the instantiation list of a configuration specification. (§5.2)

B.36 box: The symbol <> in an index subtype definition, which stands for an undefined range. Diff
objects of the type need not have the same bounds and direction. (§3.2.1)
Copyright © 2002 IEEE. All rights reserved. 239

IEEE
Std 1076-2002 IEEE STANDARD VHDL

k
.1.1.2,

turned

yed”
)

f the
rophe (')

iteral.

td

rray
 closely
etween

when
ration

ed in

:

rder.

esign

inor
ponding
rly for

 the

 also be
B.37 buffer: One possible port mode. A port of mode buffer contributes its driving value to the networ
containing the port; the design entity containing the port is also allowed to read its driving value. (§1
§4.3.2)

B.38 bus: One kind of guarded signal. A bus floats to a user-specified value when all of its drivers are
off. (§4.3.1.2, §4.3.2)

B.39 change: The signal S, of type T, is said to change value if and only if the expression “S = S’Dela
evaluates to False, where the "=" operator in the expression is the predefined "=" on type T. (§12.6.2

B.40 character literal: A literal of the character type. Character literals are formed by enclosing one o
graphic characters (including the space and nonbreaking space characters) between two apost
characters. (§13.2, §13.5)

B.41 character type: An enumeration type with at least one of its enumeration literals as a character l
(§3.1.1, §3.1.1.1)

B.42 chosen implementation: An implementation of floating-point types that conforms to either IEEE S
754-1985 or to IEEE Std 854-1987 and with a minimum representation size of 64 bits. (§3.1.4)

B.43 closely related types: Two type marks that denote the same type or two numeric types. Two a
types are closely related if they have the same dimensionality, if their index types at each position are
related, and if the array types have the same element types. Explicit type conversion is only allowed b
closely related types. (§7.3.5)

B.44 complete: A loop that has finished executing. Similarly, an iteration scheme of a loop is complete
the condition of a while iteration scheme is FALSE or all of the values of the discrete range of a for ite
scheme have been assigned to the iteration parameter. (§8.9)

B.45 complete context: A declaration, a specification, or a statement; complete contexts are us
overload resolution. (§10.5)

B.46 composite type: A type whose values have elements. There are two classes of composite typesarray
types and record types. (§3, §3.2)

B.47 concurrent statement: A statement that executes asynchronously, with no defined relative o
Concurrent statements are used for dataflow and structural descriptions. (§9)

B.48 configuration: A construct that defines how component instances in a given block are bound to d
entities in order to describe how design entities are put together to form a complete design. (§1, §1.3. §5.2)

B.49 conform: Two subprogram specifications, are said to conform if, apart from certain allowed m
variations, both specifications are formed by the same sequence of lexical elements, and corres
lexical elements are given the same meaning by the visibility rules. Conformance is defined simila
deferred constant declarations. (§2.7)

B.50 connected: A formal port associated with an actual port or signal. A formal port associated with
reserved word open is said to be unconnected. (§1.1.1.2)

B.51 constant: An object whose value cannot be changed. Constants are either explicitly declared, subele-
ments of explicitly declared constants, or interface constants. Constants declared in packages can
deferred constants. (§4.3.1.1)
240 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

e that

face

rameter.
e of the
type of

some

 is not

 within

ral is
3.4.1)

r nota-

r to the

clara-
(usually

rative
here is

of that

rface
d their

n in a
ody to

ame
tponed
B.52 constraint: A subset of the values of a type. The set of possible values for an object of a given typ
can be subjected to a condition is called a constraint. A value is said to satisfy the constraint if it satisfies the
corresponding condition. There are index constraints and range constraints. (§3)

B.53 conversion function: A function used to convert values flowing through associations. For inter
objects of mode in, conversion functions are allowed only on actuals. For interface objects of mode out or
buffer, conversion functions are allowed only on formals. For interface objects of mode inout or linkage,
conversion functions are allowed on both formals and actuals. Conversion functions have a single pa
A conversion function associated with an actual accepts the type of the actual and returns the typ
formal. A conversion function associated with a formal accepts the type of the formal and returns the
the actual. (§4.3.2.2)

B.54 convertible: A property of an operand with respect to some type. An operand is convertible to
type if there exists an implicit conversion to that type. (§7.3.5)

B.55 current value: The value component of the single transaction of a driver whose time component
greater than the current simulation time. (§12.6, §12.6.1, §12.6.2. §12.6.3)

B.56 cycle pure: An expression is cycle pure if its value does not change when evaluated, repeatedly,
a given analog solution point with identical values for all its quantities. (§12.6, §12.6.1, §12.6.2. §12.6.3)

B.57 decimal literal: An abstract literal that is expressed in decimal notation. The base of the lite
implicitly 10. The literal may optionally contain an exponent or a decimal point and fractional part. (§1

B.58 declaration: A construct that defines a declared entity and associates an identifier (or some othe
tion) with it. This association is in effect within a region of text that is called the scope of the declaration.
Within the scope of a declaration, there are places where it is possible to use the identifier to refe
associated declared entity; at such places, the identifier is said to be the simple name of the named entity. The
simple name is said to denote the associated named entity. (§4)

B.59 declarative part: A syntactic component of certain declarations or statements (such as entity de
tions, architecture bodies, and block statements). The declarative part defines the lexical area
introduced by a reserved word such as is and terminated with another reserved word such as begin) within
which declarations may occur. (§1.1.2, §1.2.1, §1.3, §2.6, §9.1, §9.2, §9.6.1, §9.6.2)

B.60 declarative region: A semantic component of certain declarations or statements. Certain decla
regions include disjoint parts; for example, the declarative region of a package declaration, which, if t
an associated pacakge body, extends to the end of that package body. (§10.1)

B.61 decorate: To associate a user-defined attribute with a named entity and to define the value
attribute. (§5.1)

B.62 default expression: A default value that is used for a formal generic, port, or parameter if the inte
object is unassociated. A default expression is also used to provide an initial value for signals an
drivers. (§4.3.1.2, §4.3.2.2)

B.63 deferred constant: A constant that is declared without an assignment symbol (:=) and expressio
package declaration. A corresponding full declaration of the constant must exist in the package b
define the value of the constant. (§4.3.1.1)

B.64 delta cycle: A simulation cycle in which the simulation time at the beginning of the cycle is the s
as at the end of the cycle. That is, simulation time is not advanced in a delta cycle. Only nonpos
processes can be executed during a delta cycle. (§12.6.4)
Copyright © 2002 IEEE. All rights reserved. 241

IEEE
Std 1076-2002 IEEE STANDARD VHDL

enti-

s

of an
nal
 other

sign
nterface

mposi-
hat may

lyzed

esign
aration,

value is

tion of

ccess

hich
s to be
 actual
formal).
associ-
at
ned

he entity
f a

ible
curring
clause.
B.65 denote: A property of the identifier given in a declaration. Where the declaration is visible, the id
fier given in the declaration is said to denote the named entity declared in the declaration. (§4)

B.66 depend: (A) (on a library unit): A design unit that explicitly or implicitly mentions other library unit
in a use clause. These dependencies affect the allowed order of analysis of design units. (§11.4) (B) (on a
signal value): A property of an implicit signal with respect to some other signal. The current value
implicit signal R is said to depend on the current value of another signal S if R denotes an implicit sig
S'Stable(T), S'Quiet(T), or S'Transaction, or if R denotes an implicit GUARD signal and S is any
implicit signal named within the guard expression that defines the current value of R. (§12.6.3)

B.67 descending range: A range L downto R. (§3.1)

B.68 design entity: An entity declaration together with an associated architecture body. Different de
entities may share the same entity declaration, thus describing different components with the same i
or different views of the same component. (§1)

B.69 design file: One or more design units in sequence. (§11.1)

B.70 design hierarchy: The complete representation of a design that results from the successive deco
tion of a design entity into subcomponents and binding of those components to other design entities t
be decomposed in a similar manner. (§1)

B.71 design library: A host-dependent storage facility for intermediate-form representations of ana
design units. (§11.2)

B.72 design unit: A construct that can be independently analyzed and stored in a design library. A d
unit is either an entity declaration, an architecture body, a configuration declaration, a package decl
or a package body declaration. (§11.1)

B.73 designate: A property of access values that relates the value to some object when the access
nonnull. A nonnull access value is said to designate an object. (§3.3)

B.74 designated type: For an access type, the base type of the subtype defined by the subtype indica
the access type definition. (§3.3)

B.75 designated subtype: For an access type, the subtype defined by the subtype indication of the a
type definition. (§3.3)

B.76 designator: (A) Syntax that forms part of an association element. A formal designator specifies w
formal parameter, port, or generic (or which subelement or slice of a parameter, port, or generic) i
associated with an actual by the given association element. An actual designator specifies which
expression, signal, or variable is to be associated with a formal (or subelement or subelements of a
An actual designator may also specify that the formal in the given association element is to be left un
ated (with an actual designator of open). (§4.3.2.2) (B) An identifier, character literal, or operator symbol th
defines an alias for some other name. (§4.3.3) (C) A simple name that denotes a predefined or user-defi
attribute in an attribute name, or a user-defined attribute in an attribute specification. (§5.1, §6.6) (D) A simple
name, character literal, or operator symbol, and possibly a signature, that denotes a named entity in t
name list of an attribute specification. (§5.1) (E) An identifier or operator symbol that defines the name o
subprogram. (§2.1)

B.77 directly visible: A visible declaration that is not visible by selection. A declaration is directly vis
within its immediate scope, excluding any places where the declaration is hidden. A declaration oc
immediately within the visible part of a package can be made directly visible by means of a use
(§10.3, §10.4) See also: visible.
242 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

sition

ion of
iver for

sion.

of its

nt in
A given
. Thus,
ce. (

or a

f the

analy-
causes

ith its

, and
s are
escribed

nits in
B.78 discrete array: A one-dimensional array whose elements are of a discrete type. (§7.2.3)

B.79 discrete range: A range whose bounds are of a discrete type. (§3.2.1, §3.2.1.1)

B.80 discrete type: An enumeration type or an integer type. Each value of a discrete type has a po
number that is an integer value. Indexing and iteration rules use values of discrete types. (§3.1)

B.81 driver: A container for a projected output waveform of a signal. The value of the signal is a funct
the current values of its drivers. Each process that assigns to a given signal implicitly contains a dr
that signal. A signal assignment statement affects only the associated driver(s). (§12.4.4, §12.6.1, §12.6.2,
§12.6.3)

B.82 driving value: The value a signal provides as a source of other signals. (§12.6.2)

B.83 effective value: The value obtained by evaluating a reference to the signal within an expres
(§12.6.2)

B.84 elaboration: The process by which a declaration achieves its effect. Prior to the completion
elaboration (including before the elaboration), a declaration is not yet elaborated. (§12)

B.85 element: A constituent of a composite type. (§3) See also: subelement.

B.86 entity declaration: A definition of the interface between a given design entity and the environme
which it is used. It may also specify declarations and statements that are part of the design entity.
entity declaration may be shared by many design entities, each of which has a different architecture
an entity declaration can potentially represent a class of design entities, each with the same interfa§1,
§1.1)

B.87 enumeration literal: A literal of an enumeration type. An enumeration literal is either an identifier
character literal. (§3.1.1, §7.3.1)

B.88 enumeration type: A type whose values are defined by listing (enumerating) them. The values o
type are represented by enumeration literals. (§3.1, §3.1.1)

B.89 erroneous: An error condition that cannot always be detected. (§2.1.1.1, §2.2)

B.90 error: A condition that makes the source description illegal. If an error is detected at the time of
sis of a design unit, it prevents the creation of a library unit for the given design unit. A run-time error
simulation to terminate. (§11.4)

B.91 event: A change in the current value of a signal, which occurs when the signal is updated w
effective value. (§12.6.2)

B.92 execute: (A) When first the design hierarchy of a model is elaborated, then its nets are initialized
finally simulation proceeds with repetitive execution of the simulation cycle, during which processe
executed and nets are updated. (B) When a process performs the actions specified by the algorithm d
in its statement part. (§12, §12.6)

B.93 expanded name: A selected name (in the syntactic sense) that denotes one or all of the primary u
a library or any named entity within a primary unit. (§6.3, §8.1) See also: selected name.
Copyright © 2002 IEEE. All rights reserved. 243

IEEE
Std 1076-2002 IEEE STANDARD VHDL

utes
the
t ances-
utes

an

IET,
heir
 signal.

tion.

. An
a

ative
e
on (and
ing body

ent in

e. File
t is the

senta-

ack-
ation

lemen-
a foreign

ter of

s that
s a type
B.94 explicit ancestor: The parent of the implicit signal that is defined by the predefined attrib
'DELAYED, 'QUIET, 'STABLE, or 'TRANSACTION. It is determined using the prefix of the attribute. If
prefix denotes an explicit signal or a slice or subelement (or member thereof), then that is the explici
tor of the implicit signal. If the prefix is one of the implicit signals defined by the predefined attrib
'DELAYED, 'QUIET, 'STABLE, or 'TRANSACTION, this rule is applied recursively. If the prefix is
implicit signal GUARD, the signal has no explicit ancestor. (§2.2)

B.95 explicit signal: A signal, other than those defined by the predefined attributes 'DELAYED, 'QU
'STABLE, or 'TRANSACTION, any implicit signal GUARD, or their slices, subelements, or slices of t
subelements. A slice, subelement, or a slice of a subelement of an explicit signal is also an explicit
(§2.2)

B.96 explicitly declared constant: A constant of a specified type that is declared by a constant declara
(§4.3.1.1)

B.97 explicitly declared object: An object of a specified type that is declared by an object declaration
object declaration is called a single-object declaration if its identifier list has a single identifier; it is called
multiple-object declaration if the identifier list has two or more identifiers. (§4.3, §4.3.1) See also:
implicitly declared object.

B.98 expression: A formula that defines the computation of a value. (§7.1)

B.99 extend: A property of source text forming a declarative region with disjoint parts. In a declar
region with disjoint parts, if a portion of text is said to extend from some specific point of a declarativ
region to the end of the region, then this portion is the corresponding subset of the declarative regi
does not include intermediate declarative items between an interface declaration and a correspond
declaration). (§10.1)

B.100 extended digit: A lexical element that is either a digit or a letter. (§13.4.2)

B.101 external block: A top-level design entity that resides in a library and may be used as a compon
other designs. (§1)

B.102 file type: A type that provides access to objects containing a sequence of values of a given typ
types are typically used to access files in the host system environment. The value of a file objec
sequence of values contained in the host system file. (§3, §3.4)

B.103 floating point types: A discrete scalar type whose values approximate real numbers. The repre
tion of a floating point type includes a minimum of six decimal digits of precision. (§3.1, §3.1.4)

B.104 foreign subprogram: A subprogram that is decorated with the attribute 'FOREIGN, defined in p
age STANDARD. The STRING value of the attribute may specify implementation-dependent inform
about the foreign subprogram. Foreign subprograms may have non-VHDL implementations. An imp
tation may place restrictions on the allowable modes, classes, and types of the formal parameters to
subprogram, such as constraints on the number and allowable order of the parameters. (§2.2)

B.105 formal: A formal port or formal generic of a design entity, a block statement, or a formal parame
a subprogram. (§2.1.1, §4.3.2.2, §5.2.1.2, §9.1)

B.106 full declaration: A constant declaration occurring in a package body with the same identifier a
of a deferred constant declaration in the corresponding package declaration. A full type declaration i
declaration corresponding to an incomplete type declaration. (§2.6)
244 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

d an

nerate

onent
nicated
ernally,

hy in
 appears

f its
in stati-

poses

trols
D that

rded,
es from
enced in
ARD
eclared
)

s when

target

be a
t most
 of the
eter and
B.107 fully bound: A binding indication for the component instance implies an entity declaration an
architecture. (§5.2.1.1)

B.108 generate parameter: A constant object whose type is the base type of the discrete range of a ge
parameter specification. A generate parameter is declared by a generate statement. (§9.7)

B.109 generic: An interface constant declared in the block header of a block statement, a comp
declaration, or an entity declaration. Generics provide a channel for static information to be commu
to a block from its environment. Unlike constants, however, the value of a generic can be supplied ext
either in a component instantiation statement or in a configuration specification. (§1.1.1.1)

B.110 generic interface list: A list that defines local or formal generic constants. (§1.1.1.1, §4.3.2.1)

B.111 globally static expression: An expression that can be evaluated as soon as the design hierarc
which it appears is elaborated. A locally static expression is also globally static unless the expression
in a dynamically elaborated context. (§7.4)

B.112 globally static primary: A primary whose value can be determined during the elaboration o
complete context and that does not thereafter change. Globally static primaries can only appear with
cally elaborated contexts. (§7.4.2)

B.113 group: A named collection of named entities. Groups relate different named entities for the pur
not specified by the language. In particular, groups may be decorated with attributes. (§4.6, §4.7)

B.114 guard: See: guard expression.

B.115 guard expression: A Boolean-valued expression associated with a block statement that con
assignments to guarded signals within the block. A guard expression defines an implicit signal GUAR
may be used to control the operation of certain statements within the block. (§4.3.1.2, §9.1, §9.5)

B.116 guarded assignment: A concurrent signal assignment statement that includes the option gua
which specifies that the signal assignment statement is executed when a signal GUARD chang
FALSE to TRUE, or when that signal has been TRUE and an event occurs on one of the signals refer
the corresponding GUARD expression. The signal GUARD must be one of the implicitly declared GU
signals associated with block statements that have guard expressions, or it must be an explicitly d
signal of type Boolean that is visible at the point of the concurrent signal assignment statement. (§9.5

B.117 guarded signal: A signal declared as a register or a bus. Such signals have special semantic
their drivers are updated from within guarded signal assignment statements. (§4.3.1.2)

B.118 guarded target: A signal assignment target consisting only of guarded signals. An unguarded
is a target consisting only of unguarded signals. (§9.5)

B.119 hidden: A declaration that is not directly visible. A declaration is hidden in its scope by a homograph
of the declaration. (§10.3)

B.120 homograph: A reflexive property of two declarations. Each of two declarations is said to
homograph of the other if both declarations have the same identifier and overloading is allowed for a
one of the two. If overloading is allowed for both declarations, then each of the two is a homograph
other if they have the same identifier, operator symbol, or character literal, as well as the same param
result type profile. (§1.3.1, §10.3)
Copyright © 2002 IEEE. All rights reserved. 245

IEEE
Std 1076-2002 IEEE STANDARD VHDL

 in the
l or

 the
 of the

lara-
hat
n itself.

licit
nal.

 but

sign

ffer-
 is called
cope and

generic
ibute

and

es a
to

, and

g index
ex

index
lues for
lled the
B.121 identify: A property of a name appearing in an element association of an assignment target
form of an aggregate. The name is said to identify a signal or variable and any subelements of that signa
variable. (§8.4, 8.5)

B.122 immediate scope: A property of a declaration with respect to the declarative region within which
declaration immediately occurs. The immediate scope of the declaration extends from the beginning
declaration to the end of the declarative region. (§10.2)

B.123 immediately within: A property of a declaration with respect to some declarative region. A dec
tion is said to occur immediately within a declarative region if this region is the innermost region t
encloses the declaration, not counting the declarative region (if any) associated with the declaratio
(§10.1)

B.124 implicit signal: Any signal S'Stable(T), S'Quiet(T), S'Delayed, or S'Transaction, or any imp
GUARD signal. A slice or subelement (or slice thereof) of an implicit signal is also an implicit sig
(§12.6.2, §12.6.3, §12.6.4)

B.125 implicitly declared object: An object whose declaration is not explicit in the source description,
is a consequence of other constructs; for example, signal GUARD. (§4.3, §9.1, §14.1) See also: declared
object.

B.126 imply: A property of a binding indication in a configuration specification with respect to the de
entity indicated by the binding specification. The binding indication is said to imply the design entity; the
design entity is indicated directly, indirectly, or by default. (§5.2.1.1)

B.127 impure function: A function that may return a different value each time it is called, even when di
ent calls have the same actual parameter values. A pure function returns the same value each time it
using the same values as actual parameters. An impure function can update objects outside of its s
can access a broader class of values than a pure function. (§2)

B.128 in: One possible mode of a port or subprogram parameter; also, the only allowed mode of a
constant. A port of mode in may be read within the design entity containing the port but does not contr
a driving value to the network containing the port. A subprogram parameter of mode in may be read but not
modified by the containing subprogram. (§1.1.1.1, §1.1.1.2, 2.1.1, §4.3.2)

B.129 incomplete type declaration: A type declaration that is used to define mutually dependent
recursive access types. (§3.3.1)

B.130 incremental binding: A binding indication in a configuration declaration that either reassociat
previously associated local generic or that associates a previously unassociated local port is said incre-
mentally rebind the component instance or instances to which the binding indication applies. (§5.2.1)

B.131 index constraint: A constraint that determines the index range for every index of an array type
thereby the bounds of the array. An index constraint is compatible with an array type if and only if the
constraint defined by each discrete range in the index constraint is compatible with the correspondin
subtype in the array type. An array value satisfies an index constraint if the array value and the ind
constraint have the same index range at each index position. (§3.1, §3.2.1.1)

B.132 index range: A multidimensional array has a distinct element for each possible sequence of
values that can be formed by selecting one value for each index (in the given order). The possible va
a given index are all the values that belong to the corresponding range. This range of values is ca
index range. (§3.2.1)
246 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

n the
ignal

able.

aining
ro-

rimary
9.5)

esign
ted with
 compo-
t whose
e of the

t.

 range.

esign

 type

fined
gation of
etects
2.6)

ending
or of V1.

ithin
B.133 index subtype: For a given index position of an array, the index subtype is denoted by the type mark
of the corresponding index subtype definition. (§3.2.1)

B.134 inertial delay: A delay model used for switching circuits; a pulse whose duration is shorter tha
switching time of the circuit will not be transmitted. Inertial delay is the default delay mode for s
assignment statements. (§8.4) See also: transport delay.

B.135 initial value expression: An expression that specifies the initial value to be assigned to a vari
(§4.3.1.3)

B.136 inout: One possible mode of a port or subprogram parameter. A port of mode inout may be read
within the design entity containing the port and also contributes a driving value to the network cont
the port. A subprogram parameter of mode inout may be both read and modified by the containing subp
gram. (§1.1.1.2, 2.1.1, §4.3.2)

B.137 inputs: The signals identified by the longest static prefix of each signal name appearing as a p
in each expression (other than time expressions) within a concurrent signal assignment statement. (§

B.138 instance: A subcomponent of a design entity whose prototype is a component declaration, d
entity, or configuration declaration. Each instance of a component may have different actuals associa
its local ports and generics. A component instantiation statement whose instantiated unit denotes a
nent creates an instance of the corresponding component. A component instantiation statemen
instantiated unit denotes either a design entity or a configuration declaration creates an instanc
denoted design entity. (§9.6, §9.6.1, §9.6.2)

B.139 integer literal: An abstract literal of the type universal_integer that does not contain a base poin
(§13.4)

B.140 integer type: A discrete scalar type whose values represent integer numbers within a specified
(§3.1, §3.1.2)

B.141 interface list: A list that declares the interface objects required by a subprogram, component, d
entity, or block statement. (§4.3.2.1)

B.142 internal block: A nested block in a design unit, as defined by a block statement. (§1)

B.143 ISO: The International Organization for Standardization.

B.144 ISO 8859-1: The ISO Latin-1 character set. Package Standard contains the definition of
Character, which represents the ISO Latin-1 character set. (§3.1.1, §14.2)

B.145 kernel process: A conceptual representation of the agent that coordinates the activity of user-de
processes during a simulation. The kernel process causes the execution of I/O operations, the propa
signal values, and the updating of values of implicit signals [such as S'Stable(T)]; in addition, it d
events that occur and causes the appropriate processes to execute in response to those events. (§1

B.146 left of: When both a value V1 and a value V2 belong to a range and either the range is an asc
range and V2 is the successor of V1, or the range is a descending range and V2 is the predecess
(§3.1)

B.147 left-to-right order: When each value in a list of values is to the left of the next value in the list w
that range, except for the last value in the list. (§3.1)

B.148 library: See: design library.
Copyright © 2002 IEEE. All rights reserved. 247

IEEE
Std 1076-2002 IEEE STANDARD VHDL

.1.1.2,

tring

formal
ng that

nect a
g that

 unit

 that
 is either

ants,

alysis

riable
variable

ount

ram or
ns

ertain

t. (§3)

 of a
B.149 library unit: The representation in a design library of an analyzed design unit. (§11.1)

B.150 linkage: One possible port mode. A design entity whose entity interface contains a port of modelink-
age implies that the behavior of the design entity is not expressed in terms of VHDL semantics. (§1
§4.3.2)

B.151 literal: A value that is directly specified in the description of a design. A literal can be a bit s
literal, enumeration literal, numeric literal, string literal, or the literal null . (§7.3.1)

B.152 local generic: An interface object declared in a component declaration that serves to connect a
generic in the interface list of an entity and an actual generic or value in the design unit instantiati
entity. (§4.3, §4.3.2.2, §4.5)

B.153 local port: A signal declared in the interface list of a component declaration that serves to con
formal port in the interface list of an entity and an actual port or signal in the design unit instantiatin
entity. (§4.3, §4.3.2.2, §4.5)

B.154 locally static expression: An expression that can be evaluated during the analysis of the design
in which it appears. (§7.4, §7.4.1)

B.155 locally static name: A name in which every expression is locally static (if every discrete range
appears as part of the name denotes a locally static range or subtype and if no prefix within the name
an object or value of an access type or a function call). (§6.1)

B.156 locally static primary: One of a certain group of primaries that includes literals, certain const
and certain attributes. (§7.4)

B.157 locally static subtype: A subtype whose bounds and direction can be determined during the an
of the design unit in which it appears. (§7.4.1)

B.158 longest static prefix: The name of a signal or a variable name, if the name is a static signal or va
name. Otherwise, the longest static prefix is the longest prefix of the name that is a static signal or
name. (§6.1) See also: static signal name.

B.159 loop parameter: A constant, implicitly declared by the for clause of a loop statement, used to c
the number of iterations of a loop. (§8.9)

B.160 lower bound: For a range L to R or L downto R, the smaller of L and R. (§3.1)

B.161 match: A property of a signature with respect to the parameter and subtype profile of a subprog
enumeration literal. The signature is said to match the parameter and result type profile if certain conditio
are true. (§2.3.2)

B.162 matching elements: Corresponding elements of two composite type values that are used for c
logical and relational operations. (§7.2.2)

B.163 member: A slice of an object, a subelement, or an object; or a slice of a subelement of an objec

B.164 method: An abstract operation that operates atomically and exclusively on a single object
protected type. (§3.5.1)

B.165 mode: The direction of information flow through the port or parameter. Modes are in, out, inout,
buffer, or linkage. (§1.1.1.2, §4.3.2)
248 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

ssoci-
use the
t such

itly.

result

 and
d a net

 the
lation

not those

ange.

nal.

riable,

ble, or

 A sub-
.1.1,
B.166 model: The result of the elaboration of a design hierarchy. The model can be executed in order to
simulate the design it represents. (§12, §12.6)

B.167 name: A property of an identifier with respect to some named entity. Each form of declaration a
ates an identifier with a named entity. In certain places within the scope of a declaration, it is valid to
identifier to refer to the associated named entity; these places are defined by the visibility rules. A
places, the identifier is said to be the name of the named entity. (§4, §6.1)

B.168 named association: An association element in which the formal designator appears explic
(§4.3.2.2, §7.3.2)

B.169 named entity: An item associated with an identifier, character literal, or operator symbol as the
of an explicit or implicit declaration. (§4) See also: name.

B.170 net: A collection of drivers, signals (including ports and implicit signals), conversion functions,
resolution functions that connect different processes. Initialization of a net occurs after elaboration, an
is updated during each simulation cycle. (§12, §12.1, §12.6.2)

B.171 nonobject alias: An alias whose designator denotes some named entity other than an object. (§4.3.3,
§4.3.3.2) See also: object alias.

B.172 nonpostponed process: An explicit or implicit process whose source statement does not contain
reserved word postponed. When a nonpostponed process is resumed, it executes in the current simu
cycle. Thus, nonpostponed processes have access to the current values of signals, whether or
values are stable at the current model time. (§ 9.2)

B.173 null array: Any of the discrete ranges in the index constraint of an array that define a null r
(§3.2.1.1)

B.174 null range: A range that specifies an empty subset of values. A range L to R is a null range if L > R,
and range L downto R is a null range if L < R. (§3.1)

B.175 null slice: A slice whose discrete range is a null range. (§6.5)

B.176 null transaction: A transaction produced by evaluating a null waveform element. (§8.4.1)

B.177 null waveform element: A waveform element that is used to turn off a driver of a guarded sig
(§8.4.1)

B.178 numeric literal: An abstract literal, or a literal of a physical type. (§7.3.1)

B.179 numeric type: An integer type, a floating point type, or a physical type. (§3.1)

B.180 object: A named entity that has a value of a given type. An object can be a constant, signal, va
or file. (§4.3.3)

B.181 object alias: An alias whose alias designator denotes an object (that is, a constant, signal, varia
file). (§4.3.3, §4.3.3.1) See also: nonobject alias.

B.182 out: One possible mode of a port or subprogram parameter. A port of mode out contributes a driving
value to the network containing the port but cannot be read by the design entity containing the port.
program parameter of mode out can be modified but not read by the containing subprogram. (§1.1.1.2, 2
§4.3.2)
Copyright © 2002 IEEE. All rights reserved. 249

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ation
rloaded
inable

ecifi-
cteristics
ata flow

 and

may
rations,

nd at

dure or

ch the

. Each
e is an

lared
st of a
ode; the

t, or

f the
terface

rved
ycle at
 “stable”

very
erefore,
 §14.2)

 (§7.1)
B.183 overloaded: Identifiers or enumeration literals that denote two different named entities. Enumer
literals, subprograms, and predefined operators may be overloaded. At any place where an ove
enumeration literal occurs in the text of a program, the type of the enumeration literal must be determ
from the context. (§2.1, §2.3, §2.3.1, §2.3.2, §3.1.1)

B.184 parameter: A constant, signal, variable, or file declared in the interface list of a subprogram sp
cation. The characteristics of the class of objects to which a given parameter belongs are also chara
of the parameter. In addition, a parameter has an associated mode that specifies the direction of d
allowed through the parameter. (§2.1.1, §2.1.1.1, §2.1.1.2, §2.1.1.3, §2.3, §2.6)

B.185 parameter and result type profile: Two subprograms that have the same parameter type profile,
either both are functions with the same result base type, or neither of the two is a function. (§2.3)

B.186 parameter interface list: An interface list that declares the parameters for a subprogram. It
contain interface constant declarations, interface signal declarations, interface variable decla
interface file declarations, or any combination thereof. (§4.3.2.1)

B.187 parameter type profile: Two formal parameter lists that have the same number of parameters, a
each parameter position the corresponding parameters have the same base type. (§2.3)

B.188 parent: A process or a subprogram that contains a procedure call statement for a given proce
for a parent of the given procedure. (§2.2)

B.189 passive process: A process statement where neither the process itself, nor any procedure of whi
process is a parent, contains a signal assignment statement. (§9.2)

B.190 physical literal: A numeric literal of a physical type. (§3.1.3)

B.191 physical type: A numeric scalar type that is used to represent measurements of some quantity
value of a physical type has a position number that is an integer value. Any value of a physical typ
integral multiple of the primary unit of measurement for that type. (§3.1, §3.1.3)

B.192 port: A channel for dynamic communication between a block and its environment. A signal dec
in the interface list of an entity declaration, in the header of a block statement, or in the interface li
component declaration. In addition to the characteristics of signals, ports also have an associated m
mode constrains the directions of data flow allowed through the port. (§1.1.1.2, §4.3.1.2)

B.193 port interface list: An interface list that declares the inputs and outputs of a block, componen
design entity. It consists entirely of interface signal declarations. (§1.1.1, §1.1.1.2, §4.3.2.1, §4.3.2.2, §9.1)

B.194 positional association: An association element that does not contain an explicit appearance o
formal designator. An actual designator at a given position in an association list corresponds to the in
element at the same position in the interface list. (§4.3.2.2, §7.3.2)

B.195 postponed process: An explicit or implicit process whose source statement contains the rese
word postponed. When a postponed process is resumed, it does not execute until the final simulation c
the current modeled time. Thus, a postponed process accesses the values of signals that are the
values at the current simulated time. (§9.2)

B.196 predefined operators: Implicitly defined operators that operate on the predefined types. E
predefined operator is a pure function. No predefined operators have named formal parameters; th
named association cannot be used in a function whose name denotes a predefined operation. (§7.2,

B.197 primary: One of the elements making up an expression. Each primary has a value and a type.
250 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

t and

n one

than

es as
rent

int is
defines

its

eral, or
r appears

rned

als) in
roup of

lues of

gnal.

se
B.198 projected output waveform: A sequence of one or more transactions representing the curren
projected future values of the driver. (§12.6.1)

B.199 protected type: A type whose objects are protected from simultaneous access by more tha
process. (§3.5)

B.200 pulse rejection limit: The threshold time limit for which a signal value whose duration is greater
the limit will be propagated. A pulse rejection limit is specified by the reserved word reject in an inertially
delayed signal assignment statement. (§8.4)

B.201 pure function: A function that returns the same value each time it is called with the same valu
actual parameters. An impure function may return a different value each time it is called, even when diffe
calls have the same actual parameter values. (§2.1)

B.202 quiet: In a given simulation cycle, a signal that is not active. (§12.6.2)

B.203 range: A specified subset of values of a scalar type. (§3.1) See also: ascending range; belong (to a
range); descending range; lower bound; upper bound.

B.204 range constraint: A construct that specifies the range of values in a type. A range constra
compatible with a subtype if each bound of the range belongs to the subtype or if the range constraint
a null range. The direction of a range constraint is the same as the direction of its range. (§3.1, 3.1.2, §3.1.3,
§3.1.4)

B.205 read: The value of an object is said to be read when its value is referenced or when certain of
attributes are referenced. (§4.3.2)

B.206 real literal: An abstract literal of the type universal_real that contains a base point. (§13.4)

B.207 record type: A composite type whose values consist of named elements. (§3.2.2, §7.3.2.1)

B.208 reference: Access to a named entity. Every appearance of a designator (a name, character lit
operator symbol) is a reference to the named entity denoted by the designator, unless the designato
in a library clause or use clause. (§10.4, §11.2)

B.209 register: A kind of guarded signal that retains its last driven value when all of its drivers are tu
off. (§4.3.1.2)

B.210 regular structure: Instances of one or more components arranged and interconnected (via sign
a repetitive way. Each instance may have characteristics that depend upon its position within the g
instances. Regular structures may be represented through the use of the generate statement. (§9.7)

B.211 resolution: The process of determining the resolved value of a resolved signal based on the va
multiple sources for that signal. (§2.4, §4.3.1.2)

B.212 resolution function: A user-defined function that computes the resolved value of a resolved si
(§2.4, §4.3.1.2)

B.213 resolution limit: The primary unit of type TIME (by default, 1 femtosecond). Any TIME value who
absolute value is smaller than this limit is truncated to zero (0) time units. (§3.1.3.1)

B.214 resolved signal: A signal that has an associated resolution function. (§4.3.1.2)
Copyright © 2002 IEEE. All rights reserved. 251

IEEE
Std 1076-2002 IEEE STANDARD VHDL

ch is

ing

ich the
cess will
process,

g range
(§14.1)

led

ility

lected
g selected

given

pear.

 of a

eft

rrent
ort

ne of
quential

 alias
B.215 resolved value: The output of the resolution function associated with the resolved signal, whi
determined as a function of the collection of inputs from the multiple sources of the signal. (§2.4, §4.3.1.2)

B.216 resource library: A library containing library units that are referenced within the design unit be
analyzed. (§11.2)

B.217 result subtype: The subtype of the returned value of a function. (§2.1)

B.218 resume: The action of a wait statement upon an enclosing process when the conditions on wh
wait statement is waiting are satisfied. If the enclosing process is a nonpostponed process, the pro
subsequently execute during the current simulation cycle. Otherwise, the process is a postponed
which will execute during the final simulation cycle at the current simulated time. (§12.6.3)

B.219 right of: When a value V1 and a value V2 belong to a range and either the range is an ascendin
and V2 is the predecessor of V1, or the range is a descending range and V2 is the successor of V1.

B.220 satisfy: A property of a value with respect to some constraint. The value is said to satisfy a constraint
if the value is in the subset of values determined by the constraint. (§3, §3.2.1.1)

B.221 scalar type: A type whose values have no elements. Scalar types consist of enumeration types,
integer types, physical types, and floating point types. Enumeration types and integer types are cal
discrete types. Integer types, floating point types, and physical types are called numeric types. All scalar
types are ordered; that is, all relational operators are predefined for their values. (§3, §3.1)

B.222 scope: A portion of the text in which a declaration may be visible. This portion is defined by visib
and overloading rules. (§10.2)

B.223 selected name: Syntactically, a name having a prefix and suffix separated by a dot. Certain se
names are used to denote record elements or objects denoted by an access value. The remainin
names are referred to as expanded names. (§6.3, §8.1) See also: expanded name.

B.224 sensitivity set: The set of signals to which a wait statement is sensitive. The sensitivity set is
explicitly in an on clause, or is implied by an until clause. (§8.1)

B.225 sequential statements: Statements that execute in sequence in the order in which they ap
Sequential statements are used for algorithmic descriptions. (§8)

B.226 shared variable: A variable accessible by more than one process. Such variables must be
protected type. (§4.3.1.3)

B.227 short-circuit operation: An operation for which the right operand is evaluated only if the l
operand has a certain value. The short-circuit operations are the predefined logical operations and, or, nand,
and nor for operands of types BIT and BOOLEAN. (§7.2)

B.228 signal: An object with a past history of values. A signal may have multiple drivers, each with a cu
value and projected future values. The term signal refers to objects declared by signal declarations or p
declarations. (§4.3.1.2)

B.229 signal transform: A sequential statement within a statement transform that determines which o
the alternative waveforms, if any, is to be assigned to an output signal. A signal transform can be a se
signal assignment statement, an if statement, a case statement, or a null statement. (§9.5)

B.230 simple name: The identifier associated with a named entity, either in its own declaration or in an
declaration. (§6.2)
252 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

 state-
 delta

it is

nsional

ich a

here
nection

signal
ent state-
tement

, as an
enotes a
pe or a

tation

other,

-major

f the

s

at
B.231 simulation cycle: One iteration in the repetitive execution of the processes defined by process
ments in a model. The first simulation cycle occurs after initialization. A simulation cycle can be a
cycle or a time-advance cycle. (§ 12.6.4)

B.232 single-object declaration: An object declaration whose identifier list contains a single identifier;
called a multiple-object declaration if the identifier list contains two or more identifiers. (§4.3.1)

B.233 slice: A one-dimensional array of a sequence of consecutive elements of another one-dime
array. (§6.5)

B.234 source: A contributor to the value of a signal. A source can be a driver or port of a block with wh
signal is associated or a composite collection of sources. (§4.3.1.2)

B.235 specification: A class of construct that associates additional information with a named entity. T
are three kinds of specifications: attribute specifications, configuration specifications, and discon
specifications. (§5)

B.236 statement transform: The first sequential statement in the process equivalent to the concurrent
assignment statement. The statement transform defines the actions of the concurrent signal assignm
ment when it executes. The statement transform is followed by a wait statement, which is the final sta
in the equivalent process. (§9.5)

B.237 static: See: locally static; globally static.

B.238 static name: A name in which every expression that appears as part of the name (for example
index expression) is a static expression (if every discrete range that appears as part of the name d
static range or subtype and if no prefix within the name is either an object or value of an access ty
function call). (§6.1)

B.239 static range: A range whose bounds are static expressions. (§7.4)

B.240 static signal name: A static name that denotes a signal. (§6.1)

B.241 static variable name: A static name that denotes a variable. (§6.1)

B.242 string literal: A sequence of graphic characters, or possibly none, enclosed between two quo
marks ("). The type of a string literal is determined from the context. (§7.3.1, §13.6)

B.243 subaggregate: An aggregate appearing as the expression in an element association within an
multidimensional array aggregate. The subaggregate is an (n–1)-dimensional array aggregate, where n is the
dimensionality of the outer aggregate. Aggregates of multidimensional arrays are expressed in row
(right-most index varies fastest) order. (§7.3.2.2)

B.244 subelement: An element of another element. Where other subelements are excluded, the term element
is used. (§3)

B.245 subprogram specification: Specifies the designator of the subprogram, any formal parameters o
subprogram, and the result type for a function subprogram. (§2.1)

B.246 subtype: A type together with a constraint. A value belongs to a subtype of a given type if it belong
to the type and satisfies the constraint; the given type is called the base type of the subtype. A type is a
subtype of itself. Such a subtype is said to be unconstrained because it corresponds to a condition th
imposes no restriction. (§3)
Copyright © 2002 IEEE. All rights reserved. 253

IEEE
Std 1076-2002 IEEE STANDARD VHDL

lapse.

The
default

eriod

 value
.6.1)

tic of
pulse is

desig-
. These
s where
must be

iver of

 (

ndary

 The

ther
ersion
e.
B.247 suspend: A process that stops executing and waits for an event or for a time period to e
(§12.6.4)

B.248 target library: A library containing the design unit in which a given component is declared.
target library is used to determine the visible entity declaration under certain circumstances for a
binding indication (§5.2.2)

B.249 timeout interval: The maximum time a process will be suspended, as specified by the timeout p
in the until clause of a wait statement. (§8.1)

B.250 to the left of: See: left of.

B.251 to the right of: See: right of .

B.252 transaction: A pair consisting of a value and a time. The value represents a (current or) future
of the driver; the time represents the relative delay before the value becomes the current value. (§12

B.253 transport delay: An optional delay model for signal assignment. Transport delay is characteris
hardware devices (such as transmission lines) that exhibit nearly infinite frequency response: any
transmitted, no matter how short its duration. (§8.4) See also: inertial delay.

B.254 type: A set of values and a set of operations. (§3)

B.255 type conversion: An expression that converts the value of a subexpression from one type to the
nated type of the type conversion. Associations in the form of a type conversion are also allowed
associations have functions and restrictions similar to conversion functions but can be used in place
conversion functions cannot. In both cases (expressions and associations), the converted type
closely related to the designated type. (§4.3.2.2, §7.3.5) See also: closely related types; conversion
function.

B.256 unaffected: A waveform in a concurrent signal assignment statement that does not affect the dr
the target. (§8.4, §9.5.1)

B.257 unassociated formal: A formal that is not associated with an actual. (§5.2.1.2)

B.258 unconstrained subtype: A subtype that corresponds to a condition that imposes no restriction.§3,
§4.2)

B.259 unit name: A name defined by a unit declaration (either the primary unit declaration or a seco
unit declaration) in a physical type declaration. (§3.1.3)

B.260 universal_integer: An anonymous predefined integer type that is used for all integer literals.
position number of an integer value is the corresponding value of the type universal_integer. (§3.1.2, §7.3.1,
§7.3.5)

B.261 universal_real: An anonymous predefined type that is used for literals of floating point types. O
floating point types have no literals. However, for each floating point type there exists an implicit conv
that converts a value of type universal_real into the corresponding value (if any) of the floating point typ
(§3.1.4, §7.3.1, §7.3.5)
254 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

tatement

id to be
value of
t) of a

 file is

of the
ng an

 of

ignal.
s before
§8.4)

BSP,

ign
B.262 update: An action on the value of a signal, variable, or file. The value of a signal is said to be updated
when the signal appears as the target (or a component of the target) of a signal assignment s
(indirectly); when it is associated with an interface object of mode out, buffer, inout, or linkage; or when
one of its subelements (individually or as part of a slice) is updated. The value of a signal is also sa
updated when it is a subelement or slice of a resolved signal, and the resolved signal is updated. The
a variable is said to be updated when the variable appears as the target (or a component of the targe
variable assignment statement (indirectly), when it is associated with an interface object of modeout or
linkage, or when one of its subelements (individually or as part of a slice) is updated. The value of a
said to be updated when a WRITE operation is performed on the file object. (§4.3.2)

B.263 upper bound: For a range L to R or L downto R, the larger of L and R. (§3.1)

B.264 variable: An object with a single current value. (§4.3.1.3)

B.265 visible: When the declaration of an identifier defines a possible meaning of an occurrence
identifier used in the declaration. A visible declaration is visible by selection (for example, by usi
expanded name) or directly visible (for example, by using a simple name). (§10.3)

B.266 visible entity declaration: The entity declaration selected for default binding in the absence
explicit binding information for a given component instance. (§5.2.2)

B.267 waveform: A series of transactions, each of which represents a future value of the driver of a s
The transactions in a waveform are ordered with respect to time, so that one transaction appear
another if the first represents a value that will occur sooner than the value represented by the other. (

B.268 whitespace character: A space, a nonbreaking space, or a horizontal tabulation character (SP, N
or HT). (§14.3)

B.269 working library: A design library into which the library unit resulting from the analysis of a des
unit is placed. (§11.2)
Copyright © 2002 IEEE. All rights reserved. 255

IEEE
Std 1076-2002 IEEE STANDARD VHDL
256 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

n all

 during

 applied
 model,

 but that

ce (the

at least

outside

l is
Annex C

(informative)

Potentially nonportable constructs

This annex lists those VHDL constructs whose use may result in nonportable descriptions.

A description is considered portable if it

a) Compiles, elaborates, initializes, and simulates to termination of the simulation cycle o
conformant implementations, and

b) The time-variant state of all signals and variables in the description are the same at all times
the simulation,

under the condition that the same stimuli are applied at the same times to the description. The stimuli
to a model include the values supplied to generics and ports at the root of the design hierarchy of the
if any.

Note that the content of files generated by a description are not part of the state of the description,
the content of files consumed by a description are part of the state of the description.

The use of the following constructs may lead to nonportable VHDL descriptions:

— Resolution functions that do not treat all inputs symmetrically

— The comparison of floating point values

— Events on floating-point-valued signals

— The use of explicit type conversion to convert floating point values to integer values

— Any value that does not fall within the minimum guaranteed range for the type

— The use of architectures and subprogram bodies implemented via the foreign language interfa
'FOREIGN attribute)

— Processes that communicate via file I/O, including TEXTIO

— Impure functions

— Linkage ports

— Ports and generics in the root of a design hierarchy

— Use of a time resolution greater than fs

— Shared variables

— Procedure calls passing a single object of an array or record type to multiple formals where
one of the formals is of mode out or inout

— Models that depend on a particular format of T'IMAGE

— Declarations of integer or physical types that have a secondary unit whose position number is
of the range -(2**31-1) to 2**31-1

— The predefined attributes 'INSTANCE_NAME or 'PATH_NAME, if the behavior of the mode
dependent on the values returned by the attributes.
Copyright © 2002 IEEE. All rights reserved. 257

IEEE
Std 1076-2002 IEEE STANDARD VHDL
258 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

evision.
escribed
ditorial

al rules,
Annex D

(informative)

Changes from IEEE Std 1076, 2000 Edition

This annex lists those clauses that have been changed from IEEE Std 1076, 2000 Edition, during its r
The clause numbers are from IEEE Std 1076, 2000 Edition; where a new clause has been added, it is d
as being added between or after existing clauses from IEEE Std 1076, 2000 Edition. Note that purely e
changes, such as typographic error corrections and changes made to conform to IEEE terminologic
are not listed.

Clause 1: 1.1.1.2 and 1.2.

Clause 2: 2.3.1.

Clause 3: 3.1.3, 3.1.3.1, 3.1.4, 3.1.4.1, 3.3.1, and 3.4.1.

Clause 4: Introduction, 4.3.1.2, 4.3.2, 4.3.3, and 4.3.3.2.

Clause 5: 5.1, 5.2, 5.2.1, 5.2.1.2, and 5.2.2.

Clause 6: 6.1 and 6.3.

Clause 7: 7.1, 7.2.4, and 7.4.1.

Clause 8: 8.1 and 8.8.

Clause 9: 9.6.1 and 9.6.2.

Clause 10: 10.1, 10.2, 10.3, and 10.4.

Clause 11: 11.2.

Clause 12: 12.3, 12.4.3, 12.5, and 12.6.2.

Clause 13: 13.1, 13.2, 13.8, and 13.10.

Clause 14: 14.1, 14.2 and 14.3.
Copyright © 2002 IEEE. All rights reserved. 259

IEEE
Std 1076-2002 IEEE STANDARD VHDL
260 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002

dingly,
Annex E

(informative)

Features under consideration for removal

The following features are being considered for removal from a future version of the language. Accor
modelers should refrain from using them when possible:

— Ports of mode linkage (see 1.1.1.2 and 4.3.2)

— Replacement characters (see 13.10)

To comment on these, or any other features of VHDL, please visit http://vhdl.org/vasg/.
Copyright © 2002 IEEE. All rights reserved. 261

IEEE
Std 1076-2002 IEEE STANDARD VHDL
262 Copyright © 2002 IEEE. All rights reserved.

IEEE

LANGUAGE REFERENCE MANUAL Std 1076-2002

)

ity

ets—

ngin

ca

, Switzer
s In
Annex F

(informative)

Bibliography

[B1] IEEE Std 754™-1985 (R1990), IEEE Standard for Binary Floating-Point Arithmetic.6,7

[B2] IEEE Std 854™-1987 (R1994), IEEE Standard for Radix-Independent Floating-Point Arithmetic.

[B3] IEEE Std 1029.1™-1998, IEEE Standard for Waveform and Vector Exchange (WAVES).

[B4] IEEE Std 1076.1™-1999, IEEE Standard VHDL Analog and Mixed-Signal Extensions.

[B5] IEEE Std 1076.2™-1996, IEEE Standard VHDL Mathematical Packages.

[B6] IEEE Std 1076.3™-1997, IEEE Standard VHDL Synthesis Packages.

[B7] IEEE Std 1076.4™-1995, IEEE Standard for VITAL Application-Specific Integrated Circuit (ASIC
Modeling Specification.

[B8] IEEE Std 1076.6™-1999, IEEE Standard for VHDL Register-Transfer Level Synthesis.

[B9] IEEE Std 1164™-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperabil
(Std_logic_1164).

[B10] ISO/IEC 8652 : 1995, Standard Reference Manual for the Ada Programming Language.8

[B11] ISO/IEC 8859-1: 1987, Information Processing—8-Bit Single-Byte Coded Graphic Character S
Part 1: Latin Alphabet No. 1.

6The IEEE standards or products referred to in Annex F are trademarks owned by the Institute of Electrical and Electronics Eeers,
Incorporated.
7IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Pistaway,
NJ 08855-1331, USA.
8ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembe, CH-1211, Geneve 20-
land/Suisse. ISO publications are also available in the United States from the Sales Department, American National Standardstitute,
11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
Copyright © 2002 IEEE. All rights reserved. 263

IEEE
Std 1076-2002™
264 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
Index

A

access types
described, 3.3, 3.3.1, 3.3.2
designated type, 3.3.1
elaboration of, 12.3.1.3
mutually dependent, 3.3, 3.3.2
null, Clause 3, 3.3, 7.3.1
objects designated by, 6.3

dereferencing, 6.3
recursive, 3.3.1
restrictions

on attributes, 4.4
on file types, 3.4
on prefixes, 6.1
on signals, 4.3.1.2
on subtype indications, 4.2, 4.3.2

subprogram parameters of, 2.1.1, 2.1.1.1
usage, Clause 3

in index constraints, 3.2.1.1
where prohibited, 4.3.1, 4.3.1.1

ACTIVE attribute, 4.3.2, 7.4.1, 7.4.2, 14.1
active drivers, 12.6.1, 12.6.4
active signals, 12.6.2, 12.6.3
actual designators

syntax, 4.3.2.2
where used, 4.3.2.2

actual parameter part
syntax, 7.3.3
usage

in functions, 7.3.3
in procedures, 8.6

actuals
associations

with formal function parameters, 7.3.3
with formal procedure parameters, 8.6
with formal subprogram parameters, 4.3.2.2
with formals of blocks, 9.1

in map aspects, 5.2.1.2
syntax, 4.3.2.2
usage, 4.3.2.2
where used, 4.3.2.2

aggregates, Clause 3
array, 7.3.2.2
defining the type of, 7.3.3–7.3.5
described, 7.3.2, 7.3.2.1, 7.3.2.2
record, 7.3.2.1
restrictions

on array types, 7.3.2.2
on globally static primaries, 7.4.2
on record types, 7.3.2.1

subaggregates, 7.3.2
syntax, 7.3.1
type of, 7.3.2, 7.3.2.1, 7.3.2.2
Copyright © 2002 IEEE. All rights reserved. 265

IEEE
Std 1076-2002 IEEE STANDARD VHDL
usage
as guarded signals, 9.5
as targets of concurrent signal assignment statement, 9.5
as targets of signal assignment statements, 8.4
as targets of variable assignment statements, 8.5, 8.5.1

where used, 7.2, 7.3.3–7.3.5, 8.4
alias declarations

described, 4.3.3, 4.3.3.1, 4.3.3.2
elaboration of, 12.3.1.5
syntax, 4.3.3
where used, 1.1.2, 1.2.1, 2.2, 2.5, 9.2

alias designators
syntax, 4.3.3, 4.3.3.1
where used, 4.3.3, 4.3.3.1

aliases
referenced in attribute specifications, 5.1
usage

as globally static primaries, 7.4.2
as locally static primaries, 7.4.1

allocators, Clause 3, 3.2.1.1
constraints, 7.3.6
deallocation of, 3.3.2, 7.3.6
defined, 3.3
described, 7.3.6
evaluation of, 7.3.6, 12.5
syntax, 7.3.6
usage, 3.3.1

as globally static primaries, 7.4.2
to access values of objects, 3.3

where used, 7.2
architecture bodies

as declarative regions, 10.1
default binding rules, 5.2.1
described, Clause 1, 1.1, 1.2, 1.2.1, 1.2.2
syntax, 1.2
where used, 5.2.1, 5.2.2

architecture declarative part
described, 1.2.1
syntax, 1.2.1
where used, 1.2

architecture names
where used, 1.3, 1.3.1, 5.2.2, 9.6, 11.1

architecture statement part
described, 1.2.2
syntax, 1.2.2
where used, 1.2

array types
aggregates, 7.3.2
bounds, 3.2.1.1
closely related, 7.3.5
concatenation of, 7.2.4
constrained, 3.2.1

as formal parameters of constants and variables, 2.1.1
as formal parameters of signals, 2.1.1.2
described, 3.2.1, 3.2.1.1
discrete ranges in, 3.2.1.1
implicit file operations for, 3.4.1
index ranges of, 3.2.1.1

conversions between, 7.3.5
266 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
denoting elements of, 6.4
described, 3.2.1, 3.2.1.1, 3.2.1.2
designated by access values, 3.2.1.1
direction of, 6.5
null arrays, 3.2.1.1
predefined, 3.2.1.2
restrictions

on file types, 3.4
subprogram parameters of, 2.1.1, 2.1.1.1, 2.1.1.2
syntax, 3.2.1
unconstrained, 3.2.1

described, 3.2.1
elaboration of, 12.3.1.2
used in index constraints, 3.2.1.1
used in subprograms, 3.2.1.1

variables, assignments to, 8.5.1
where used, 3.2.1

ASCENDING attribute, 14.1
ASCII

format effectors, 13.1
non-graphic elements, 3.1.1, 3.1.1.1

assertion statements
described, 8.2
syntax, 8.2
where used, Clause 8, 9.4

assertion statements. See also: concurrent assertion statements.
assignment

as a basic operation, Clause 3
guarded signal, 5.3, 9.5, 12.3.2.3
to arrays, 3.2.1.1

association elements
named, 4.3.2.2, 5.2.1.1, 5.2.1.2
positional, 5.2.1.2
syntax, 4.3.2.2
where used, 4.3.2.2

association lists
described, 4.3.2.2
generic, 1.1.1.1, 12.2.1, 12.2.2
port, 12.2.4
syntax, 4.3.2.2
where used, 5.2.1.2, 7.3.3

attribute declarations
described, 4.4
elaboration of, 12.3.2.1
syntax, 4.4
where used, 1.1.2, 1.2.1, 2.2, 2.5, 9.2

attribute designators
syntax, 6.6
where used, 5.1, 6.6

attribute specifications
described, Clause 5, 5.1
elaboration of, 12.3.2.1
syntax, 5.1
where used, 1.1.2, 1.2.1, 1.3, 2.2, 2.5, 5.1, 9.2

attributes
allowed as primaries, 7.1
denoting aliases, 6.6
index ranges of, 3.2.1.1
of formal parameters, 2.1.1
Copyright © 2002 IEEE. All rights reserved. 267

IEEE
Std 1076-2002 IEEE STANDARD VHDL
predefined, Clause 3, 6.6
described, 4.4, 14.1
exclusion from visibility rules, 10.3
used as locally static primaries, 7.4.1

restrictions
on groups, 4.7
on subelements and slices, 6.5, 6.6
on subtype of, 12.3.2.1

signal-valued, 2.1.1.2
user-defined, 4.4, 6.6

described, 4.4
usage, 5.1

as globally static primaries, 7.4.2
as locally static primaries, 7.4.1

where used, 4.4
attributes. See also: specific names of predefined attributes.

B

backus naur form (BNF), 0.2.1
base

syntax, 13.4.2
where used, 13.4.2

BASE attribute, 14.1
base specifiers

syntax, 13.7
where used, 13.7, Annex A

basic operations, Clause 3, 7.2.3, 7.3.2, 7.3.4
bidirectional ports. See: ports, INOUT.
binding indications

containing map aspects, 5.2.1.2
default

described, 5.2.2
described, 5.2.1, 5.2.2
elaboration of, 12.3.2.2
primary, 5.2.1
restrictions

for component configurations, 5.2.1
for configuration specifications, 5.2

syntax, 5.2.1
where used, 1.3.1, 5.2

bindings
deferred, 1.3, 5.2.1, 5.2.1.1

BIT type, 3.1.1.1, 3.2.1.2, 7.2, 7.2.1, 7.2.2
bit values

syntax, 13.7
where used, 13.7, Annex A

BIT_VECTOR type, 3.2.1.2
block configurations

applicability, 1.3.1
as declarative regions, 10.1
described, 1.3.1
implicit, 1.3.1, Clause 12, 12.1
scope of, 10.2
syntax, 1.3.1
usage

to control elaboration of a block statement, 12.4, 12.4.1
when architecture identifier is used, 5.2.1.1

visibility within, 10.3
268 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
where used, 1.3, 1.3.1
block declarative items

syntax, 1.2.1
usage, 1.2.2, Clause 5, 5.1
where used, 9.1, 9.6.2

block declarative part
elaboration of, 12.4.1, 12.4.2
syntax, 9.1
where used, Clause 9, 9.1

block headers
containing map aspects, 5.2.1.2
correspondences

to component declarations, 9.6.1
to component instantiation statements, 9.6.2
to design entities, 9.6.1, 9.6.2

elaboration of, 12.2, 12.4.1
syntax, 9.1
where used, Clause 9, 9.1

block specifications
syntax, 1.3.1
where used, 1.3.1

block statement part
elaboration of, 12.4.2
syntax, 9.1
where used, Clause 9, 9.1

block statements
as declarative regions, 10.1
described, Clause 9, 9.1
elaboration of, 12.1, 12.4.1, 12.4.2
implied, 9.6.2, 12.4.3
labels, 1.3.1

elaboration of, 12.4.2
where used, 1.3.1

syntax, 9.1
usage, 1.3.1, 9.6.1
where used, Clause 9, 9.1

blocks
communication to, 1.1.1
described, Clause 1, 1.1
interconnection via concurrent statements, Clause 9, 9.1
scope of, 10.2
usage, 9.6, 9.6.1

boldface, 0.2.1
BOOLEAN type, 3.1.1.1, 7.2, 7.2.1, 7.2.2
buffer ports. See: ports.
bus signals, 2.1.1.2, 2.4, 4.3.2

C

case statement alternatives
syntax, 8.8
where used, 8.8

case statements
described, 8.8
syntax, 8.8
usage

as signal transforms, 9.5.2
with null statements, 8.13
Copyright © 2002 IEEE. All rights reserved. 269

IEEE
Std 1076-2002 IEEE STANDARD VHDL
where used, Clause 8, 8.1, 9.5
character set, VHDL, 13.1
CHARACTER type, 3.2.1.2
character types, used in case statements, 8.8
characters

apostrophe ('), 13.5
backslash (\), 13.3.2
basic

allowable replacements for, 13.10
syntax, 13.1

basic graphic
syntax, 13.1
where used, Clause 13, 13.1

braces {}, 0.2.1
colon (:), 13.10
exclamation mark (!), 13.10
graphic

syntax, 13.1
where used, 13.3.1, 13.5, 13.6

lower case
where used, 13.1

number sign (#), 13.4.2, 13.10
other special

syntax, 13.1
where used, Clause 13, 13.1

percent sign (%), 13.10
quotation mark (“), 13.6
quotation mark ("), 13.10

where used, 13.7
spaces

syntax, 13.1
where prohibited, 13.3.1
where used, Clause 13, 13.1

special
names of, 13.1
syntax, 13.1
where used, Clause 13, 13.1

square brackets [], 0.2.1
used in instance names

separator (:), 14.1
used in path names

leader (:), 14.1
separator (:), 14.1

vertical bar (|), 0.2.1
vertical line (|), 13.10

characters. See also: operators, symbols.
choices

in case statements, 8.8
syntax, 7.3.2
where used, 7.3.1, 7.3.2, 8.8

comments, 13.8
component configurations

as declarative regions, 10.1
binding indications in, 5.2.1
containing block configurations, 1.3.2
default entity aspect of, 5.2.2
described, 1.3.2
implicit, 1.3.1, Clause 12, 12.1
270 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
restrictions
against conflicting configurations, 1.3.2

syntax, 1.3.2
used to bind component instances to design entities, 4.4
visibility rules for, 10.3
where used, 1.3, 1.3.1

component declarations
as declarative regions, 10.1
bindings to design entities, 5.2.1
described, 4.5
elaboration of, 12.3.1.7
prohibitions on attributes, 5.1
scope of, 10.2
syntax, 4.5
usage, 5.2, 9.6, 9.6.1
where used, 1.2.1, 2.5

component instances
association with configurations, 1.3.2
bound

described, 1.2.2
elaboration of, 12.4
to design entities, 5.2.1.1

fully bound, 1.3.1, 5.2.1.1
index range, 3.2.1.1
labels

in blocks, 1.3.1
paths to

syntax, 14.1
where used, 14.1

unbound
defaults for, 1.3.2
elaboration of, 12.1

with conflicting configurations, 1.3.2
component instantiation statements

containing map aspects, 5.2.1.2
default entity aspect of, 5.2.2
described, 9.6, 9.6.1, 9.6.2
elaboration of, 12.4.3
interfaces of, 4.5
referenced in configuration specifications, 5.2
syntax, 9.6
usage

to instantiate a component, 9.6.1
to instantiate a design entity, 9.6.2

where used, Clause 9, 9.1
component names

where used, 9.6
component specifications

elaboration of, 12.3.2, 12.3.2.2
syntax, 5.2
where used, 1.3.2, 5.2

composite types
described, 3.2
objects of, 4.3, 4.4
restrictions

on file types, 3.4
syntax, 3.2
usage, Clause 3
Copyright © 2002 IEEE. All rights reserved. 271

IEEE
Std 1076-2002 IEEE STANDARD VHDL

assign-
concurrent assertion statements
described, 9.4
elaboration of, 12.4.4
syntax, 9.4
where used, 1.1.3, Clause 9

concurrent procedure call statements
described, 9.3
syntax, 9.3
usage, 9.3
where used, 1.1.3, Clause 9

concurrent procedure call statements. See also: procedure call statements.
concurrent signal assignment statements, 8.4

containing delay mechanisms, 9.5
described, 9.5
elaboration of, 12.4.4
execution of, 9.5
syntax, 9.5
where used, Clause 9

concurrent signal assignment statements. See also: conditional signal assignments, selected signal
ments, signal assignment statements.
concurrent statements

described, Clause 9
elaboration of, 12.4, 12.4.4
syntax, Clause 9
where used, Clause 1, 1.1, 1.2.1, 9.1, 9.6.2

condition clauses
described, 8.1
syntax, 8.1
where used, 8.1

conditional signal assignments
described, 9.5.1
syntax, 9.5.1
where used, 9.5

conditions
syntax, 8.1
where used, Clause 8, 8.1, 8.7, 8.10, 9.5.1, 9.5.2, 9.7

configuration declarations
anonymous, 12.1
as declarative regions, 10.1
described, 1.3, 1.3.2
scope of, 10.4
syntax, 1.3
usage

to control elaboration of a block statement, 12.4
to define components, 9.6

visibility of, 1.1.2
where used, 11.1

configuration items
implicit, 1.3.1
syntax, 1.3, 1.3.1

configuration specifications
default entity aspect of, 5.2.2
described, 5.2, 5.2.1, 5.2.1.1, 5.2.1.2, 5.2.2
elaboration of, 12.3.2.2
implicit, 12.1
restrictions

for binding indications, 5.2.1
for others and all, 5.2

syntax, 5.2
272 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
usage
to bind component instances to design entities, 1.3, 4.5
to define copies of blocks, 9.6

where used, 1.2.1
configurations

described, Clause 1
where used, 9.6

constant declarations
described, 4.3.1.1
syntax, 4.3.1.1
where used, 1.1.2, 1.2.1, 2.2, 2.5, 4.3.1.1, 9.2

constants
deferred, 2.6, 4.3.1.1
explicitly declared, 4.3.1.1
generic, 1.1.1.1
in resolution functions, 2.4
index ranges of, 3.2.1.1
initial values of, 12.3.1.4
usage

as generate parameters, 9.7
as globally static primaries, 7.4.2
as subprogram parameters, 2.1.1.1

values of, 4.3.1.1
context clauses

described, 11.3
implicit, 14.2
syntax, 11.3
where used, Clause 11, 11.1

context items
syntax, 11.3
where used, 11.3

conversion functions
restrictions in signal associations, 4.3.2.2

D

deallocation, 3.3.2
declarations

elaboration of, Clause 12, 12.1, 12.3.1, 12.3.1.1–12.3.1.7
occurring immediately within declarative regions, 10.1
of items in a design entity, Clause 1, 1.1
overloaded, 10.3, 10.5
visibility

by selection, 10.3
direct, 10.3
hidden, 10.3
potential, 10.4

declarative parts, elaboration of, 12.3, 12.3.1, 12.3.1.1–12.3.1.7, 12.3.2, 12.3.2.1–12.3.2.3
declarative regions

described, Clause 10, 10.1, 10.2
deferred bindings, 1.3
deferred constants, 2.6

defined, 4.3.1.1
delay mechanisms

described, 8.4
syntax, 8.4
where used, 8.4, 9.5

DELAYED attribute, 2.2, 4.3, 4.3.2, 14.1
Copyright © 2002 IEEE. All rights reserved. 273

IEEE
Std 1076-2002 IEEE STANDARD VHDL
delays, 3.1.3.1
inertial, 8.4
transport, 8.4

delimiters
defined, 13.2
names of, 13.2

design entities
bindings to component instances, 1.3, 5.2.1, 5.2.1.1, 9.6.1, 9.6.2
bodies of, 1.2
declarative items, Clause 1, 1.1, Clause 5, 5.1
defining external blocks, 1.3.1
defining subcomponents of, 9.6
described, Clause 1, 1.1
interfaces of, 1.1, 4.4
library requirements, 1.1.3
ports, 1.1.1
visibility, 1.1.2

design files
syntax, Clause 11, 11.1

design hierarchies
defined by configurations, 5.2.1.1, Clause 12, 12.1
defined by design entities, Clause 12, 12.1
described, Clause 1, 1.1
elaboration

conditional or iterative, 9.7
described, 12.2
of component instances, 9.6.1, 9.6.2, 9.7

elaboration
described, Clause 12, 12.1

portability of ports and generics in root, Annex C
design hierarchies. See also: blocks.
design methodologies

portability issues, Annex C
reusing existing libraries, 9.6
structural design, 9.6

design units
described, Clause 11, 11.1–11.4
order of analysis, 11.4
primary

denoting, 6.3
syntax, Clause 11, 11.1
where used, Clause 11, 11.1

reported in assertion violations, 8.2
reported in report statements, 8.3
secondary

portability issues, Annex C
syntax, Clause 11, 11.1
where, Clause 11, 11.1

specifications related to, Clause 5, 5.1
syntax, Clause 11, 11.1
visibility of packages, 2.5
where used, Clause 11, 11.1

designators
as a basic operation, Clause 3
described, 2.2
overloaded, 2.3.1
syntax, 2.1
where used, Clause 2, 2.1, 2.1.1.3
274 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
digits
decimal

syntax, Clause 13, 13.1
where used, Clause 13, 13.1, 13.3.1, 13.4.1

extended
syntax, 13.4.1, 13.4.2
where used, 13.4.1, 13.4.2, 13.7

direction
of discrete subtype indications, 4.2
syntax, 3.1
where used, 3.1

disconnection specifications
default

syntax, 5.3
elaboration of, 5.3
syntax, 5.3
usage

to turn off drivers of guarded signals, 4.3.1.2
with concurrent signal assignment statements, 9.5

where used, 1.1.2, 1.2.1, 2.5
discrete ranges

bounds of, 6.5, 10.5
described, 3.2.1.1
direction of, 1.3.1, 6.5
static

described, 7.4
globally static, 7.4.2
locally static, 7.4.1

syntax, 3.2.1
where used, 1.3.1, 3.2.1, 6.5, 7.3.2, 8.9

discrete types
described, 3.1
used in case statements, 8.8

drivers
active, 12.6.1, 12.6.4
assignments to, 2.1.1.2
associated, 12.6.1
constant, 1.1.1.2
creation of, 12.6
described, 12.6.1
determined by null transactions, 2.4, 12.6.1
in kernel process, 12.6, 12.6.1
initial values of, 12.6
of guarded signals, 4.3.1.2, 5.3

disconnection of, 5.3, 12.3.2.3
of signals, 4.3.1.2

DRIVING attribute, 7.4.1, 7.4.2, 14.1
DRIVING_VALUE attribute, 7.4.1, 7.4.2, 14.1

E

elaboration
dynamic, 12.5
implementation-dependent, 12.3, 12.4
of configuration declaration, 1.3
of processes, Clause 12, 12.1
of statement parts, 12.4, 12.4.1–12.4.4
Copyright © 2002 IEEE. All rights reserved. 275

IEEE
Std 1076-2002 IEEE STANDARD VHDL
elements
associations

named, 7.3.2
positional, 7.3.2
syntax, 7.3.2
where used, 7.3.2

terminology, 3.1
entities

associations
with architectures, 1.2
with components, 5.2.1.1

overloaded, 10.5
entities. See also: named entities.
entity aspect

default, 5.2.2
described, 5.2.1.1
syntax, 5.2.1.1
where used, 5.2.1

entity classes
syntax, Clause 5, 5.1
usage, 4.7
where used, 4.6, 4.7, Clause 5, 5.1

entity declarations
as declarative regions, 10.1
described, Clause 1, 1.1, 1.1.1, 1.1.1.1–1.1.1.2, 1.1.2–1.1.3
scope of, 10.2
syntax, 1.1
usage, 5.2.1.1
visibility

causing default bindings, 5.2.2, Clause 12, 12.1
where used, Clause 11, 11.1

entity declarative part, Clause 1, 1.1
described, 1.1.2
syntax, 1.1.2

entity designators
restrictions, 5.1
syntax, 5.1
where used, Clause 5, 5.1, 14.1

entity headers
described, 1.1.1, 1.1.2
syntax, 1.1.1
where used, Clause 1, 1.1

entity name lists
syntax, 5.1
where used, Clause 5, 5.1

entity names
usage, 5.2.2
where used, 1.1.3, 1.3, 5.2.1.1, 9.6

entity specifications
elaboration of, 12.3.2.1
syntax, 5.1
where used, Clause 5, 5.1

entity statement part
described, 1.1.3
syntax, 1.1.3
usage, Clause 1, 1.1

entity tags
restrictions, 5.1
syntax, 5.1
276 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
where used, Clause 5, 5.1
enumeration types

described, 3.1.1, 3.1.1.1
elaboration of, 12.3.1.2
predefined, 3.1.1.1

enumeration types. See also: literals—enumeration.
EVENT attribute, 4.3.2, 7.4.1, 7.4.2, 14.1
exit statements

described, 8.11
syntax, 8.11
where used, Clause 8

explicit ancestor. See: signals.
exponents

syntax, 13.4.1, 13.4.2
where used, 13.4.1, 13.4.2

exporting data. See: files—external.
expressions

as initial values of variables, 4.3.1.3
associated with signal parameters, 2.1.1.3
Boolean, Clause 8, 8.1
containing signal names, 12.3
default

for interface objects, 4.3.2, 4.3.2.2
for signal values, 4.3.1.2

defining the type of, 7.3.4
described, Clause 7, 7.1
guard, 9.1
in attribute specifications, 12.3.2.1
initializing a constant, 12.3.1.4
primaries in

described, 7.1
where used, Clause 7, 7.1

qualified, Clause 3
described, 7.3.4
syntax, 7.3.4
used as globally static primaries, 7.4.2
used as locally static primaries, 7.4.1
where used, 7.1, 7.2, 7.4

restrictions
on type, 4.3.1, 4.3.1.1
on type in case statements, 8.8

sequences in, 7.2
shift

syntax, 7.1
where used, 7.1

simple
syntax, 7.1
where used, 7.1, 7.3.2

static
definition of globally static, 7.4, 7.4.2
definition of locally static, 7.4
described, 7.4, 7.4.1, 7.4.2
in concurrent assertion statements, 9.4
where used, 1.3.1, 4.3.2

syntax, 7.1
time

usage, 8.4.1
where used, Clause 8, 8.1, 8.4.1

treatment during elaboration, 12.3
Copyright © 2002 IEEE. All rights reserved. 277

IEEE
Std 1076-2002 IEEE STANDARD VHDL
universal
described, 7.5

used as operands, 7.3
where used, 4.3.1, 4.3.1.1, 4.3.1.2, Clause 5, 5.1, 6.4, 6.6, 7.3.4, 8.2, 8.3, 8.5, 8.8, 8.12, 9.5.2

expressions. See also: guards.
external blocks, 1.3.1

F

factors
syntax, 7.1
where used, 7.1

file declarations
described, 4.3.1.4
elaboration of, 12.3.1.4
syntax, 4.3.1.4
where used, 1.1.2, 1.2.1, 2.2, 2.5, 4.3.1, 9.2

file types
described, 3.4, 3.4.1
operations implicitly declared for, 3.4.1
restrictions

on attributes, 4.4
on signals, 4.3.1.2
on subprogram parameters, 4.3.1.4, 4.3.2, 4.3.2.1
on subtype indications, 4.2, 4.3.2

usage, Clause 3
with external files, 4.3.1.4, 4.3.2

where prohibited, 3.3, 4.3.1
files

explicit, 4.3.1.4
external, 4.3.1.4
read operations, 4.3.2
used as subprogram parameters, 2.1.1.3
write operations, 4.3.2

floating point types
described, 3.1.4, 3.1.4.1
elaboration of, 12.3.1.2
portability issues, Annex C
predefined, 3.1.4.1
required precision, 3.1.4
syntax, 3.1.4

FOREIGN attribute, 1.1.2, 1.1.3, 1.2, 1.2.1, 1.2.2, 2.2, 12.4, 14.2
exclusion from elaboration, 12.3
portability issues, Annex C

foreign subprograms, 2.2
formal designators

syntax, 4.3.2.2
where used, 4.3.2.2

formal parameters
as objects, 4.3
described, 2.1.1
scope of, 10.2
syntax, 2.1.1
type profiles, 2.3, 10.5
used as constants, 4.3.1.1
where used, Clause 2, 2.1

formal parameters. See also: subprogram specifications.
278 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
formals
in map aspects, 5.2.1.2, 9.1
syntax, 4.3.2.2
unassociated, 5.2.1.2
usage, 4.3.2.2
where used, 4.3.2.2

formals. See also: formal parameters, generics, ports.
format effectors

end of line, 13.2
syntax, 13.1
where used, Clause 13, 13.1

function calls
defining parentage of subprograms, 2.2
described, 7.3.3
evaluation of, 7.3.3
in association lists

as actuals, 4.3.2.2
as formals, 4.3.2.2

restrictions
on expanded names, 6.3
on groups, 4.7

syntax, 7.3.3
treatment during elaboration, 12.3, 12.3.1
usage

as globally static primaries, 7.4.2
as locally static primaries, 7.4.1
general description, Clause 2, 2.1

where used, 6.1, 7.2
functions

in signatures, 2.3.2
invoking execution of, 7.3.3
object classes for, 2.1.1
overloaded, 4.2
portability issues of impure, Annex C
predefined

NOW, 14.1, 14.2
pure, 2.1, 2.2, 2.7, 7.4.2
resolution, 2.4, 4.2
returned values, 8.12
syntax, 2.1
usage, Clause 2, 2.1
where used, 4.3.2.2

functions. See also: return statements.

G

generate parameters
as objects, 4.3
constants, 4.3.1.1, 12.4.2
usage, 4.3

as globally static primaries, 7.4.2
generate statements

as declarative regions, 10.1
defining internal blocks, 1.3.1
described, 9.7
elaboration of, 12.4.2
Copyright © 2002 IEEE. All rights reserved. 279

IEEE
Std 1076-2002 IEEE STANDARD VHDL
labels, 1.3.1
elaboration of, 12.4.2
where used, 1.3.1

syntax, 9.7
where used, Clause 9

generation schemes
syntax, 9.7
where used, 9.7

generic clauses
elaboration of, 12.2.1
syntax, 1.1.1.1
where used, 4.5, 9.1

generic lists
defined, 1.1.1
syntax, 1.1.1, 1.1.1.1
where used, 1.1.1, 1.1.1.1

generic map aspect
default, 5.2.2
described, 5.2.1.2
syntax, 5.2.1.2
usage, 5.2.1
where used, 5.2.1, 9.1, 9.6

generic map aspects
elaboration of, 12.2.2

generics
constants, 1.1.1.1, 4.3.1.1, 12.2.1
described, 1.1.1.1
formal, 5.2.2

in binding indications, 5.2.1
in block headers, 9.1

in top-level design entity, 12.1
of unconstrained array types, 3.2.1.1
scope of, 10.2
where used, 4.3.2.2

group constituents
syntax, 4.7
where used, 4.7

group declarations
described, 4.6, 4.7
syntax, 4.7
usage, 4.7
where used, 1.1.2, 1.2.1, 1.3, 2.2, 2.5, 9.2

group template declarations
described, 4.6
syntax, 4.6
where used, 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

group templates, 4.6
guarded signal specifications

described, 5.3
elaboration of, 12.3.2.3
syntax, 12.3.2.3
where used, 12.3.2.3

guards, 4.3.1.2, 9.1, 9.4

H

HIGH attribute, 3.1.4.1, 14.1
homographs, 10.3, 11.2
280 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
I

identifiers, 4.2
basic

described, 13.3.1
syntax, 13.3.1
where used, 13.3.1

extended
described, 13.3.2
syntax, 13.3.2
where used, 13.3.2

of named entities, Clause 4
referenced within their own declarations, 10.3
restrictions, 13.9
scope of, 10.2
separators required between, 13.2
simple names for, 0.2.1
syntax, 13.3.1, 13.3.2
visibility rules for, 10.3–10.5
where used, 1.1, 1.2, 1.3, 11.2
with overlapping scopes, 10.3

identifiers. See also: names.
IEEE Std 1164-1993, Annex D
if statements

described, 8.7
syntax, 8.7
usage, 9.5.1
where used, Clause 8, 9.5, 9.5.1

IMAGE attribute, 14.1
portability issues, Annex C

importing data. See: files—external.
IN or INOUT ports. See: ports.
incomplete type declarations, 3.3.1
index constraints

described, 3.2.1.1
elaboration of, 12.3.1.3
globally static, 7.4.2
in access types, 3.3
index ranges of array types, 3.2.1.1, 3.2.1.2, 6.5
locally static, 7.4.1
syntax, 3.2.1
usage, 7.3.6
where used, 3.2.1, 4.2

index specifications
containing discrete ranges, 1.3.1
syntax, 1.3.1
where used, 1.3.1

index subtype definitions
syntax, 3.2.1
where used, 3.2.1

index subtypes
compatibility with discrete ranges, 3.2.1.1
of shift operators, 7.2.3

instance names, syntax of, 14.1
INSTANCE_NAME attribute, 14.1
instantiated units

syntax, 9.6
where used, 9.6
Copyright © 2002 IEEE. All rights reserved. 281

IEEE
Std 1076-2002 IEEE STANDARD VHDL
instantiation lists
syntax, 5.2
where used, 5.2

INTEGER type, 3.1.2, 3.2.1.1
integer types

described, 3.1.2
elaboration of, 12.3.1.2
predefined, 3.1.2.1
syntax, 3.1.2

integers
based, 13.4.2
syntax, 13.4.1, 13.4.2
where used, 13.4.1, 13.4.2

interface constant declarations
described, 4.3.2
syntax, 4.3.2
usage, 4.3.2.2
where used, 4.3.2.1

interface declarations
described, 4.3.2, 4.3.2.1, 4.3.2.2
usage, 4.3.1
where used, 4.3.2.1

interface file declarations
described, 4.3.2
syntax, 4.3.2
where used, 4.3.2.1

interface lists
described, 4.3.2.1
of formal parameters, 2.1.1

elaboration of, 12.3.1.1
of generics, 1.1.1.1
of ports, 1.1.1.2
where used, 1.1.1.1, 1.1.1.2

interface objects
defined, 4.3.2
in top-level design entity, Clause 12, 12.1
index ranges

obtained by association, 3.2.1.1
of constrained arrays, 3.2.1.1

specifications related to, Clause 5, 5.1
where used, 4.5

interface signal declarations
described, 4.3.2
syntax, 4.3.2
where used, 4.3.2.1

interface variable declarations
described, 4.3.2
syntax, 4.3.2
where used, 4.3.2, 4.3.2.1

internal blocks, 1.3.1
ISO 8859 character set, 3.1.1.1, 13.1, Annex D
italics, meaning of, 0.2.1, 0.2.3, 4.1, 14.2
iteration schemes

for loops, 8.9
syntax, 8.9
where used, 8.9
while loops, 8.9
282 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
L

labels
block, 9.1
bound, 5.2.1
generate

where used, 9.7
instantiation

where used, 5.2, 9.6
loop

where declared, 8.9
where used, 8.9–8.11

of concurrent statements, Clause 9
process

where used, 9.2
syntax, 9.7
where used, Clause 8, 8.2–8.4, 8.5–8.8, 8.11, 8.12

LAST_ACTIVE attribute, 4.3.2, 7.4.1, 7.4.2, 14.1
LAST_EVENT attribute, 4.3.2, 7.4.1, 7.4.2, 14.1
LAST_VALUE attribute, 4.3.2, 7.4.1, 7.4.2, 14.1
LEFT attribute, 14.1
LEFTOF attribute, 14.1
LENGTH attribute, 14.1
letters

lowercase, 0.2.1
syntax, 13.1
where used, 13.3.1, 13.3.2, 13.4.2

uppercase, 0.2.2
syntax, 13.1
where used, 13.1, 13.3.1, 13.3.2, 13.4.2

lexical elements, defined, 13.2
libraries

checks during elaboration, 12.3.2.3, 12.4, 12.4.1
design

analysis of, 11.1
denoting items in, 6.3
description, 11.2

resource, 11.2
STD, 11.2
WORK, 11.2
working, 11.2

library clauses
syntax, 11.2
where used, 11.3, 11.4

library indicators
where used, 14.1

library units
effects of changes to, 11.4
existence requirements, 5.2.1.1
scope of, 10.2
syntax, 11.1
where used, 11.1

line breaks, 13.2, 13.5
linkage ports. See: ports.
literals

abstract
based, 13.4.2
decimal, 13.4.1
Copyright © 2002 IEEE. All rights reserved. 283

IEEE
Std 1076-2002 IEEE STANDARD VHDL
described, 13.4, 13.4.1, 13.4.2
in a physical type definition, 3.1.3
separators required between, 13.2
where used, 3.1.3, 7.3.1

bit string
described, 7.3.1, 13.7
syntax, 13.7, Annex A
where used, 7.3.1

character
in enumeration types, 3.1.1
where used, 3.1.1, 3.1.1.1

described, 13.5
referenced within their own declarations, 10.3
scope of, 10.2
syntax, 13.5
where used, 4.3.3, 4.7, 5.1, 6.3
with overlapping scopes, 10.3

described, 7.3.1
enumeration

overloaded, 2.3.1, 3.1.1, 10.5
visibility rules for, 10.3

syntax, 3.1.1
values of, 3.1.1
where used, 3.1.1, 3.1.1.1

integer, 3.1.2, 13.4, 13.4.1, 13.4.2
null, 7.3.1
numeric

allowed variations in subprograms, 2.7
as basic operations, Clause 3
described, 7.3.1
syntax, 7.3.1
where used, 7.3.1

physical
syntax, 3.1.3
where used, 3.1.3, 7.3.1

real, 13.4, 13.4.1, 13.4.2
string, Clause 3

described, 7.3.1, 13.6
syntax, 13.6
where used, 2.1, 7.4.1

syntax, 7.3.1
where used, 7.2, 7.4.1

logical name list, 11.2
loop parameters

as context for overload resolution, 10.5
as objects, 4.3
constants, 4.3.1.1
usage, 4.3

loop parameters. See: parameter specifications—loop.
loop statements

as declarative regions, 10.1
described, 8.9
execution of, 8.9, 8.10
syntax, 8.9
where used, Clause 8

loop statements. See also: exit statements, next statements.
loops, avoiding infinite, 9.3
LOW attribute, 3.1.4.1, 14.1
284 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
LRM
exclusions from language definition, 0.2.2
intent, 0.1
notes, 0.2.3
semantics, 0.2.2
structure, 0.2
syntax conventions, 0.2.1
terminology, 0.2, 4.3.1.2

M

models, simulation of, 12.6, 12.6.1–12.6.4
delta cycle, 12.6.4
initialization phase, 12.6.4
simulation cycle, 12.6.4

modes
defaults for interface declarations, 4.3.2
of formal parameters, 2.1.1
of interface objects, 4.3.2, 4.3.2.1
of ports, 1.1.1.2
syntax, 4.3.2
where used, 4.3.2

N

named entities
aliases of, 4.3.3, 5.1
attributes of, 4.4, 6.6
groupings of, 4.6, 4.7
identifiers of, Clause 4
overloaded, 5.1
restrictions on globally static primaries, 7.4.2
scope of, 10.2
specifications of, 5.1

names
allowed as primaries, 7.1
allowed variations in subprograms, 2.7
ambiguous, 6.4, 7.3.3
as a basic operation, Clause 3
declared in entities, 1.1.2
expanded, 6.3
general description, Clause 6, 6.1
in declarations, Clause 4
in paths, 14.1
indexed

described, 6.4
syntax, 6.4
usage, 7.3.3
where used, 6.1

locally static, 6.1
logical

syntax, 11.2
usage, 11.2
where used, 11.2

of architecture bodies, 1.2
Copyright © 2002 IEEE. All rights reserved. 285

IEEE
Std 1076-2002 IEEE STANDARD VHDL
of attributes, 4.4
described, 6.6
syntax, 6.6
where used, 6.1

of delimiters, 13.2
of files, 4.3.1.4
of interface declarations, 4.3.2, 4.3.2.1
of objects, 3.2.2
of primary units, 6.3
of signals, 5.3, 6.1
of slices

described, 6.5
syntax, 6.5
where used, 6.1

of special characters, 13.1
of variables, 6.1
overloaded, 10.5
prefixes

described, 6.1
of attributes, 4.4
of subprograms, 10.5
syntax, 6.1
where used, 6.3–6.6

selected
described, 6.3
syntax, 6.3
where used, 6.3, 10.4

simple, 0.2.1
described, 6.2
syntax, 6.2
where used, 5.1, 6.1, 6.2

static
defined, 6.1

suffixes
syntax, 6.3
usage in use clauses, 10.4
where used, 6.3

syntax of, 0.2.1
where used, 4.3.3, 7.2, 8.4

names. See also: named entities, path names.
NATURAL subtype, 3.2.1.2
nets

creation of, Clause 12, 12.1
defined, 12.6.2

next statements
described, 8.10
syntax, 8.10
usage, 8.10
where used, Clause 8

non-object aliases
described, 4.3.3.2

notation, decimal, 13.4.1
NOW

predefined function, 14.1
null

default initial values of variables, 4.3.1.3
in access types, Clause 3, 7.3.1
ranges, 3.1
transactions, 2.4, 4.3.1.2, 8.4.1
286 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
used as a literal, 7.3.1
waveform elements, 8.4.1

null statements
described, 8.13
syntax, 8.13
where used, Clause 8, 9.5

numeric types
closely related, 7.3.5
described, 3.1
operators

adding, 7.2.4
sign, 7.2.5

numeric types. See also: literals—numeric.

O

object aliases
described, 4.3.3.1

object declarations
described, 4.3.1, 4.3.1.1–4.3.1.4, 4.3.2, 4.3.2.1, 4.3.2.2, 4.3.3, 4.3.3.1, 4.3.3.2
designated by access value, 3.3
elaboration of, 12.3.1.4
of signals, 3.2.1.1
of variables, 3.2.1.1
syntax, 4.3.1
where used, 4.3

objects
aliases of, 4.3.3.1
allocation and deallocation, 3.3.2
allowed as primaries, 7.1
created by allocators, 7.3.6
defined, 4.3
described, 4.3, 4.3.1, 4.3.1.1–4.3.1.4, 4.3.2, 4.3.2.1, 4.3.2.2, 4.3.3, 4.3.3.1, 4.3.3.2
explicitly declared, 4.3.1

aliases of, 4.3.3.2
initial values of, 12.3.1.4
usage, 4.3
when read, 4.3.2
when updated, 4.3.2

open
file objects, 3.4.1
file parameters, 2.1.1.3
in association lists, 4.3.2.2
in entity aspects, 5.2.1.1
in map aspects, 5.2.1.2
ports, 1.1.1.2

operands, 7.3, 7.3.6
convertible universal, 7.3.5

operations
basic, Clause 3, 7.2.3, 7.3.2, 7.3.4
short-circuit, 7.2
visibility of predefined, 10.3

operator symbols
referenced within their own declarations, 10.3
scope of, 10.2
syntax of, 2.1
where used, 2.1, 4.3.2.2, 5.1, 6.1, 6.3
with overlapping scopes, 10.3
Copyright © 2002 IEEE. All rights reserved. 287

IEEE
Std 1076-2002 IEEE STANDARD VHDL
operators, 7.2, 7.2.1–7.2.7
absolute (abs), 7.2.7
adding

described, 7.2.4
where used, 7.1

addition (+), 7.2.4
arithmetic

for integer types, 3.1.2
for physical types, 3.1.3

binary, 2.3.1, 7.2.1
concatenation (&), 7.2.4
division (/), 7.2.6
equality (=), 2.3.1, 7.2.2, 8.4.1, 8.8

overloaded, 12.6.2
exponentiating (**), 7.2.7
for universal expressions, 7.5
identity (+), 2.3.1, 7.2.5
inequality(/=), 7.2.2
logical, 7.2.1
miscellaneous, 7.2.7
modulus (mod), 7.2.6
multiplication (*), 26-27
multiplying

described, 7.2.6
where used, 7.1

negation (-), 2.3.1, 7.2.5
ordering (<, <=, >, >=), 7.2.2
overloaded, 2.3.1, 2.3.2
precedence of, 7.2, 7.2.1, 7.2.5
predefined, Clause 3, 7.1, 7.2
relational

described, 7.2.2
where used, 7.1

remainder (rem), 7.2.6
rotate left logical (rol), 7.2.3
rotate right logical (ror), 7.2.3
shift

described, 7.2.3
index subtypes of, 7.2.3
subtype of result, 7.2.3
values returned, 7.2.3
where used, 7.1

shift left arithmetic (sla), 7.2.3
shift left logical (sll), 7.2.3
shift right arithmetic (sra), 7.2.3
shift right logical (srl), 7.2.3
short-circuit, 2.3.1
sign operators, 7.2.5

where used, 7.1
subtraction (-), 7.2.4
unary, 2.3.1, 7.2.1, 7.2.5
user-defined, 2.3.1

operators. See also: characters, symbols.
optional items, 0.2.3
options

syntax, 9.4
where used, 9.5, 9.5.2
288 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
others
in array aggregates, 7.3.2.2
in record aggregates, 7.3.2.1
where used, 7.3.2, 7.3.2.1, 7.3.2.2

OUT ports. See: ports.
overload resolution

context of, 10.5
for selected names, 6.3
other factors for legality of named entities, 10.5

overloading. See: literals—enumeration, operators, resolution functions, signatures, subprograms.

P

package bodies
containing group declarations, 4.7
described, Clause 2, 2.6
syntax, 2.6
values of deferred constants, 4.3.1.1
visibility, 2.6
when unnecessary, 2.5
where used, 11.1

package declarations
deferred constants, 4.3.1.1
denoted by group declarations, 4.7
described, Clause 2, 2.5
scope of, 10.2
syntax, 2.5
where used, 11.1

packages
as declarative regions, 10.1
denoting items in, 6.3
elaboration of, 12.1
in instance names, 14.1
in path names, 14.1
predefined

location in STD library, 11.2
STANDARD, 14.2
TEXTIO, 3.4.1, 14.3

scope of declarations in, 2.5
usage, Clause 2

parameter specifications
generate

where used, 9.7
loop

elaboration of, 12.5
restrictions on, 8.9
syntax, 8.9
where used, 8.9

parameters
constant, 2.1.1.1
file, 2.1.1.3
mechanisms for passing, 2.2, 4.3.2.2
of functions, 7.3.3
of procedures, 8.6
signal, 2.1.1.2, 12.3
variable, 2.1.1.1

parent
of subprogram, 2.2
Copyright © 2002 IEEE. All rights reserved. 289

IEEE
Std 1076-2002 IEEE STANDARD VHDL
passive statements, 1.1.3
path names, syntax of, 14.1
PATH_NAME attribute, 7.4.1, 14.1

portability issues, Annex C
physical types

described, 3.1.3, 3.1.3.1
elaboration of, 12.3.1.2
position numbers of values, 3.1.3
predefined, 3.1.3.1
syntax, 3.1.3
unit names, 3.1.3

physical types. See also: literals—physical.
port clauses

elaboration of, 12.2.3, 12.2.4
syntax, 1.1.1
where used, 4.5, 9.1

port lists
containing interface signals, 4.3.2
defined, 1.1.1
syntax, 1.1.1.2
where used, 1.1.1

port map aspect
default, 5.2.2
described, 5.2.1.2
elaboration of, 12.2.4
syntax, 5.2.1.2
usage, 5.2.1
where used, 5.2.1, 9.1, 9.6

ports
actual, 1.1.1.2
as signal sources, 4.3.1.2
associations, 1.1.1.2
connected, 1.1.1.2
described, 1.1.1.2
formal, 1.1.1.2, 5.2.2

as objects, 4.3
in binding indications, 5.2.1
in block headers, 9.1

in top-level design entity, Clause 12, 12.1
INOUT, 1.1.1.2
input, 1.1.1.2
linkage, 1.1.1.2

portability issues, Annex C
of unconstrained array types, 3.2.1.1
open, 1.1.1.2
output, 1.1.1.2
restrictions on mode, 1.1.1.2
scope of, 10.2
unassociated, 1.1.1.2
unconnected, 1.1.1.2, 4.3.2.2
where used, 4.3.2.2

ports. See also: interface objects.
POS attribute, 3.1.3, 14.1
POSITIVE subtype, 3.2.1.2
PRED attribute, 14.1
primaries

globally static, 7.4.2
locally static, 7.4.1
290 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
primary unit declarations
syntax, 3.1.3
where used, 3.1.3

procedure call statements
defining parentage of subprograms, 2.2
described, 8.6
execution of, 8.6
syntax, 8.6
usage, 2.1, 9.3
where used, Clause 8, 9.3

procedure call statements. See also: concurrent procedure call statements.
procedure calls

portability issues, Annex C
procedures

execution of, 8.12
object classes for, 2.1.1
parents of, 8.1
persistence of variables in, 4.3.1.3
restrictions when invoked by concurrent procedure call statements, 9.3
syntax, 2.1
usage, Clause 2, 2.1

procedures. See also: return statements.
process declarative items

syntax, 9.2
where used, 9.2

process declarative part
syntax, 9.2
where used, 9.2

process statement part
syntax, 9.2
where used, 9.2

process statements
as declarative regions, 10.1
described, 9.2, 12.6.1
drivers in, 2.1.1.2
elaboration of, 12.4.4
execution of, 9.2, 9.5
labels within, Clause 8
syntax, 9.2
where used, 1.1.3, Clause 9

processes
communicating via file I/O, Annex C
execution of, 9.2.1, 12.6.4
initialization of, 12.6.4
interconnection via concurrent statements, Clause 9
kernel, 12.6
non-postponed, 9.2, 12.6.4
passive, 9.2
persistence of variables in, 4.3.1.3
postponed, 8.1, 9.2, 9.4, 9.5, 12.6.4
suspended, 8.1

pulse rejection limits, 3.1.3.1, 8.4

Q

QUIET attribute, 2.2, 4.3, 4.3.2, 12.6.2, 14.1
updating of signals having, 12.6.3
Copyright © 2002 IEEE. All rights reserved. 291

IEEE
Std 1076-2002 IEEE STANDARD VHDL
R

RANGE attribute, 13.9, 14.1
range constraints

bounds
for floating point types, 3.1.4
for integer types, 3.1.2
for physical types, 3.1.3

elaboration of, 2.3.1.3
globally static, 7.4.2
in subtype indications, 3.1
locally static, 7.4.1
syntax, 3.1
where used, 3.1.2, 3.1.3, 3.1.4, 4.2

ranges
bounds, 3.1
globally static, 7.4.2
index, 3.2.1
locally static, 7.4.1
null, 3.1
order, 3.1
syntax, 3.1
undefined, 3.2.1
where used, 3.2.1

read-only mode. See: file types, operations.
REAL type

described, 3.1.4.1
REAL type. See also: literals—real.
record types

aggregates, 7.3.2
described, 3.2.2
elaboration of, 12.3.1.2
implicit file operations for, 3.4.1
scope of, 10.2
subprogram parameters of, 2.1.1.1
syntax, 3.2.2
where used, 3.2

records
elements of, 6.3
index ranges of array types, 3.2.1.1

relations
syntax, 7.1
where used, 7.1

report statements
described, 8.3
syntax, 8.3
where used, Clause 8

reserved words, 0.2.1
described, 13.9

resolution functions
described, 2.4
for resolved signals, 4.3.1.2
portability issues, Annex C
references to overloaded subprograms, 2.3, 10.5
restrictions with allocators, 7.3.6
usage, 4.2
where used, 4.2

resolution limit, 3.1.3.1
292 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
return statements
described, 8.12
restrictions, 8.12, 10.5
syntax, 8.12
where used, Clause 8, 8.12

REVERSE_RANGE attribute, 14.1
RIGHT attribute, 14.1
RIGHTOF attribute, 14.1

S

scalar types
described, Clause 3, 3.1, 3.2
implicit file operations for, 3.4.1
restrictions

on signals, 4.3.1.2
subprogram parameters of, 2.1.1.1
used as formal signal parameters, 2.1.1.2

scope
of block configurations, 1.3.1
of declarations, Clause 4, 10.2
of library clauses, 11.2
overlapping, 10.3
rules for elaboration, 12.3.1

secondary unit declarations
syntax, 3.1.3
where used, 3.1.3

selected signal assignments, 2.3.1
described, 9.5.2
syntax, 9.5.2
where used, 9.5

sensitivity clauses
application of rules for, 9.3, 9.5
described, 8.1
syntax, 8.1
where used, Clause 8, 8.1

sensitivity lists, 4.3.2
restrictions within process statements, 9.2
syntax, 8.1
where used, Clause 8, 8.1, 9.2

separators, 13.2
defined, 13.2

sequence of statements
syntax, Clause 8
where used, 8.8

sequential statements
syntax, Clause 8
where used, 2.2, Clause 8, 9.2

sequential statements. See also: elaboration—dynamic, process statements.
SEVERITY_LEVEL type, 8.3

where used, 8.3
shared variable declarations

described, 4.3.1.3
portability issues, Annex C
syntax, 4.3.1.3
where used, 1.1.2, 1.2.1, 2.5, 2.6
Copyright © 2002 IEEE. All rights reserved. 293

IEEE
Std 1076-2002 IEEE STANDARD VHDL

l assign-
signal assignment statements, 4.3.1.2
described, 8.4, 8.4.1
drivers affected by, 8.4.1
drivers associated with, 12.6.1
in procedures outside of processes, 8.4.1
restrictions on types in, 8.4
syntax, 8.4
targets of

composite types, 8.4.1
scalar types, 8.4.1

where used, Clause 8, 9.5
signal assignment statements. See also: concurrent signal assignment statements, conditional signa
ments, selected signal assignments.
signal declarations

described, 4.3.1.2
syntax, 4.3.1.2
where used, 1.1.2, 1.2.1, 2.5, 4.3.1

signal kind
syntax, 4.3.1.2
where used, 4.3.1.2

signal lists
syntax, 5.3
where used, 5.3

signal transforms
described, 9.5, 9.5.1
where used, 9.5, 9.5.1, 9.5.2

signals
active, 12.6.2
associations

with formal parameters, 2.1.1.2
with formal ports, 4.3.2.2

basic, 12.6.2
bus, 2.1.1.2, 2.4, 4.3.2
denoted by concurrent procedure call statements, 9.3
drivers of, 2.1.1.2, 12.6.1
events on, 12.6.2
explicit, 2.2, 4.3.1.2, 12.6.4

when updated, 12.6.2
GUARD, 9.1, 9.3, 9.4, 9.5, 12.6

effect on simulation cycle, 12.6.4
when updated, 12.6.3

guarded, 2.1.1.2, 2.2, 4.3.1.2, 4.3.2, 5.3
elaboration of, 12.3.2.3
usage, 8.4.1

implicit, 2.2, 4.3, 9.1, 12.6.4
when updated, 12.6.2, 12.6.3

index ranges of, 3.2.1.1
initial values of, 4.3.1.2
quiet, 12.6.2
registers, 12.6.2

when updated, 12.6.2
resolved, 2.4, 4.2, 4.3.1.2
restrictions within blocks, 12.3
sources of, 4.3.1.2
terminology, 4.3.1.2
unresolved, 4.3.1.2, 12.3.2
used as subprogram parameters, 2.1.1.2
294 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
values
default, 4.3.1.2
driving, 12.6.2
effective, 12.6.2
in blocks, 12.3
propagation of, 2.3.1, 12.6.2

when updated, 4.3.2
where used, 4.3.2.1, Clause 8

signatures
described, 2.3.2
syntax, 2.3.2
usage, 6.6
where used, 4.3.3.1, 5.1, 6.6

signs. See: operators—sign operators.
simple expressions, where used, 3.1
simple names, where used, 6.6
SIMPLE_NAME attribute, 14.1
simulation cycle. See: models, simulation of.
slices

null, 6.5
of constants, 4.3.1.1
of objects, 4.3

specifications
defined, Clause 5
elaboration of, 12.3.2.1–12.3.2.3

STABLE attribute, 2.2, 4.3, 4.3.2, 12.6, 14.1
STANDARD package

contents of, 14.2
location in STD library, 11.2
usage, 0.2.2, 2.2, Clause 3, 3.1.1.1, 3.1.3.1, 3.2.1.2, 7.2, 7.5

statement transforms, 9.5
STRING type, 3.2.1.2, 4.3.1.4

where used, 8.3
string types. See also: literals—string.
structural designs, 9.6
subaggregates. See: aggregates.
subelements

of constants, 4.3.1.1
of objects, 4.3.1
of signals, 4.3.1.2
of variables, 4.3.1.3
terminology, Clause 3
usage, Clause 3

subprogram bodies
containing group declarations, 4.7
defined in package, 2.6
described, 2.2
elaboration of, 12.3.1.1
execution, 2.2
labels within, Clause 8
syntax, 2.2
usage, Clause 2
where used, 1.1.2, 1.2.1, 2.2, 2.6, 9.2

subprogram calls
object classes for, 2.1.1
recursive, 2.1
to overloaded subprograms, 2.3, 10.5
usage, 2.2
Copyright © 2002 IEEE. All rights reserved. 295

IEEE
Std 1076-2002 IEEE STANDARD VHDL
subprogram declarations
described, 2.1, 2.2
elaboration of, 12.3.1.1, 12.5
scope of, 10.2
syntax, 2.1
usage, 2.1, 2.2
where used, 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

subprogram declarative part
syntax, 2.2
usage, 5.1
where used, 2.2

subprogram kind
syntax, 2.2
usage, 2.2
where used, 2.2

subprogram specifications
described, 2.2
scope of, 10.2
where used, 2.2

subprogram statement part
syntax, 2.2
where used, 2.2

subprograms
as declarative regions, 10.1
conformance rules, 2.7
drivers in, 2.1.1.2
foreign, 2.2
of unconstrained array types, 3.2.1.1
overloaded, 2.3, 2.3.1

attributes of, 5.1
resolution of, 10.5
visibility rules for, 10.3

parents of, 2.2
usage, Clause 2

subtype declarations
described, 4.2
elaboration of, 12.3.1.3
syntax, 4.2
where used, 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

subtype indications
containing index constraints, 3.2.1.1
containing range constraints, 3.1
direction, 4.2
elaboration of, 12.3.1.3, 12.3.1.5, 12.5
of incomplete types, 3.3.1
syntax, 4.2
where used, 3.2.1, 3.3, 4.2, 4.3.1.1–4.3.1.4, 4.3.2, 4.3.3, 7.3.6

subtypes
base type of, 4.2
bounds, 2.1.1.1
checking, 8.4.1
conversions, 3.2.1.1, 8.12

with array variables, 8.5.1
designated, 3.3
direction, 2.1.1.1
globally static, 7.4.2
locally static, 7.4.1
of function results, 2.1
operations, Clause 3
296 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
static, 7.4
usage, Clause 3

SUCC attribute, 14.1
symbols

assignment (:=), 4.3.1.1–4.3.1.3, 4.3.2
box (<>)

in group template declarations, 4.6
in undefined ranges, 3.2.1

symbols. See also: characters, operators.

T

targets
array variables, 8.5.1
drivers for, 8.4.1
guarded, 9.5
of signal assignment statements, 8.4
of variable assignment statements, 8.5
syntax, 8.4
where used, 8.4, 8.5, 9.5.1, 9.5.2

terms
syntax, 7.1
where used, 7.1

TEXTIO package
contents of, 14.3
location in STD library, 11.2
usage, 3.4.1

time resolutions, portability issues, Annex C
TIME type, 3.1.3.1, 8.4.1
timeout clauses

described, 8.1
syntax, 8.1
where used, 8.1

TRANSACTION attribute, 2.2, 4.3, 4.3.2, 12.6, 14.1
initial value of signals, 12.6.4
updating of signals having, 12.6.3

transactions
null, 8.4.1

transactions. See also: drivers.
type conversions

as a basic operation, Clause 3
described, 7.3.5
implicit, 8.4, 8.5, 8.1.2, 10.5
in association lists

as actuals, 4.3.2.2
as formals, 4.3.2.2

restrictions
in signal associations, 4.3.2.2
on operands, 7.3.5

syntax, 7.3.5
usage

as globally static primaries, 7.4.2
as locally static primaries, 7.4.1

where used, 95
Copyright © 2002 IEEE. All rights reserved. 297

IEEE
Std 1076-2002™
type declarations
as declarative regions, 10.1
described, 4.1
elaboration of, 12.3.1.2
incomplete, 3.3.1
syntax of full, 4.1
where used, 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

type marks
described, 4.2
in incomplete type declarations, 3.3.1
syntax, 4.2
where used, 2.3.2, 3.2.1, 4.2, 4.3.2.2, 4.4, 5.3, 7.3.5

type profiles, 2.3, 2.3.2
of enumeration literals, 3.1.1

types
anonymous, 3.1.2, 3.1.2.1, 3.1.3, 3.1.4, 4.1, 14.2

universal integer, 3.1.2, 3.2.1.1, 7.3.1, 7.3.5, 7.5, 8.8, 13.4, 14.2
universal real, 7.3.1, 7.3.5, 7.5, 13.4, 14.2

base type of, Clause 3, 4.1
character, 3.1.1.1
closely related, 7.3.5
compatibility with index constraints, 3.2.1.1
constraints, Clause 3
designated, 3.3
floating point, 7.5
in resolution functions, 2.4
in rules for overload resolution, 10.5
incomplete, 3.3.1
of expressions, 7.1
operations, Clause 3
portability issues, Annex C
predefined

BIT, 14.2
BIT_VECTOR, 14.2
BOOLEAN, 14.2
CHARACTER, 14.2
FILE_OPEN_KIND, 14.2
FILE_OPEN_STATUS, 14.2
INTEGER, 14.2
NATURAL, 14.2
POSITIVE, 14.2
REAL, 14.2
SEVERITY_LEVEL, 14.2
STRING, 14.2
TIME, 14.2

terminology, 3.1
types. See also: names of specific type categories.

U

underlines, 13.3.1, 13.4.1, 13.4.2
universal types. See: types—anonymous.
298 Copyright © 2002 IEEE. All rights reserved.

IEEE
LANGUAGE REFERENCE MANUAL Std 1076-2002
use clauses
described, 10.4
scope of, 10.2
syntax, 10.4
usage, 2.5

with multiple mentions of a library unit, 11.3
with standard packages, 11.2

where used, 1.1.2, 1.2.1, 1.3, 1.3.1, 2.2, 2.5, 2.6, 9.2, 11.3

V

VAL attribute, 3.1.3, 14.1
VALUE attribute, 14.1
values

allowed as primaries, 7.1
conversion between abstract and physical, 3.1.3

variable assignment statements, 4.3.1.3
described, 8.5
restrictions on types in, 8.5
syntax, 8.5
where used, Clause 8

variable declarations
described, 4.3.1.3
syntax, 4.3.1.3
where used, 2.2, 4.3.1, 9.2

variables
default initial values, 4.3.1.3
explicit, 4.3.1.3
in kernel process, 12.6
index ranges of, 3.2.1.1
initial values of, 4.3.1.3
of access types, 3.3, 4.7
used as subprogram parameters, 2.1.1.1
where used, 4.3.2.2

variables. See also: shared variable declarations.
visibility

by selection, 10.3
direct, 10.3
hidden, 10.3
of block configurations, 1.3.1
of entity declarations, 5.2.2
of entity declarative items, 1.1.2
of generic constants, 1.1.1.1
of identifiers, Clause 4
of items in package bodies, 2.6
of logical names in library clauses, 11.2
of overloaded subprograms, 2.3
of ports, 1.1.1.2
of predefined operations, 10.3
rules

for declarations, 10.3
for elaboration, 12.3.1
for identifiers, 10.3, 10.5
of order in which design units are analyzed, 11.4

within block configurations, 10.3
Copyright © 2002 IEEE. All rights reserved. 299

IEEE
Std 1076-2002™

300

Copyright © 2002 IEEE. All rights reserved.

W

wait statements
described, 8.1
implicit, 9.2
syntax, 8.1
usage

with concurrent procedure call statements, 9.3
with concurrent signal assignment statements, 9.5

where prohibited, 8.1, 9.2
where used, 8.1

wave transforms
syntax, 9.5.1
where used, 9.5.1

waveform elements
evaluation of, 8.4.1
null, restrictions on, 8.4.1, 9.5
syntax, 8.4.1
unaffected, 9.5
where used, 8.4

waveforms
conditional

syntax, 9.5.1
where used, 9.5, 9.5.1

projected output
described, 12.6.2
updating, 8.4.1

selected
syntax, 9.5.2
where used, 9.5.2

syntax, 8.4
where used, 8.4, 9.5.1, 9.5.2

WAVES standard, Annex D
write-only mode. See: file types, operations.

	Title Page
	Introduction
	Participants
	CONTENTS
	0. Overview of this standard
	0.1 Intent and scope of this standard
	0.2 Structure and terminology of this standard

	1. Design entities and configurations
	1.1 Entity declarations
	1.2 Architecture bodies
	1.3 Configuration declarations

	2. Subprograms and packages
	2.1 Subprogram declarations
	2.2 Subprogram bodies
	2.3 Subprogram overloading
	2.4 Resolution functions
	2.5 Package declarations
	2.6 Package bodies
	2.7 Conformance rules

	3. Types
	3.1 Scalar types
	3.2 Composite types
	3.3 Access types
	3.4 File types
	3.5 Protected types

	4. Declarations
	4.1 Type declarations
	4.2 Subtype declarations
	4.3 Objects
	4.4 Attribute declarations
	4.5 Component declarations
	4.6 Group template declarations
	4.7 Group declarations

	5. Specifications
	5.1 Attribute specification
	5.2 Configuration specification
	5.3 Disconnection specification

	6. Names
	6.1 Names
	6.2 Simple names
	6.3 Selected names
	6.4 Indexed names
	6.5 Slice names
	6.6 Attribute names

	7. Expressions
	7.1 Expressions
	7.2 Operators
	7.3 Operands
	7.4 Static expressions
	7.5 Universal expressions

	8. Sequential statements
	8.1 Wait statement
	8.2 Assertion statement
	8.3 Report statement
	8.4 Signal assignment statement
	8.5 Variable assignment statement
	8.6 Procedure call statement
	8.7 If statement
	8.8 Case statement
	8.9 Loop statement
	8.10 Next statement
	8.11 Exit statement
	8.12 Return statement
	8.13 Null statement

	9. Concurrent statements
	9.1 Block statement
	9.2 Process statement
	9.3 Concurrent procedure call statements
	9.4 Concurrent assertion statements
	9.5 Concurrent signal assignment statements
	9.6 Component instantiation statements
	9.7 Generate statements

	10. Scope and visibility
	10.1 Declarative region
	10.2 Scope of declarations
	10.3 Visibility
	10.4 Use clauses
	10.5 The context of overload resolution

	11. Design units and their analysis
	11.1 Design units
	11.2 Design libraries
	11.3 Context clauses
	11.4 Order of analysis

	12. Elaboration and execution
	12.1 Elaboration of a design hierarchy
	12.2 Elaboration of a block header
	12.3 Elaboration of a declarative part
	12.4 Elaboration of a statement part
	12.5 Dynamic elaboration
	12.6 Execution of a model

	13. Lexical elements
	13.1 Character set
	13.2 Lexical elements, separators, and delimiters
	13.3 Identifiers
	13.4 Abstract literals
	13.5 Character literals
	13.6 String literals
	13.7 Bit string literals
	13.8 Comments
	13.9 Reserved words
	13.10 Allowable replacements of characters

	14. Predefined language environment
	14.1 Predefined attributes
	14.2 Package STANDARD
	14.3 Package TEXTIO

	Annex A (informative)
Syntax summary
	Annex B (informative)
Glossary
	Annex C (informative) Potentially nonportable constructs
	Annex D (informative)
Changes from IEEE Std 1076,2000 Edition
	Annex E (informative)
Features under consideration for removal
	Annex F (informative)
Bibliography

