Georgia |
m@
Modeling Complex Behavior
© Sudhakar Yalamanchili, Georgia Institute of Technology ECE 4170 (1)
: ﬁchg'ﬁl Outline

Abstraction and the Process Statement
— Concurrent processes and CSAs

* Process event behavior and signals vs. variables

+ Timing behavior of processes

Attributes

Putting it together > modeling state machines

ECE 4170 (2)

Raising the Level of Abstraction

add R1, R2, R3
r IV sub R3, R4, RS
Data Output move R7, R3

Data input
Address

—

L[]
—

°
Memory Module

Instruction Set Simulation

Concurrent signal assignment statements can easily capture the
gate level behavior of digital systems

Higher level digital components have more complex behaviors

— Input/output behavior not easily captured by concurrent
signal assignment statements

— Models utilize state information
— Incorporate data structures
We need more powerful constructs

ECE 4170 (3)

%@L Extending the Event Model

Description of a

 —
! Complex ;
Input signals : Process

[

Output signals

..... >

» Combinational logic input/output semantics
— Events on inputs causes re-computation
— Re-computation may lead to events on outputs

+ Computation of the value and time of output events
can be a complex process

ECE 4170 (4)

Tech | The Process Statement

library IEEE;

use IEEE.std_logic_1164.all;

entity mux4 is

port (In0, In1, In2, In3: in std_logic_vector (7 downto 0);
Sel: in std_logic_vector(l downto 0);
Z : out std_logic_vector (7 downto 0));

end entity mux4;

architecture behavioral-3 of mux4 is Sensitivity List

process (Sel, In0, Inl, In2, In3) is
variable Zout: std_logic; —————— Use of variables rather than signals

begin
if (Sel =“00”) then Zout := In0;
elsif (Sel =“01”) then Zout :=Inl; Variable Assignment

elsif (Sel = “10”) then Zout := In2;
else Zout:= In3;
end if;
Z <= Zout;
end process;

ECE 4170 (5)

st

The Process Construct

Statements in a process are executed sequentially

A process body is structured much like conventional C function
— Declaration and use of variables
— ifthen, if-then-else, case, for and while constructs
— A process can contain signal assignment statements

A process executes concurrently with other concurrent signal
assignment statements

A process takes 0 seconds of simulated time to execute and
may schedule events in the future

We can think of a process as a complex signal assignment
statement!

ECE 4170 (6)

i
i
Tocn i Concurrent Processes: Full Adder

s1
In1 &—+
Half Half
Adder | Adder
In2 B——
c_in
5 s3
port Internal signal

Model using processes

Each of the components of the full adder can be
modeled using a process

Processes execute concurrently
— In this sense they behave exactly like concurrent signal

assignment statements

Processes communicate via signals

ECE 4170 (7)

E MQ&L Concurrent Processes: Full Adder
library IEEE; HAZ2: process(sl,c_in) is

use IEEE.std_logic_1164.all;

entity full_adder is

port (Inl, c_in, In2: in std_logic;
sum, ¢_out: out std_logic);

end entity full adder;

architecture behavioral of full _adder is
signal s1, s2, s3: std_logic;

constant delay:Time:= 5 ns;

begin

HAT1: process (Inl, In2) is
begin

sl <= (Inl xor In2) after delay;
s3 <= (Inl and In2) after delay;
end process HA1;

begin

sum <= (sl xor c_in) after delay;
s2 <= (sl and c_in) after delay;
end process HA2;

ORI: process (s2, s3) -- process
describing the two-input OR gate
begin

¢_out <= (s2 or s3) after delay;
end process OR1;

end architecture behavioral;

ECE 4170 (8)

Concurrent Processes: Half Adder

library IEEE;
use [EEE.std_logic_1164.all;

entity half adder is

port (a, b : in std_logic;
sum, carry : out std_logic);
end entity half adder;

architecture behavior of half adder is
begin

sum_proc: process(a,b) is
begin

if (a="D) then

sum <= ‘0’ after 5 ns;

else

sum <= (a or b) after 5 ns;
end if;

end process;

carry_proc: process (a,b) is

begin

case a is

when ‘0’ =>

carry <= a after 5 ns;
when ‘1’ =>

carry <= b after 5 ns;
when others =>

carry <= ‘X’ after 5 ns;
end case;

end process carry_proc;

end architecture behavior;

ECE 4170 (9)

&

Processes + CSAs

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity memory is

port (address, write_data: in std_logic_vector (7 downto 0); write_data —»|

MemWrite, MemRead, clk, reset: in std_logic;

read_data: out std_logic_vector (7 downto 0));

end entity memory;

Me/leead MeTWrite

address —»f

read_data «—

(I

clk reset

architecture behavioral of memory is

signal dmem0,dmem1,dmem2,dmem3: std_logic_vector (7 downto 0);
begin

mem_proc: process (clk) is

-- process body

end process mem_proc;

-- read operation CSA

end architecture behavioral,

ECE 4170 (10)

Tech Process + CSAs: The Write Process

mem_proc: process (clk) is

begin

if (rising_edge(clk)) then -- wait until next clock edge
if reset = ‘1’ then -- initialize values on reset

dmemO <= x"00"; -- memory locations are initialized to
dmeml <= x"117;-- some random values

dmem2 <= x"22”;

dmem3 <= x"33”;

elsif MemWrite = 1’ then -- if not reset then check for memory write
case address (1 downto 0) is

when “00” => dmem0 <= write_data;

when “01” => dmem! <= write_data;

when “10” => dmem2 <= write_data;

when “11” => dmem3 <= write_data;

when others => dmem0 <= x“ff”;

end case;

end if;

end if;

end process mem_proc;

ECE 4170 (11)

Wﬁéﬁ‘“ﬁl Process + CSAs: The Read Statement

- memory read is implemented with a conditional signal assignment

read_data <= dmemO when address (1 downto 0) = “00” and MemRead = ‘1" else
dmem1 when address (1 downto 0) = “01” and MemRead = ‘1’ else

dmem?2 when address (1 downto 0) = “10” and MemRead = ‘1’ else

dmem3 when address (1 downto 0) =“11” and MemRead = ‘1’ else

x700”;

» A process can be viewed as single concurrent signal
assignment statement
— The external behavior is the same as a CSA
— Processes describe more complex event generation
behavior
* Processes execute concurrently in simulated time
with other CSAs

ECE 4170 (12)

Tech Iteration

Example: A Simple Multiplier

architecture behavioral of mult32 is

constant module_delay: Time:= 10 ns;

begin

mult_process: process(multiplicand,multiplier) is

variable product_register : std_logic_vector (63 downto 0) := X”0000000000000000;
variable multiplicand_register : std_logic_vector (31 downto 0):= X”"00000000”;

begin

multiplicand_register := multiplicand;

product_register(63 downto 0) := X”00000000” & multiplier;

for index in 1 to 32 loop

if product_register(0) = ‘1’ then

product_register(63 downto 32) := product_register (63 downto 32) +
multiplicand_register(31 downto 0);

end if;

-- perform a right shift with zero fill

product_register (63 downto 0) := ‘0’ roduct_register (63 downto 1);

end loop;

-- write result to output port

product <= product_register after module_delay;

Concatenation operator

end process mult_process;

ECE 4170 (13)

L El Iteration

+ forloop index

— Implicit declaration via “use”
» Scope is local to the loop
— Cannot be used elsewhere in model

* while loop
— Boolean expression for termination

while j < 32 loop

j=i
end loop;

ECE 4170 (14)

Outline

* Process event behavior and signals vs. variables

ECE 4170 (15)

st

Process Behavior

» All processes are executed once at start-up

» Thereafter dependencies between signal values and events on
these signals determine process initiation

» One can view processes as components with an
interface/function

» Note that signals behave differently from variables!

library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is

port (x,y, z: in std_logic;
resl, res2: out std_logic);
end entity sig_var;

architecture behavior of sig_var is
signal sig_s1, sig_s2: std_logic;
begin

procl: process (X, y, z) is -- Process 1
variable var_sl, var_s2: std_logic;

begin

L1:var sl :==xandYy;

L2: var_s2 :=var_ sl xor z;

L3: resl <=var_sl nand var_s2;
end process;

proc2: process (X, y, z) -- Process 2
begin

Ll1:sig sl <=xandy;

L2: sig s2 <=sig_sl xor z;

L3: res2 <=sig_sl nand sig_s2;
end process;

end architecture behavior;
ECE 4170 (16)

Beorgss |

Tech Variables vs. Signals: Example

procl: process (X, y, z) is -- Process 1
variable var sl, var_s2: std_logic;

begin

Ll:var sl :=xandyj;

L2: var_s2 :=var sl xor z;

L3: resl <=var sl nand var s2;
end process;

<

variables

proc2: process (X, y, z) -- Process 2
begin

L1:sig sl <=xandy;

L2: sig s2 <=sig_sl xor z;

L3: res2 <=sig_sl nand sig_s2;
end process;

signals

+ Distinction between the use of variables vs. signals
— Computing values vs. computing time-value pairs
— Remember event ordering and delta delays!

ECE 4170 (17)

ot

Variables vs. Signals: Example

Active-HDL (Student Edition) [design1) - Waveform Editor 1 =

Fle Edt Seach Wiew Desin Simulation Wavefom Tools Help [» x

B-SH W

BIOMOH| D> D[rre e

B e

Qs eea&w i - - A

E

Name IRE

500 B0 . 700 . B0 nSl

This transition is

determined by
process initiation

7

N
variables

» Writing processes

signals

— Use signals to represent corresponding hardware entities
— Use variables when computing (future) values of signals

ECE 4170 (18)

I
PR
“SSech Simulation and Signals

Execute Process

Process is initiated
Compute new signal values using
current signal values
_ reference compute .
st] — Use the value of the signal
s I::> I::> at process initiation
: : - Ignore textual
dependencies between

signals

current signal future signal
values values

t» Update Process State

Process state (signal values) are
updated

st] I .
. Process now waits for an event
on its sensitivity list
H H When initiated, process execution
references these new signal

values

Ready to execute process

ECE 4170 (19)

%A Using Signals in a Process

Inl {>c s s3

In2 >° 5 o

+ Entity signals are visible in a process

* Processes can encapsulate variable and signal
assignment statements

* What is the effect on the model behavior between
dataflow and process models?

» Actual waveforms will depend on how initialization is
handled/performed

ECE 4170 (20)

-~ ____=__ |

“Secn) Using Signals in a Process
library IEEE; library IEEE,

use |EEE.std_logic_11
entity combinational is

64.all;

port (In1, In2: in std_logic;

z : out std_logic);

end entity combinational,
sigpgl s1, s2, s3, s4: std_logic:=

begin

s1 <=not In1;

s2 <= not In2;

s3 <= not (s1 and In2)
s4 <= not (s2 and In1)
z <= not (s3 and s4);

end architecture behavior;

¢ I)
’ Encapsulate in a
process

use |[EEE.std_logic_1164.all;
entity combinational is
port (In1, In2: in std_logic;
z : out std_logic);
end entity combinational;
signal s1, s2, s3, s4: std_logic:= ‘0’;
begin
(sig_in_proc: process (In1, In2) is
begin
s1 <=not In1;
s2 <= not In2;
s3 <= not (s1 and In2);
s4 <= not (s2 and In1);
z <= not (s3 and s4);

_ end process sig_in_proc;
end architecture behavior;

ECE 4170 (21)

Using Signals in a Process (cont.)

IN2 _|

S1

Snipiniy

S2

i
|

S3

|

« L

L

10 20 30 4

0 50 60 70

Using concurrent signal assignment statements

IN2 _|

N e

S1

S2

S3

S4

10 20 30 40 50 60 70
Using signal assignment statements within a process

ECE 4170 (22)

“ech) Outline

» Timing behavior of processes

ECE 4170 (23)

%& The Wait Statement

library IEEE;

use IEEE.std_logic_1164.all;

entity dff is

port (D, Clk : in std_logic;

Q, Qbar : out std_logic);

end entity dff: signifies a value change on signal clk

architecture behavioral of dff is
begin

output: process is
begin
wait until (Clk’event and Clk = ‘1°); -- wait for rising edge
Q <=D after 5 ns;

Qbar <= not D after 5 ns;

end process output;

end architecture behavioral,

+ The wait statements can describe synchronous or asynchronous
timing operations

ECE 4170 (24)

Georgia | The Wait Statement: Waveform

Techii .
- Generation,
library IEEE; clock_process: process is
use IEEE.std_logic_1164.all; begin
entity two_phase is phil <= 1", ‘0’ after 10 ns;
port(phil, phi2, reset: out std_logic); phi2 <=0, ‘1’ after 12 ns, ‘0’ after
end entity two_phase; 18 ns;
architecture behavioral of two_phase is wait for 20 ns;
begin end process clock process;
rproc: reset <= ‘1°, ‘0’ after 10 ns; end architecture behavioral;

reset

events specified
by the reset phil
~—

and clock ohi2 ’—‘ [’—L

processes

10 20 30 40 50 60
Time (ns)

* Note the “perpetual” behavior of processes

ECE 4170 (25)

mﬁl Wait Statement: Asynchronous Inputs

library IEEE; use IEEE.std_logic_1164.all;

entity asynch_dff is

port (R, S, D, Clk: in std_logic;

Q, Qbar: out std_logic);

end entity asynch_dff;

architecture behavioral of asynch_dff is

begin

output: process (R’ S, Clk) is execute on event on any signal
begin w

if (R =°0’) then

Q <= ‘0’ after 5 ns;

Qbar <= ‘1’ after 5 ns;

elsif S = ‘0’ then

Q <= ‘1" after 5 ns;

Qbar <= ‘0’ after 5 ns;

elsif (rising_edge(Clk)) then
Q<= D after 5 ns;

Qbar <= (not D) after 5 ns;
end if;

end process output;

end architecture behavioral;

implied ordering provides
asynchronous set
reset

ECE 4170 (26)

Beorgss
Tecn

=

The Wait Statement

* A process can have multiple wait statements

» A process cannot have both a wait statement and a sensitivity
list (it should have one or the other): why?

+ wait statements provide explicit control over suspension and
resumption of processes

— Representation of both synchronous and asynchronous events in a
digital systems

ECE 4170 (27)

L El Process Scheduling

» All processes execute at least once @time 0
— Events placed on all signals - sensitivity list fires
— Processes with no sensitivity list execute at least once

» Careful with processes with no sensitivity lists

— With no wait statements may enter infinite loop = simulator
dependent

— use for initialization

ECE 4170 (28)

i
- .|
coragia . .
Tech Signal Assignment Rules
* When a time-value pair for a signal is placed on the
time queue, all later time-value pairs are removed
-- Example 1 -- Example 2
signz;i.sigj : std_logic :=0; signa-i-sigj : std_logic :=0;
begin begin
example: process example: process
begin begin
sig_1<="1" after 3 ns; sig_1 <='Z' after 4 ns;
sig_1 <="Z' after 4 ns; sig_1<="1" after 3 ns;
wait for 10 ns; wait for 10 ns;
end process example; end process example;
ECE 4170 (29)
Georgia P
Tech Outline

» Attributes

ECE 4170 (30)

Beorgss
Tecn

-

Attributes

+ Data can be obtained about VHDL objects such as types, arrays
and signals.

object’ attribute

+ Example: consider the implementation of a signal

value-time pair

jjlsm’ﬁ\mm

driver

» What types of information about this signal are useful?
— Occurrence of an event
— Elapsed time since last event
— Previous value, i.e., prior to the last event

ECE 4170 (31)

WﬂL Classes of Attributes

* Value attributes
— returns a constant value

* Function attributes
— invokes a function that returns a value

+ Signal attributes
— creates a new signal

» Type Attributes
— Supports queries about the type of VHDL objects

* Range attributes
— returns a range

ECE 4170 (32)

Value Attributes

* Return a constant value

— type statetype is (state0, state1, state2 state3);
+ state_type’left = state0
+ state_type’right = state3

+ Examples

Value attribute

Value

type_name’left

returns the left most value of type_name in its
defined range

type_name’right

returns the right most value of type_name in its
defined range

type_name’high

returns the highest value of type_name in its range

type_name’low

returns the lowest value of type_name in its range

array_name’length

returns the number of elements in the array
array_name

ECE 4170 (33)

Example

clk_process: process

begin

wait until (clk’event and clk = ‘1°);

if reset = ‘1’ then

state <= statetype’left;
else state <= next_state;

end if;

end process clk_process;

* The signal state is an enumerated type
— type statetype is (state0, state1, state3, state4);

» signal state:statetype:= statetype’left;

ECE 4170 (34)

Function Attributes

« Use of attributes invokes a function call which returns a value
— if (Clk'event and Clk = ‘1)

* function call

+ Examples: function signal attributes

Function attribute

Function

signal_name’event

Return a Boolean value signifying a change in
value on this signal

signal_name’active

Return a Boolean value signifying an assignment
made to this signal. This assignment may not be a
new value.

signal_name’last_event

Return the time since the last event on this signal

signal_name’last_active

Return the time since the signal was last active

signal_name’last_value

Return the previous value of this signal

ECE 4170 (35)

ot

Signal Attributes

* Creates a new “implicit” signal

Signal attribute

Implicit Signal

signal_name’delayed(T)

Signal delayed by T units of time

signal_name’transaction

Signal whose value toggles when
signal_name is active

signal_name’quiet(T)

True when signal_name has been quiet
for T units of time

signal_name’stable(T)

True when event has not occurred on
signal_name for T units of time

» Internal signals are useful modeling tools

ECE 4170 (36)

]
Toon Signal Attributes: Example

Re-appearance of delta delays
architecture behavioral of attributes is

begin
outdelayed <= data'delayed(5 ns); These are real (in simulation) signals and
. . . can be used elsewhere in the model
outtransaction <= data'transaction;
end attributes;

4 Waveform E ditor 1 = _[O] x|
File Edit Search Yiew Design Simulation Waveform Tools Help «
G0+ S elmalhaniaaas Sura s &
Name [alue| Stimuletor |+ M0t w0 o a0 o a0 .om ns
o data 7 Fomua 12 e il 2 A i 2 -
O putdelaped & 3(2 XA X?)(2 XA X?)(2 X[
O puttransaction 1] | | | | | | |_
© dataDELAYED... A B D R N A Y

4 1 slstotsf

0

ECE 4170 (37)

Examples

+ Detecting edges
— Edge triggering

* Measuring time to last event
— Detecting inter-event times on a signal
» Careful about detection time to last event on a signal!
— Creating delta-delayed signals

— Detecting setup/hold time violations

+ Difference between time of last event on a signal and current
clock transition

ECE 4170 (38)

Seteen Function Attributes (cont.)

* Function array attributes

Function attribute Function
array_name’left returns the left bound of the index range
array_name’right returns the right bound of the index range
array_name’high returns the upper bound of the index range
array_name’low returns the lower bound of the index range

» type mem_array is array(0 to 7) of bit_vector(31 downto 0)
— mem_array’left =0
— mem_array’right =7
— mem_array’length = 8 (value kind attribute)

ECE 4170 (39)

&wﬁl Range Attributes

*Returns the index range of a constrained array

for i in value_array’range loop
my_var := value_array(i);

end loop;

*Makes it easy to write loops

ECE 4170 (40)

Beorgss
Tecn

E=iE——|

Outline

» Putting it together - modeling state machines

ECE 4170 (41)

State Machines

— — 0/1

ICombinational Outputs
Inputs — logi "
gic
) G
Next state e
State
Clk T

+ Basic components

— Combinational component: output function and next state
function

— Sequential component
» Natural process-based implementation

ECE 4170 (42)

Example: State Machine

library IEEE;

use IEEE.std_logic_1164.all;

entity state_machine is

port(reset, clk, x : in std_logic;

z : out std_logic);

end entity state_machine;

architecture behavioral of state_machine is
type statetype is (state0, statel);

signal state, next_state : statetype := state0;
begin

comb_process: process (state, X) is

begin

--- process description here

end process comb_process;

clk_process: process is

begin

-- process description here

end process clk_process;

end architectural behavioral;

ECE 4170 (43)

Example: Output and Next State Functions

comb_process: process (state, X) is

begin

case state is -- depending upon the current state
when state0 => -- set output signals and next state

if x = ‘0’ then

next state <= statel;
z<="°1’

else next_state <= state0;
z <=0’

end if;

when state] =>

if x="1" then

next state <= state0;

z <=0

else next_state <= statel;
z<="°1"

end if;

end case;

end process comb_process;

*Combination of the next state and output functions

ECE 4170 (44)

Tech Example: Clock Process

clk_process: process is

begin

wait until (clk’event and clk = ‘1°); -- wait until the
rising edge

if reset = °1° then -- check for reset and initialize
state

state <= statetype’left;

else state <= next_state;

end if;

end process clk_process;

end behavioral,

» Use of asynchronous reset to initialize into a known state

ECE 4170 (45)

% 'ﬁ& Summary

* Processes

variables and sequential statements
if-then, if-then-else, case, while, for
concurrent processes

sensitivity list

* The Wait statement
— wait until, wait for, wait on

+ Attributes
* Modeling State machines
wait on ReceiveData’transaction
if ReceiveData’'delayed = ReceiveData then

ECE 4170 (46)

