
1

ECE 4170 (1)

Modeling Complex Behaviors:
Synthesis

© Sudhakar Yalamanchili, Georgia Institute of Technology

ECE 4170 (2)

VHDL Synthesis

• Inferring hardware from sequential code in processes
– Multiple alternative implementations
– Metrics for selecting the right implementation

• Coding style can “help” the compiler

entity my_ckt is
port(x, y:in bit;

z: out bit)
end entity my_ckt;
architecture behavioral of my_ckt is
begin
--
-- process code here
--
end architecture behavioral;

VHDL Model

Synthesis

Cell library Technology library

constraints

2

ECE 4170 (3)

Language Directed View

• Inferring combinational logic
– Every combination of inputs produces an output
– Every execution path performs an assignment to every

signal

• Inferring sequential logic
– A signal is not assigned in some execution path

remember the value, i.e., storage

A

C

B

D

B

ECE 4170 (4)

Simple Assignment Statements

architecture behavior of stover is
signal sig_s1, sig_s2: std_logic;
begin
proc1: process (x, y, z) is -- Process 1 using variables
variable var_s1, var_s2: std_logic;
begin
var_s1:= x and y;
var_s2:= var_s1 xor z;
res1 <= var_s1 and var_s2;
end process proc1;

proc2: process (x, y, z) -- Process 2 using
signals

begin
sig_s1 <= x and y;
sig_s2 <= sig_s1 xor z;
res2 <= sig_s1 and sig_s2;
end process proc2;

end architecture behavior;

x

y

z

res1

res2

• Simulation mismatch
– synthesis collapses multiple

simulation cycles
• Dependence analysis

3

ECE 4170 (5)

Conditional Statements

architecture behavior of inflate is
begin
process (x, y, z, sel) is
variable s1, s2: std_logic;
begin
if (sel = ‘1’)then
s1:= x and z;
s2:= s1 xor y;
w <= s2 and s1; -- w gets a value only conditionally
end if; -- hence a latch is inferred
end process;
end architecture behavior;

conditional body

y

z

sel

x

w

(load)

AL

AD
Q

latch enable

ECE 4170 (6)

Avoiding Latch Inference

• Ensure every path computes a value for every signal
– Presence of the else branch
– Nested structures
– if-then-elsif structure

• Use initial values
• Basic principle: ensure that every combination of

input signal values leads to a computation of a value
for every output signal

combinational logic

4

ECE 4170 (7)

Revisit the Example

architecture behavior of inflate is
begin
process (x, y, z, sel) is
variable s1, s2: std_logic;
begin
w <= ‘0’; -- output signal set to a default value to avoid latch inference
if (sel = ‘1’)then
s1:= x and z; -- body generates combinational logic
s2:= s1 xor y;
w <= s2 and s1;
end if;

end process;
end architecture behavior;

No Latches

x

z

w
y

sel

ECE 4170 (8)

Efficiency Considerations

• Now that we can control latch inferencing what about
circuit size and speed?

• Move common operations (hardware) out of the
branches
– Good programming practice in general
– Trade multiplexors for more expensive hardware

Set up
operands

Set up
operands

5

ECE 4170 (9)

Efficiency Considerations

• Eliminated the latches
• Computation (logical AND)

preceded by operand
selection (mux)

library IEEE;
use IEEE.std_logic_1164.all;
entity inference is
port (sel : in std_logic;
x, y, z: in std_logic;
w: out std_logic);
end inference;

architecture behavior of inference is
begin
process (x, y, z, sel)
variable right: std_logic;
begin
if (sel = ‘1’)then
right:= y;
else

right:= z;
end if;

w <= x and right;

end process;
end behavior;

library IEEE;
use IEEE.std_logic_1164.all;
entity inference is
port (sel : in std_logic;
x, y, z: in std_logic;
w: out std_logic);
end entity inference;

architecture behavior of inference is
begin
process (x, y, z, sel) is
begin
if (sel = ‘1’)then
w <= x and y;
else

w <= x and z;
end if;

end process;
end architecture behavior;

w

x

y

sel

z

2:1 multiplexor

Logic for
then part

Logic for
else part

x

y

z

sel

w

ECE 4170 (10)

Nested Constructs

architecture behavior of nested_if is
begin
process (x,y,z,sel1,sel2,sel3)
begin
if (sel1 = ‘1’)then
res <= x and y;

elsif (sel2 =’1’) then
res <= y xor z;
elsif (sel3 =’1’) then
res <= x or y;
end if;

end process;

• Latch inference due to the absence of the last “else”
• Latch inference due to placement in higher level blocks
• Priority ordering of the computations

sel2
sel1

sel3

x

y

z
res

condition under which a latch is inferred

6

ECE 4170 (11)

Comparison Logic and Effects

• Comparison always returns false - the “then” branch
is never taken

• Synthesis returns the combinational logic for the
“else” branch – a single NOR gate

architecture behavior of stover is
begin
process (x, y, z) is
begin
if (sel = “– 0”) then -- the symbol “–” represents the don’t care
w <= x nor y; -- for std_logic types
else
w <= x nor z;
end if;

end process;
end architecture behavior;

ECE 4170 (12)

CASE Statements

• Synthesis of a multiplexor
• Latch inference intuition applies
• Difference with nested if-then-elsif latter synthesizes priority logic

architecture behavior of case_st is
begin
process (x,y,z,sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => res <= x nor z;
end case;
end process;
end architecture behavior;

x

y

z

sel<0>

sel<1>

res

7

ECE 4170 (13)

CASE Statements (cont.)

• Use of the “null” statement and latch inference

architecture behavior of case_ex is
begin
process (x,y,z,sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => null;
-- in this case the value of res
-- remains unaltered
end case;
end process;
end architecture behavior; z

y

x

sel<0>

sel<1>

res

(load)

SEQ
Q

AL

AD

ECE 4170 (14)

Loop Statements

• How much hardware should be generated?
• Most commonly supported is the for loop

– Number of iterations is known a priori
– Loop is unrolled and optimized as a sequence of sequential

statements

• Dependencies within and across iterations
– Cross iteration dependencies synthesize to long signal paths

• Constraints on type of loop index

shift_reg (3) <= shift_reg (2);
shift_reg (2) <= shift_reg (1);
shift_reg (1) <= shift_reg (0);

for N in 3 downto 1 loop
shift_reg (n) <= shift_reg (n-1);
end loop;

8

ECE 4170 (15)

Loop Statements: Example

• Call to rising_edge(clk) produces edge triggered flip flops
• Loop leads to sequence of dependent assignment statements

architecture behavior of iteration is
signal shift_reg : std_logic_vector(3 downto 0);
begin
process (clk, reset, data) is

begin
if (rising_edge(clk)) then

if (reset = ‘1’) then res <= “0000”;
else

for n in 3 downto 1 loop
shift_reg(n) <= shift_reg(n-1);

end loop;
shift_reg(0) <= data;
res <= shift_reg;

end if;
end if;

end process;
end architecture behavior;

ECE 4170 (16)

Loop Statements: Example

shift_reg

res res<0>

res<1>

res<2>

logic1

reset
data
clk (load)

res<3>

SD SD SD SD
SD

SD

SD

SD

SL
SL SL SL

SL

SL

SL

SL

CLK CLK CLK CLK
CLK

CLK

CLK

CLK

Q Q Q Q

Q

Q

Q

Q

9

ECE 4170 (17)

Miscellaneous Issues

• Use of sensitivity lists: all signals are in the sensitivity
list for synthesis

– Pre-synthesis and post-synthesis simulation mismatches
• Optimizations involving variables

– Eliminate intermediate variables
• Architecture level interpretation of inference rules

– Latch inference occurs at outermost level of inferencing
• Use of buffer and inout modes.

Combinational
Logic

process (x,y) is

ECE 4170 (18)

Inference Using Signals vs. Variables

• Variable synthesized to a wire vs. signal synthesized
to a latch

• Why is a latch inferred at all since all execution paths
are covered?

library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port (sel : in std_logic;
x, y, z: in std_logic;
v, w: out std_logic);
end entity sig_var;

architecture behavior of sig_var is
signal sig_s1 : std_logic;
begin
process (x, y, z, sel) is
variable var_s1: std_logic;

L1: if (sel = ‘1’)then
sig_s1 <= x and z;
v <= sig_s1 xor y;
end if;

L2: if (sel = ‘0’) then
var_s1 := x and z;
v <= var_s1 xor y;
end if;
end process;
end architecture behavior;

10

ECE 4170 (19)

Inference Using Signals vs. Variables

• Current value (variable) vs. previous value (signal)

var_s1

x
z

y

sel

v

w

(load)

(load)

AL

AL

AD

AD

Q

Q

L2

2:1 mux
L1

V

ECE 4170 (20)

Inferring Storage for Variables

• Variables used before it is defined
– Variables retain values across

invocations
• There exists an execution

sequence (first) where use
precedes definition

architecture behavior of sig_var is
begin
process
variable var_s1, var_s2 :std_logic;
begin
wait until (rising_edge(clk));
var_s1 := x nand var_s2;
var_s2 := var_s1 xor y;
res <= var_s1 xor var_s2;
end process;
end behavior;

z

z

res
SL
SD

CLK
Q

SL
SD

CLK

Q

var_s2

11

ECE 4170 (21)

Latch vs. Flip Flop Inference

• Predicates in conditional expressions lead to latch
inference
– if (sel = ‘1’) then...

• Edge detection expressions lead to flip flop inference
– if (rising_edge(clk)) then...
– if (clk’event and clk = ‘0’) then..
– if (clk’lastvalue = ‘0’ and clk = ‘1’ and clk’event) ..

• Semantics must be consistent with available parts
– Latches vs. flip flops
– Trigger condition

simulation semantics only

ECE 4170 (22)

Example: Counter

entity counter is
port (clk, reset : in std_logic;
res : out unsigned (3 downto 0));
end entity counter;

architecture behavior of counter is
begin
process (clk, reset) is
variable var_count : unsigned (3 downto 0);
begin
if (rising_edge (clk)) then
if (reset = ‘1’) then res <= “0000”;
else
var_count := var_count + 1;
end if;
res <= var_count;
end if;
end process;
end architecture behavior;

Note variable is used before it is defined!

edge trigger

12

ECE 4170 (23)

Example: Counter

SL

SD
CLK

Q

SL

SD

CLK

Q

SL

SD

CLK

Q

SL

SD

CLK

Q

SL

SD

CLK

Q

Q

Q

Q

SL

SL

SL

SD

SD

SD

CLK

CLK

CLK

4bit adder

clk

logic0

logic1

reset

res<0>

res<1>

res<2>

res<3>

(load)

ECE 4170 (24)

Wait Statements

• Wait statements imply synchronous logic

• Only one wait statement permitted in a process and it
must be the first statement in the process

• All signals in the body of the wait cause storage to be
inferred

• Use if-then-elsif-endif constructs to trade-off
combinational vs. sequential circuit inference

13

ECE 4170 (25)

Controlling Inference: Example

• Control inference by use of the wait statement

architecture behavioral of edge is
begin
process
begin
wait until (rising_edge(clk));
if reset = ’1’ then
Aout <= 1;
else
Aout <= 3;
end if;
Bout <= 0;
end process;
end architecture behavioral;

architecture behavioral of edge is
begin
process (reset, clk) is
begin
if reset = ‘1’ then
Aout <= 1;
else
Aout <= 3;
end if;
if (rising_edge(clk)) then
Bout <= 0;
end if;
end process;
end architecture behavioral;

ECE 4170 (26)

Controlling Inference: Example

• Storage inference is a function of code structure

SL

SD

CLK

Q

SS
Q

Q

Q

CLK

CLK

CLK

SC

SC

(load)

logic1

Aout<0>

Aout<1>

Bout<1>

Bout<0>

clk

reset

x

Aout<0>

Aout<1>

Bout<0>

Bout<1>

reset

clk

logic1

(load)

x

SC

SC

CLK

CLK
Q

Q

14

ECE 4170 (27)

Simulation vs. Synthesis Sematics

wait until rising_edge (clk);
sig_a <= sig_x and sig_y;
sig_b <= sig_a xor sig_c;

• What value of sig_a is used in the computation of
sig_b?

process (x, y, z)
begin
L1: s1 <= x xor y;
L2: s2 <= s1 or z;
L3: w <= s1 nor s2;
end process;

• Storage is not inferred in this example!

Consistency with simulation semantics?

Consistency with simulation semantics?

ECE 4170 (28)

Variables Controlled by a Wait Statement

• Variable dependencies collapsed
• If variables are “used before they

are defined” then storage is inferred
• Signal dependencies are not

collapsed, but rather storage is
inferred for each signal

library IEEE;
use IEEE.std_logic_1164.all;
entity sigvar is
port(y, z, x, clk : in std_logic;

res: out std_logic);
end entity sigvar;

architecture behavioral of sigvar is
begin
process is

variable a_var, b_var : std_logic;
begin
wait until (rising_edge(clk));
a_var := x or y;

b_var := a_var nor z;
res <= b_var xor y;
end process;
end architecture behavioral;

clk

x

y

z
res

(load)

logic1

CLK

SL

SD Q

15

ECE 4170 (29)

Synthesis of State Machines

• Combinatorial component and sequential component
• Asynchronous and synchronous components
• Control inference through use of wait and edge detection

expressions

Output function

Next State Function

Output Function

clock

State elements

Inputs Mealy Outputs

Moore Outputs

ECE 4170 (30)

State Encodings

• Source-level constructs for user supplied encodings
• Goal: optimize area or speed
• What about illegal states?

100000001001107
010000001011106
001000001111015
000100001101004
000010000100113
000001000110102
000000100010011
000000010000000
One HotGray CodeSequential State

16

ECE 4170 (31)

Controlling Inference: Example

• Flips flops inferred for all signals in the body of the
process

architecture behavioral of state_machine is
type statetype is (state0, state1);
signal state, next_state : statetype ;
begin
process is

begin
wait until (rising_edge(clk)); -- rising edge
if reset = ‘1’ then
res <= ‘0’; -- check for reset
state <= statetype’left; -- initialize state
else
case state is -- switch on current state
when state0 => -- set outputs and next state
if x = ‘0’ then

state <= state1;
res <= ‘1’;

else state <= state0;
res <= ‘0’;

end if
when state1 =>

if x = ‘1’ then
state <= state0;
res <= ‘0’;

else
state <= state1;
res <= ‘1’;

end if;
end case;
end if;
end process;
end architecture behavioral;

ECE 4170 (32)

Controlling Inference: Example

state

SD

SL

SL
SD

CLK

CLK

Q

Q

(load)

res
x

logic1

clk
reset

17

ECE 4170 (33)

Controlling Inference: Example

• Flip flops for the signal “res” are avoided

architecture behavioral of state_machine is
type statetype is (state0, state1);
signal state, next_state : statetype;
begin
process (state, x) is
begin
case state is -- switch on the current state

when state0 => -- set output and next state
if x = ‘0’ then
next_state <= state1;
res <= ‘1’;

else
next_state <= state0;
res <= ‘0’;

end if;
when state1 =>

if x = ‘1’ then
next_state <= state0;
res <= ‘0’;

else
next_state <= state1;
res <= ‘1’;

end if;
end case;
end process;

clk_process: process is
begin
wait until (rising_edge(clk);

if reset = ‘1’ then -- reset and initialize
state <= statetype’left;

else
state <= next_state;

end if;
end process clk_process;
end architecturebehavioral;

ECE 4170 (34)

Simulation

Simulation vs. Synthesis

• Design flow transforms a design to more detailed
levels

• Simulation at each level to validate design
• Need to understand sources of mismatch between

levels
• Performance issues differ at each level

VHDL
Source Netlist

Raw

Placed &
Routed
Netlist

Issues?

Synthesis Simulation Place and
Route

Simulation

18

ECE 4170 (35)

Simulation vs. Synthesis

• Obvious source: design error
• Incomplete sensitivity lists

• Use of signals in a process

process (sel) is
begin
if (sel = ‘1’ and En = ‘0’) then
A <= 1;
else
A <= ‘0’;
end if;
end process;

process (x, y, z)
begin
L1: s1 <= x xor y;
L2: s2 <= s1 or z;
L3: w <= s1 nor s2;
end process;

ECE 4170 (36)

Simulation vs. Synthesis

• Delay statements

• Speed
– Overhead of maintaining and updating signal drivers
– Use of processes and variables speed up simulation

19

ECE 4170 (37)

Some Synthesis Guidelines: From Xilinx

• Use of resets
– Asynchronous resets can prevent inference of optimized

components
• Optimized SRL library does not have reset
• Building SRLs places reset on the critical path
• Only synchronous resets available on some components
• Mapping general logic to RAM
• Efficiency of inference

– Use synchronous reset as possible and necessary
– Use of asynchronous resets results in synthesis of additional

logic outside of primitives
• Interferes with remainder of the design, e.g. during place and

route
– Optimizations for synchronous reset and logic synthesis

From http://www.xilinx.com/bvdocs/whitepapers/wp231.pdf

ECE 4170 (38)

Some Synthesis Guidelines: From Xilinx

• Trading throughput for latency
– Adder chains vs. adder trees

From http://www.xilinx.com/bvdocs/whitepapers/wp231.pdf

20

ECE 4170 (39)

Some Synthesis Guidelines: From Xilinx

• Using registers
– Pipelining for throughput

• Can be coupled with retiming to further improve performance
• What happens to our ability to verify circuits?

– Register replication to handle high fan out

• Instantiation vs. inference
– Some optimized behaviors cannot be inferred (in today’s

compilers)
– Boundaries of optimization

• “cone of influence” from instantiated components
– Sometimes easier to instantiate elements than describe

them effectively
• e.g., Serdes

From http://www.xilinx.com/bvdocs/whitepapers/wp231.pdf

ECE 4170 (40)

Some Synthesis Guidelines: From Xilinx

• Clock gating vs. enables with global resources

From http://www.xilinx.com/bvdocs/whitepapers/wp231.pdf

inadvisable advisable

21

ECE 4170 (41)

Some Synthesis Guidelines: From Xilinx

• Nesting
– Avoid deep nesting which leads to long signal paths
– Can explicitly place registers in a loop to avoid long signals

in unrolled loop

• Hierarchy
– Boundaries may have to be preserved for verification

purposes
– Use global resources at the highest level of the hierarchy

• Check for additional resources in the document and
Xilinx website for more info

From http://www.xilinx.com/bvdocs/whitepapers/wp231.pdf

ECE 4170 (42)

Coding Styles

• Target independent vs. target dependent coding style

• Keep synthesizable blocks relatively small

• Separate combinational from clocked (registered)
pieces of logic
– Use nested if-then-elsif-endif structure in process followed

by edge detected blocks of code

• Check
http://toolbox.xilinx.com/docsan/xilinx7/books/data/do
cs/sim/sim0026_6.html

22

ECE 4170 (43)

Summary

• Synthesis of behaviors encapsulated in processes

• Inference from sequential statements

• Latch inference vs. flip flop inference

• Effect of using variable vs. signals for synthesis

• Inference using wait vs. if-then-else statements

• Optimizations

