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One of the most important factors in getting the
maximum performance from any FPGA design is
proper coding of the design’s RTL description.
Certain seemingly minor decisions made while
crafting an RTL-level design can mean the difference
between a design operating at less than 100 MHz
and one operating at more than 400 MHz. 

Dependable design performance is the result of
careful consideration of many factors during the
design process. First, the hardware platform that
best suits the design must be selected. Next, the
selected device architecture and the settings and
features of the implementation tools need to be
studied. Lastly, and this is the purpose of this
document, HDL code that maps efficiently onto the
targeted device must be written. Different resources
detailing each of these subjects can be found on the
web. This document focuses on the latter by
presenting coding styles and tips to accelerate design
performance. Proper FPGA coding practices are
reiterated, and the lesser known techniques directly
applicable to the latest Xilinx FPGA architectures are
presented.
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Use of Resets 
and 
Performance

Few system-wide choices have as profound an effect on performance, area, and power 
as the choice of the reset. Some system architects specify the use of a global 
asynchronous reset for the system for the sole purpose of circuit initialization at 
power-up. This is, however, not necessary for FPGA designs. With Xilinx FPGA 
architectures, the use of a reset and the type of reset can have serious implications on 
the design performance. Sub-optimal reset strategies can:

• prevent the use of a device library component, such as shift register look-up table 
(SRL)

• prevent the use of synchronous elements of dedicated hardware blocks
• prevent optimizations of the logic inside the fabric
• severely constrain placement and routing because reset signals often have high 

fanout 

SRLs
All current Xilinx FPGA architectures have the capability to configure the look-up 
table (LUT) element as logic, ROM/RAM, or SRL. Synthesis tools can infer the use of 
any one of these structures from RTL code; however, in order to use 
performance-optimized shift register SRL, a reset cannot be described in the code 
because the SRL library component does not have a reset. Using resets in code that 
infers shift registers requires either several flip-flops or additional logic around the 
SRL to allow a reset function. As illustrated in Figure 1, code without resets on shift 
registers generally produces a single register on the output, which is optimal for area 
and performance. 

The effect on area and power is more obvious when using a reset versus not using one, 
but the affect on performance is a little less clear. When building a shift register out of 
flip-flops, performance of the shift register is generally not going to be critical because 
the timing path between registers (clock-to-out of a flip-flop, the associated delay in 
routing, and the setup time of the next flip-flop) is not normally long enough to be the 
longest path in the design. The added consumption of resources (flip-flops and 
routing), however, can have a negative influence on the placement and routing choices 
for other portions of the design, possibly resulting in longer routing delays for other 
paths in the design. In the case of adding additional logic to the SRL to emulate a reset 
function, a portion of this logic appears on the clock-to-out of the SRL, increasing the 
time it takes for the data to reach its destination logic, thus reducing performance. 

Tips

• Avoid resets on shift registers because it prevents inference of area and 
performance optimized SRL library cells.

Figure 1: Performance-Optimized Shift Register
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Multipliers and RAMs
All current Xilinx FPGA architectures contain dedicated arithmetic resources. Such 
resources can be used to perform multiplication, as in many DSP algorithms, but can 
also be used in other applications, e.g., barrel shifters.

Similarly, almost every FPGA design uses RAM of various sizes, regardless of the 
application. All current Xilinx FPGAs contain block RAM elements that can be 
implemented as RAM, ROM, a large LUT, or even general logic. Using both the 
multipliers and RAM resources can result in more compact and higher performing 
designs. 

The choice of the reset type can impact the design in terms of performance. Both 
multiplier blocks and RAM registers contain only synchronous resets; if an 
asynchronous reset is coded for these functions, the registers within these blocks 
cannot be used. This has a severe effect on performance. For example, using a fully 
pipelined multiplier targeting a fastest Virtex™-4 device with an asynchronous reset 
can result in a performance of around 200 MHz. Reworking the code to use a 
synchronous reset can more than double the performance to 500 MHz. 

Similar to the multipliers, Virtex-4 block RAMs have optional registers. When these 
output registers are used, they can reduce the clock-to-out times of the RAMs and 
increase overall design speed. These optional registers do not have reset ports; 
consequently, the output registers cannot be enabled if the code describes a reset 
behavior. 

A secondary issue arises when using the RAMs as a LUT or general logic. At times, it 
is advantageous for both area and performance reasons to condense several LUTs, 
configured as ROM or general logic, into a single block RAM. This can be done either 
by manually specifying these structures or automatically by constraining the synthesis 
tool to map portions of the logical design to unused block RAM resources. Because of 
the reset configuration of the block RAM, general logic can be mapped without 
changing the design functionality only if a synchronous reset (or no reset) is used. 

Tips

• Avoid asynchronous reset because it prevents packing of registers into dedicated 
resources and affects performance, utilization, and tool optimizations.

General Logic
Asynchronous resets also have repercussions on the performance of the general logic 
structures. Because all Xilinx FPGA general-purpose registers contain the ability to 
program the set/reset as either asynchronous or synchronous, it could be perceived 
that there is no penalty in using asynchronous resets; that assumption is often wrong. 
The code examples in Figure 2 illustrate how the use of asynchronous resets can 
inhibit optimization. If an asynchronous reset is not used, then the resources that such 
a signal would use are available and can be used to optimize other synchronous paths 
driving this register (FDRSE in Figure 3).

Example 1

To implement the asynchronous reset code, the synthesis tool must infer two LUTs for 
the datapath because five signals are used to create this logic. A possible 
implementation of this code is also shown in Figure 2: 

http://www.xilinx.com


4 www.xilinx.com WP231 (1.1) January 6, 2006

White Paper: HDL Coding Practices to Accelerate Design Performance
R

Example Two

Rewriting this same code with a synchronous reset gives the synthesis tool more 
flexibility in implementing this function. A possible implementation of the code is also 
shown in Figure 3:

Figure 2: Asynchronous Reset Implementation
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process (CLK, RST)
begin
   if (RST = '1') then
      Q <= '0';
   elsif (rising_edge(clk)) then
      Q <= A or (B and C and D and E);
   end if;
end process;

always @(posedge CLK, posedge RST)
   if (RESET)
      Q <= 1'b0;
   else
      Q <= A | (B & C & D & E);

VHDL Verilog

Q
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With the implementation in Figure 3, the synthesis tool can identify that any time A is 
active High, Q is always a logic 1 (the OR function). With the register (FDRSE) now 
configured as a synchronous set/reset operation, the set is now free to be used as part 
of the synchronous datapath. 

Example Three

To further illustrate the implications of asynchronous set or reset on performance, a 
more complex function, with 8 contributing signals, can be examined. To implement 
this function, a minimum of 3 LUTs is needed. A possible implementation of the code 
is shown in Figure 4:

Figure 3: Synchronous Reset Implementation Improves Performance
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VHDL Verilog

process (CLK)
begin
   if (rising_edge(clk)) then
      if (RST = '1') then
         Q <= '0';
      else
         Q <= A or (B and C and D and E);
      end if;
   end if;
end process;

always @(posedge CLK)
   if (RESET)
      Q <= 1'b0;
   else
      Q <= A | (B & C & D & E);
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Example Four

Figure 5 shows the same code written with a synchronous reset; a possible 
implementation of the code is also provided.

Figure 4: Asynchronous Reset Implementation for an Eight-Input Function

B

A

C

D

E

LUT4

F

G

H

LUT4

LUT4

CLK

RST

Q

CLR

FDCE

WP231_04_112105

VHDL Verilog

process (CLK, RST)
begin
   if (RST = '1') then
      Q <= '0';
   elsif (rising_edge(clk)) then
      Q <= (F or G or H) and
           (A or (B and C and D and E));
   end if;
end process;

always @(posedge CLK, posedge RST)
   if (RESET)
      Q <= 1'b0;
   else
      Q <= (F | G | H) & 
           (A | (B & C & D & E));
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Again, the resulting implementation in Figure 5 not only uses fewer LUTs to 
implement the same logic function but can also potentially result in a faster design due 
to the reduction of logic levels for practically every signal creating this function. 
Because most of the logic in a design is synchronous, using synchronous or no reset at 
all allows for further design optimizations, reduced area, and optimal performance.

Tips 

• Check whether a global reset is needed.
• Avoid asynchronous control signals.

Use Adder Chains Instead of Adder Trees 
Many signal processing algorithms perform an arithmetic operation on an input 
stream of samples followed by a summation of all outputs of the arithmetic operation. 
To implement the summation in parallel architectures, such as FPGAs, the adder tree 
structure is typically used. One difficulty with the adder tree concept is the varying 
nature of its size. The number of adders depends on the number of inputs in the adder 
tree. The more inputs in the adder tree, the more adders that are needed, increasing 
both the number of logic resources and power consumption. Larger trees also mean 
larger adders in the last stages of the tree; large adders further reduce system 

Figure 5: Synchronous Control Signal Reduces Number of Logic Levels
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VHDL Verilog

process (CLK)
begin
   if (rising_edge(clk)) then
      if (RST = '1') then
         Q <= '0';
      else
         Q <= (F or G or H) and
              (A or (B and C and D and E));
      end if;
   end if;
end process;

always @(posedge CLK)
   if (RESET)
      Q <= 1'b0;
   else
      Q <= (F | G | H) & 
           (A | (B & C & D & E));
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performance by increasing the number of logic levels. An approach to minimize 
device utilization and power consumption while maintaining the high performance of 
adder trees is to implement the adder trees as dedicated silicon resources (see 
Figure 6). However, it is impossible for an FPGA manufacturer to find a structure that 
allows both the majority of adder trees to be implemented in a dedicated resource 
while keeping silicon area to a minimum. 

With its columns of DSP48 dedicated silicon, the Virtex-4 family has a different 
approach in implementing summations. As illustrated in Figure 7, it involves 
computing the summation incrementally using chained adders instead of adder trees. 
No other FPGA uses this approach. It is key to maximizing performance and lowering 
power for DSP algorithms because both logic and interconnect are contained entirely 
within the dedicated silicon. When pipelined, the performance of the DSP48 block is 
500 MHz in the fastest speedgrade, independent of the number of adders. Cascading 
ports combined with the 48-bit resolution of the adder/accumulator allow the current 
sample calculation along with the summation of all computed samples thus far. 

http://www.xilinx.com
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Figure 6: Adder Tree Structure Reduces Performance and Consumes More Power 
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To take advantage of the Virtex-4 adder chain structure, the adder tree description is 
replaced with an adder chain description. This process of converting a direct form 
filter to a transposed or systolic form is detailed in UG073: XtremeDSP for Virtex-4 
FPGAs User Guide and typically involves adding latency to the design. After the 
conversion is completed, the algorithm can run much faster than the application 
requirements. In that case, the device utilization and power consumption can be 
further reduced by using either multichanneling or folding techniques. Both 
techniques help implement designs in smaller devices or allow functionality to be 
added to a design using the freed resources.

Figure 7: Chaining Adders Provide Predictable Performance
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• Multichanneling is a process that leverages very fast math elements across 
multiple input streams (channels) with much lower sample rates. This technique 
increases silicon efficiency by a factor almost equal to the number of channels. 
Multichannel filtering can be viewed as time-multiplexing single-channel filters. 
For example, in a typical multichannel filtering scenario, multiple input channels 
are filtered using a separate digital filter for each channel. Taking advantage of the 
Virtex-4 DSP48 slice, a single digital filter can filter all eight input channels by 
clocking the single filter with an 8x clock. This reduces the number of FPGA 
resources needed by almost eight times.

• Folding is a similar concept. Instead of time-multiplexing several input streams, 
the taps of a single filter are time multiplexed, allowing the filter to use fewer 
resources. The freed resources can be used for other purposes.

Tips 

• Use the Virtex-4 adder cascade descriptions in lieu of adder trees.

Maximize Block RAM Performance
When it comes to efficiently inferring memory elements, several factors affecting 
performance must be considered:

• deciding to use dedicated blocks or distributed RAMs
• using the output pipeline register
• avoiding asynchronous resets

Other factors, namely HDL coding style and synthesis tool settings, can substantially 
impact memory performance.

HDL Coding Style

When inferring dual port block memories, it is possible for both ports to access the 
same memory cell at the same time. For example, if both ports are simultaneously 
writing different values at the same memory cell, this creates a collision, and the 
memory cell content cannot be guaranteed. 

Another common memory configuration example is when the value on the output of 
the memory depends on the target device. The latest Virtex and Spartan™ families 
have three programmable operating modes to govern the memory output while a 
write operation is occurring. Additional information about these operating modes is 
provided in the device user guides. 

Example 5

As illustrated in Table 1, synthesis tools are able to infer either of these modes 
depending on the coding style.

http://www.xilinx.com
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Tips

• Avoid "read before write" mode to achieve maximum block RAM performance.

Synthesis Tool Settings

Another important factor that can significantly affect the block memory performance 
is the synthesis tool settings. Some synthesis tools (such as Synplify® from 
Synplicity®) insert bypass logic around the RAM to prevent the possible mismatch 
between RTL and hardware behavior. This extra logic is meant to force the RAM 
outputs to some known values when read and write operations occur on the same 
memory cell. If the designer knows that simultaneous read and write operations on 
the same memory cell will never happen, the synthesis tool settings can be used to 
prevent bypass logic from being added to the application (see Table 2). Extra logic has 
a negative impact on the memory performance because it adds overhead logic on all 
output paths of the memory. Eliminating or preventing the additional logic maintains 
the memory performance.

Table 1: Block RAM Operating Mode Inference Example

VHDL Verilog

-- 'write first' or transparent mode
process (clk)
begin

if (rising_edge(clk)) then
if (we = '1') then

        mem(conv_integer(addr)) <= di ;
        do <= di;

else
        do <= mem(conv_integer(addr));

end if;  
end if;

end process;

-- 'read first' or read before write(slower)
process (clk)
begin

if (rising_edge(clk)) then
if (we = '1') then

mem(conv_integer(addr)) <= di;
end if;
do <= mem(conv_integer(addr));

end if;
end process;

-- 'no change' mode
process (clk)
begin

if (rising_edge(clk)) then
if (we = '1') then

mem(conv_integer(addr)) <= di ;
else

do <= mem(conv_integer(addr));
end if;

end if;
end process;

// 'write first' or transparent mode
always @(posedge clk) begin
  if(we) begin
    do <= data;
    mem[address] <= data;
  end else
    do <= mem[address];
end

// 'read first' or read before write mode(slower)
always @(posedge clk) begin 
  if (we) 
    mem[address] <= data; 
  do <= mem[address]; 
end

// 'no change' mode 
always @(posedge clk) 
  if (we) 
    mem[address] <= data; 
  else 
    do <= mem[address]; 
end 

http://www.xilinx.com
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Tips

• Check synthesis tools settings, inference templates, and limitations to maximize 
memory block’s performance.

General Use of Registers 
FPGA architectures have one register for every LUT, with additional registers 
available in I/Os and dedicated blocks, such as memory and DSP elements. Using 
these resources is important to achieve maximum performance. Registers can serve 
multiple purposes for accelerating design performance. They can be used to reduce 
the number of logic levels in critical paths, critical nets fanout, set-up, and clock-to-out 
of I/Os or dedicated blocks. Guidelines to optimize the available registers appear in 
the following subsections.

Use Dedicated Block Registers

FPGAs have dedicated circuitry for functions used in most designs, such as memory 
or DSP blocks. These blocks have optional registers. Enabling these registers 
accelerates the block performance by reducing set-up, clock-to-out and/or increasing 
block clock speed. Synthesis tools automatically try to pack registers into these blocks 
because it saves area, improves power, and provides the best performance. The 
designer can use constraints to control synthesis tool mapping of inferred 
components. When instantiating these blocks, however, the set of registers that give 
the best performance for the application need to be enabled; by default, the synthesis 
tools do not optimize user-instantiated architecture components. Under the best 
circumstances, all registers should be enabled for maximum performance; however, 
latency requirements might not always allow this. In these cases, the responsibility 
falls onto the designer to enable the right set of registers. For example, when only the 
multiplier (MREG) and the input registers (AREG and BREG) are used, then the 
Virtex-4 DSP48 cell (fast speedgrade) has a setup of 1.8 ns and 2.3 ns clock-to-output. 
Maintaining the same functionality and latency but enabling the accumulator output 
register (PREG) instead of the MREG, the set-up time increases to 3 ns while the clock-
to-out shrinks to 0.6 ns. See Figure 8. 

Table 2: Disabling Insertion of Conflict Avoidance Glue Logic

VHDL Verilog

type mem_type is array (127 downto 0) of
std_logic_vector (7 downto 0);

signal mem : mem_type;

-- disable conflict avoidance logic
attribute syn_ramstyle of mem : signal is

"no_rw_check";

// disable conflict avoidance logic
reg [7:0] mem [127:0] /* synthesis

syn_ramstyle=no_rw_check*/;

Figure 8: DSP48 Internal Registers
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It is, therefore, important to consider:

• the timing of logic driving or being driven by dedicated blocks 
• the positioning of registers in the HDL code

Tips

• When inferring dedicated blocks, synthesis constraints should be applied if the 
synthesis tool does not enable the best set of registers for performance. 
(Instantiation can also be considered).

• When selecting which register to enable for instantiated components, ensure the 
maximum number of registers are used and take into account delays to, from, and 
between registers within the block.

Use of I/O Registers 

All Xilinx FPGAs contain dedicated registers on the FPGA input and output paths. By 
utilizing these registers, set-up times for the input paths and clock-to-out times for the 
output paths can be minimized, making it much easier to meet timing requirements 
for capturing and providing data to external devices. At times, however, using the 
dedicated I/O registers can have a negative effect on meeting the timing within the 
FPGA; their use can lengthen route delays to the internal logic. These registers should 
be placed into the I/O when it is necessary to meet I/O timing, or they should be 
placed within the FPGA fabric when the I/O timing requirement permits it. Some 
synthesis tools, like Synplify, automatically place registers in either the fabric or the 
I/O depending on timing specifications. If the synthesis tool does not support 
automatic placement or if manual control of register placement is desired, the 
following steps must be performed:

1. Disable any global I/O register placement options for the synthesis tool (refer to 
synthesis tool documentation).

2. Specify whether the register should be placed into the I/O by adding an 
IOB=TRUE in the UCF file or source HDL code (refer to the Constraints Guide for 
details on the IOB constraint).

3. Disable the Map option "Pack I/O Registers/Latches into IOBs" in ISE Project 
Navigator (or do not use the -pr switch if running from command-line). This 
disables automatic pushing of registers into the I/O. See Figure 9.

Figure 9: Disable Indiscriminate Packing of Registers in the I/O Cells
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Controlling I/O register usage balances the timing for datapaths entering and exiting 
the FPGA with the need to meet timing specifications inside the FPGA. Another 
notable guideline is to describe registers on all input and output ports to the FPGA on 
the top-level of the HDL code. Specifying the registers on the top-level hierarchy of the 
code avoids placement conflicts when using hierarchical design methods for 
implementing the FPGA. It also avoids creating hierarchical names for the port 
description which some board schematic capture tools do not accept.

Tips

• Disable global packing of registers into I/O cells. Instead, only constrain registers 
for which timing is critical on the printed circuit board to be packed into the 
FPGA I/O cell.

Replicate Registers with High-Fanout

Register replication is a technique used to increase the speed of critical paths by 
making copies of registers to reduce the fan-out of a given signal. This gives the 
implementation tools more leeway to place and route the different loads and 
associated logic. Synthesis tools use this technique extensively. If in the timing report 
high fanout nets with long route delays are reported as critical paths, replication 
constraints on the synthesis tool or manual replication registers should be considered. 
The HDL code in Table 3 illustrates how to manually replicate a 64-load signal one 
time.

Table 3: Register Replication Example

VHDL Verilog

attribute EQUIVALENT_REGISTER_REMOVAL : string;
attribute EQUIVALENT_REGISTER_REMOVAL of

ce1 : signal is "NO";
attribute EQUIVALENT_REGISTER_REMOVAL of

ce2 : signal is "NO";

begin

-- Clock enable register with 64 fanout
-- replicated once
process (clk) begin

if (rising_edge(clk)) then
      ce1 <= ce;
      ce2 <= ce;

end if;
end process;

process (clk) begin
if (rising_edge(clk)) then

      if (ce1='1') then
        res(31 downto  0) <= a_data(31 downto  0);

      end if;
      if (ce2='1') then
        res(63 downto 32) <= a_data(63 downto 32);

      end if;
end if;

end process;

(*EQUIVALENT_REGISTER_REMOVAL="NO"*) reg ce1,
ce2;

// Clock enable register with 64 fanout
// replicated once
always @(posedge clk) 
begin

ce1 = ce;
ce2 = ce;

end

always @(posedge clk) 
begin

if (ce1)
res[31:0] <= a_data[31:0];

if (ce2)
res[63:32] <= a_data[63:32];

end
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Example 6 

Many times an additional synthesis constraint needs to be added to ensure that a 
manually duplicated register is not optimized away by the synthesis tool. In the above 
example, the XST syntax was used (EQUIVALENT_REGISTER_REMOVAL).

Most synthesis tools use a fanout threshold limit to automatically determine whether 
a register should be duplicated or not. Adjusting this global threshold allows for 
automatic duplication of high fanout nets but does not offer a finer level of user 
control as to which specific registers can be duplicated. A better recourse is to apply 
attributes on specific registers or levels of hierarchy to specify which registers can or 
cannot be replicated.

Tips

• If the place-and-route tool reports that high-fanout signals are limiting the design 
performance, consider replicating them.

Add Levels of Pipeline

Another way to increase performance is to restructure long datapaths with several 
levels of logic and distribute them over multiple clock cycles. This method allows for 
a faster clock cycle and increased data throughput at the expense of latency and 
pipeline overhead logic management. Because FPGAs are register-rich, the additional 
registers and overhead logic are usually not an issue. With this technique, the datapath 
spans multiple cycles; therefore, special considerations must be used for the rest of the 
design to account for the added path latency. Table 4 presents a coding style that adds 
six levels of registers on the output of a 32x32 multiplier. The synthesis tool pipelines 
these registers into the optional registers of the Virtex-4 DSP48 to maximize data 
throughput. 

If the design verification methodology and toolset permit, then combining retiming 
with pipelining to further enhance the design performance should be considered. 
Retiming is a synthesis or place-and-route algorithm that automatically moves 
registers (register balancing) across combinatorial logic to improve timing while 
ensuring identical behavior, as seen from the primary inputs and outputs of the 
design. 

Table 4: Inserting Levels of Pipeline

VHDL Verilog

type regbank6x64 is array(PIPE-1 downto 0) of
std_logic_vector(63 downto 0);

signal prod: regbank6x64;

-- 32x32 multiplier with 4 DSP48 (PIPE=6)
prod(0) <= a * b;

regbank: for i in 1 to PIPE generate begin
  process (clk) begin
    if (rising_edge(clk)) then
      prod(i) <= prod(i-1);
    end if;
  end process;  
end generate;

mult_out <= prod(PIPE);

parameter PIPE = 6;

reg signed [63:0] prod [PIPE-1:0];

// 32x32 multiplier with 4 DSP48 (PIPE=6)
always @(posedge clk) begin    
   prod[0] <= a * b;
   for (i=1; i<=PIPE-1; i=i+1)
      prod[i] <= prod[i-1];
end
assign mult_out = prod[PIPE-1]; 

http://www.xilinx.com
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Retiming simplifies RTL design because performance can be improved without any 
code changes. However, retiming makes design verification somewhat more 
complicated because the register names, position, and functionality no longer match 
the RTL description. Therefore, some designers avoid using retiming. When retiming 
is not an option, knowledge about the device helps the designer to describe registers in 
the RTL so that these registers map efficiently onto the available device resources. 
Logic implementation in the underlying architecture, in terms of performance, should 
always be considered. The number of logic levels and possible signal fanouts each 
particular piece of code might create should also be considered. A balanced placement 
of registers in the RTL code must be chosen so that no portion of the design has a 
significantly larger portion of the logic levels or fanout. By following these guidelines, 
designs should reach their full performance potential for a given mapping of logic.

Tips

• Improve design performance by balancing the number of logic levels between 
registers. Add levels of pipeline in the RTL code, apply the synthesis tool’s 
retiming option whenever relevant, or both.

Inference vs. Instantiation
It usually is preferable to behaviorally describe the design and let the synthesis tool do 
the mapping of the code into the gates available in the FPGA. In addition to making 
the code more portable, all inferred logic is visible to the synthesis tool, allowing the 
tool to perform optimizations between functions. These optimizations include: logic 
replications, restructuring and merging, or retiming to balance logic delay between 
registers. When device library cells are instantiated, synthesis tools do not optimize 
them by default. Even when instructed to optimize the device library cells, synthesis 
tools generally cannot perform the same level of optimization as with the RTL. 
Therefore, synthesis tools typically only perform optimizations on the paths to and 
from these cells but not through the cells. For example, if an SRL is instantiated and the 
cone of logic driven by this SRL is long, then this path might become a bottleneck 
(mentioned in the SRLs section). The SRL has a longer clock-to-out delay than a 
regular register. To preserve the area reduction provided by the SRL while improving 
its clock-to-out performance, an SRL of one delay less than the actual desired delay is 
created, with the last stage implemented in a regular flip-flop. 

There are, however, cases where instantiation is desirable. This is typically when the 
synthesis tool mapping does not meet the timing, power, or area constraints, or if a 
particular feature within an FPGA is not able to be inferred. With instantiation, the 
designer has total control over the synthesis tool. For instance, to achieve better 
performance, the designer can implement a comparator using only LUTs, instead of 
the combination of LUT and carry chain elements usually chosen by the synthesis tool. 
In other instances, instantiation is the only way to make use of the complex resources 
available in the device. This can be due to:

• HDL language restrictions. For instance, it is not possible to describe double data 
rate (DDR) outputs in VHDL because it requires two separate processes to drive 
the same signal. 

• Hardware complexity. It is easier to instantiate Virtex-4 I/O SerDes elements than 
it is to behaviorally describe them. 

• Synthesis tools inference limitations. For instance, synthesis tools currently do not 
have the capability to infer the Virtex-4 FIFOs or the DSP48 symmetric rounding 
and saturation from behavioral descriptions. Therefore, none of this circuitry is 
used unless the user instantiates it.

http://www.xilinx.com
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Tips

• Try to describe the maximum of your design behaviorally.
• When synthesized behavioral code does not meet requirements, review the 

synthesis tool timing constraints and settings before replacing the code with 
device library component instantiations. 

• Consider the "ISE Language Templates" when writing common Verilog and 
VHDL behavioral constructs.

• Consider the CORE Generator™, architecture wizard, or ISE language templates 
when instantiating device library components.

Clock Enable and Gated Clocks
For CLB registers, Xilinx generally recommends using the dedicated clock-enable port 
instead of gating the clock port. Gated clocks can cause glitches, increased clock delay, 
clock skew, and other undesirable effects. Using clock enable saves clock resources 
and can improve timing characteristics and analysis of the design. There are several 
ways to use clock-enable resources available on devices. To gate entire clock domains 
for power reduction, it is preferable to use the clock-enabled global buffer resource 
called BUFGCE (see Figure 10).

For applications that only attempt to pause the clock for a few cycles on small areas of 
the design, the preferred method is to use the clock-enable pin of the FPGA register. 
The first example (see Figure 11) in this section illustrates an inefficient way of gating 
clock signals, while the second example (see Figure 12) shows a modified version of 
the code that maps efficiently into the clock-enable pin.

Figure 10: BUFGCE
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Figure 11: Gated Clock  – Xilinx Does *Not* Suggest Using This Coding Style 
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VHDL Verilog

GATECLK <= (IN1 and IN2 and CLK); 
process (GATECLK) 
begin 
  if (rising_edge(GATECLK)) then 
    if (LOAD = '1') then 
      OUT1 <= DATA; 
    end if; 
  end if; 
end process; 

assign GATECLK = (IN1 & IN2 & CLK); 
always @(posedge GATECLK) 
  begin 
  if (LOAD) 
    OUT1 <= DATA; 
end 

Figure 12: Clock Enable - Efficient Way of Gating a Clock Signal
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ENABLE <= IN1 and IN2 and LOAD; 
process 
begin 
  if (rising_edge(CLOCK)) then 
    if (ENABLE = '1') then 
      DOUT <= DATA; 
    end if; 
  end if; 
end process; 

assign ENABLE = (IN1 & IN2 & LOAD); 
always @(posedge CLOCK) 
begin 
  if (ENABLE) 
    DOUT <= DATA; 
end 

VHDL Verilog

http://www.xilinx.com
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Tips

• Avoid gated clocks.
• Use the clock-enable port of global clock buffers to stop the clock on entire clock 

domains.
• Use the clock-enable port of registers to locally disable the clock. 
• Consider replicating the clock-enable signal if it appears to be part of the paths 

that do not meet your timing requirements.

Nested If-Then-Else, Case Statements, and Combinatorial For-Loops
Nested if and case statements and statements inside of other statements should be 
avoided. The number of nests in the code should be minimal. Too many if statements 
inside of other if statements make the line length too long and can inhibit synthesis 
optimizations. By keeping the nested statements to a minimum, the code is generally 
more readable, more portable, and can be more easily formatted for printing.

When describing for-loops in HDL, it is preferable to place at least a register in the 
datapath especially when there are arithmetic or other logic intensive operations. 
During compilation, the synthesis tool unrolls the loop. Without these synchronous 
elements, the synthesis tool concatenates the logic created at each iteration of the loop, 
potentially resulting in very long combinatorial paths and limiting design 
performance.

Tips

• Minimize the number of nests within sequential statements.
• Registers should be added to for-loops that are generating long combinatorial 

paths. 

Hierarchy
Selection of the design hierarchy partitioning is often driven by the ease of writing the 
HDL code. However, to achieve the best overall design hierarchy in terms of 
performance while reducing the overall time to complete the design, it is often better 
to consider design optimization, implementation methodologies, and verification. In 
terms of optimization, most synthesis tools treat logical design hierarchy as "soft," 
meaning they preserve hierarchy where possible but dissolve hierarchy or modify the 
footprint and logic contents within hierarchy where it allows for optimizations. If, 
however, hierarchical design practices like Incremental Design or KEEP HIERARCHY 
are employed for verification purposes, then optimizations cannot be performed 
across logical boundaries. If certain guidelines are not properly followed, less optimal 
designs with more logic levels or more placement restrictions can result. Even if 
non-hierarchical design implementation flows are used, these guidelines make it 
easier and, thus, more likely that the synthesis and place-and-route tools make the best 
choices in terms of logic optimization and placement. The following list briefly 
explains these guidelines:

1. Register all inputs and outputs to a given hierarchy. If that is not possible, always 
at least register the outputs. This ensures that the hierarchy will not interrupt 
general logic optimization.

2. Place all I/O components including any instantiated I/O buffers, registers, DDR 
circuitry, SerDes, or delay elements on the top-level of the design. If it is not 
possible to place them on the top-level, ensure that they are all contained within a 
single hierarchy.

http://www.xilinx.com
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3.  Any register or logic sets that need to be placed within a common FPGA feature or 
resource should be contained in the same hierarchy level. For instance, if the 
design requires a multiplier, accumulator, and associated registers placed into a 
Virtex-4 DSP48, all of those elements should be contained within a single hierarchy 
module.

4. Any logic in which the synthesis tool employs resource sharing should be 
contained within the same hierarchy.

5. Manually duplicate registers with high fanouts at hierarchy boundaries.

By following these simple guidelines, it is far less likely that the chosen hierarchy will 
interfere with design optimization and performance. If at any time these rules must be 
broken, it is encouraged to investigate the critical paths in the implemented design to 
determine if modifying the hierarchy might have an impact on the end performance of 
the design.

Conclusion Recent advances in synthesis and place-and-route algorithms have made achieving 
the best performance out of a particular device much more straightforward. Synthesis 
tools are able to infer and map complex arithmetic and memory descriptions onto the 
dedicated hardware blocks. They also perform optimizations such as retiming and 
logic and register replications. Based on timing constraints, the place-and-route tool 
can now restructure the netlist and perform timing-driven packing and placement to 
minimize placement and routing congestions. However, given a particular RTL 
description, there is only so much the tools can do to maximize performance. If more 
performance is needed in a design, then a very efficient way to proceed is by learning 
more about the target device, adjusting the tools constraints and options, and using 
the coding guidelines illustrated in this document.

Additional 
Resources

These resources provide additional tips on how to maximize design performance:

Synthesis and Verification Design Guide: 
http://www.xilinx.com/support/software_manuals.htm

Xilinx TechXclusives articles: 
http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp

XST User Guide: 
http://www.xilinx.com/support/software_manuals.htm

Verilog coding style and papers from Sunburst Design:
http://www.sunburst-design.com/papers/

Efficient coding style for state machines:

http://www.xilinx.com/xcell/xl38/xcell38_24.pdf

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp
http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp
http://www.xilinx.com/support/software_manuals.htm
http://www.sunburst-design.com/papers/
http://www.xilinx.com/xcell/xl38/xcell38_24.pdf
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Revision 
History

The following table shows the revision history for this document. 

Date Version Revision

12/05/05 1.0 Initial Xilinx release.

01/06/06 1.1 Typographical edits.
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