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INTRODUCTION
Throughout this data book and design guide we have
assumed that you have a good working knowledge of
logic. Unfortunately, there always comes a time when
you are called on to remember something which can
only be found in that logic textbook which you threw
away years ago.

This section is intended to provide a quick review and
reference of the basic principles of digital logic. We will
cover three general areas:

 Basic logic elements

 Basic storage elements

 Binary numbers

Throughout the text, we will use the notation that was
used throughout this book. If you are unfamiliar with the
syntax, you will probably find it easy to understand as
you read; if you wish for a more detailed explanation of
the symbols, please refer to the Basic Design with PLDs
section where they are defined.

As this is a logic reference only, we cannot take on
lengthy discussions, nor can we train you in the basic
principles of digital logic if you have not previously been
trained. In such a case, we must refer you to your
favorite logic textbook.

BASIC LOGIC ELEMENTS
In this section, we will discuss the concepts surrounding
combinatorial logic functions.

The Three Basic Gates
There are three basic logic gates from which all other
combinatorial logic functions can be generated. These
functions are NOT, AND, and OR. A truth table indicat-
ing these functions is shown in Table 1. Since they can
be used to generate any function, they are said to be
functionally complete.

Table 1. Truth Table for the NOT, AND, and OR
Functions

A B /A A*B A+B

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

The standard schematic symbols used to represent
these gates are shown in Figure 1.

NOT

AND

OR
90000A-1

Figure 1. Schematics Symbols for the Three 
Fundamental Gates

The AND and NOT functions can be combined into the
NAND function. This is equivalent to an AND gate fol-
lowed by an inverter, as shown in Figure 2a. Likewise,
the OR and NOT gates can be combined into the NOR
function, as shown in Figure 2b. Each of these gates is
functionally complete; any logic function can be ex-
pressed solely as a function of NAND or NOR gates.

=

=

a. The NAND Function

b. The NOR Function
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Figure 2. The NAND and NOR Functions

Precedence of Operators
Logic functions may be created with any combination of
the three basic functions. How those functions are ex-
pressed affects the evaluation of the function. The
normal order of evaluation is:

NOT, AND, OR

Evaluation proceeds in order from left to right.
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This order may be altered by inserting parentheses in
the function. The contents of the parentheses will al-
ways be evaluated before the rest of the expression,
from left to right.

Some example functions are evaluated in Table 2.

Table 2. Using Parentheses to Change the Order of Evaluation

A*B+/A* A*B+/A* A*(B+/A)* A*(B+/A)*
A B C D C+D (C+D) C+D (C+D)

0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0

1 0 0 1 1 0 1 0

1 1 1 1 1 1 1 1

Commutative, Associative, and 
Distributive Laws
The AND and OR functions are commutative and asso-
ciative. This means that the operands can appear in any
order without affecting the evaluation of the function.
This is illustrated in Tables 3 and 4.

Table 3. Commutativity

A B A*B B*A A+B B+A

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 1 1 1

Table 4. Associativity 

A B C (A*B)*C A*(B*C) (A+B)+C A+(B+C)

0 0 0 0 0 0 0

0 1 1 0 0 1 1

1 0 1 0 0 1 1

1 1 1 1 1 1 1

There are actually two distributive laws; one of them re-
sembles standard algebra more than the other. These
two laws state that:

A*(B+C) = (A*B) + (A*C)
A+(B*C) = (A+B) * (A+C)

Duality
The two distributive laws give an example of the concept
of duality. This principle states that:

Any identity will also be true if the following substitutions
are made:

* for +
+ for *
1 for 0
0 for 1

Thus, it is only necessary to prove the first of the distribu-
tive laws; the second one will then be true by duality.
Note that duality is not required to prove the second law;
it can also be proven by truth table or by logic
manipulation.

Manipulating Logic
Logic functions may be manipulated by the use of
Boolean algebra. The logic functions may be expressed
in one of the two canonical forms, or by using a simpli-
fied expression.
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Canonical Forms
There are two fundamental canonical forms:  sum-of-
minterms and product-of-maxterms. The former is by far
the most widespread. These are special cases of what
are more generally referred to as sum-of-products and
product-of-sums forms. Minterms and maxterms are
products and sums of the variables involved in a func-
tion. Each particular combination of noninverted and
inverted variables in a product or sum is given a minterm

or maxterm number, as shown in Table 5. Within each
minterm or maxterm, the individual variables are re-
ferred to as literals.

For the case of sum-of-minterms form, the expression
for a function may be found by ORing the minterms
which correspond to the 1’s in the function’s truth table.
Likewise, the product-of-maxterms expression may be
found by ANDing the maxterms which correspond to the
0’s in the truth table. This is illustrated in Figure 3.

Table 5. Minterms and Maxterms

Minterm Name 

/x*/y*/z m0

/x*/y*z m1

/x*y*/z m2

/x*y*z m3

x*/y*/z m4

x*/y*z m5

x*y*/z m6

x*y*z m7

Maxterm Name

x + y + z M0

x + y +/z M1

x +/y + z M2

x +/y + /z M3

/x + y + z M4

/x + y + /z M5

/x + /y + z M6

/x + /y + /z M7

Table of Minterms for Three
Variables

Table of Maxterms for Three
Variables

Conversion Between Canonical Forms
It is a simple matter to convert between canonical forms.
Given a truth table for a function F, there are four differ-
ent representations that can be used:

Sum-of-minterms form of F

 Product-of-maxterms form of F

 Sum-of-minterms form of /F

 Product-of-maxterms form of /F

One can convert back and forth between these repre-
sentations by using the rules shown in Table 6.
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b. The Sum-of-Minterms Expression c. The Product-of-Maxterms Expression

Minterm/
Maxterm

A B C D X Y Number

0 0 0 0 1 1 0
0 0 0 1 0 1 1
0 0 1 0 1 1 2
0 0 1 1 1 1 3
0 1 0 0 0 1 4
0 1 0 1 1 0 5
0 1 1 0 0 0 6
0 1 1 1 1 1 7
1 0 0 0 1 1 8
1 0 0 1 1 1 9
1 0 1 0 0 0 10
. . . . . . .
. . . . . . .
. . . . . . .
1 1 1 1 0 0 15

X = m0+m2+m3+m5+m7+m8+m9
= ∑m (0,2,3,5,7,8,9)

= /A * /B * /C * /D ;m0
+ /A * /B * C * /D ;m2
+ /A */B* C * D;m3
+ /A * B * /C * D ;m5
+ /A * B * C * D ;m7
+ A * /B * /C * /D ;m8
+ A */B* /C * D;m9

Y = m0+m1+m2+m3+m4+m7+m8+m9
= ∑m (0,1,2,3,4,7,8,9)

= /A * /B * /C * /D ;m0
+ /A */B* /C * D;m1
+ /A */B* C * /D;m2
+ /A */B* C * D;m3
+ /A * B * /C * /D ;m4
+ /A * B * C * D ;m7
+ A */B* /C * /D;m8
+ A */B* /C * D;m9

X = M1*M4*M6*M10*M11*M12*M13*M14*M15
    ΠM (1,4,6,10,11,12,13,14,15)

=(A+B+C+/D) ;M1
*(A+/B+C+D) ;M4
*(A+/B+/C+D) ;M6
*(/A+B+/C+D) ;M10
*(/A+B+/C+/D) ;M11
*(/A+/B+C+D) ;M12
*(/A+/B+C+/D) ;M13
*(/A+/B+/C+D) ;M14
*(/A+/B+/C+/D) ;M15

Y = M5*M6*M10*M11*M12*M13*M14*M15
= ΠM (5,6,10,11,12,13,14,15)

=(A+/B+C+/D) ;M5
*(A+/B+/C+D) ;M6
*(/A+B+/C+D) ;M10
*(/A+B+/C+/D) ;M11
*(/A+/B+C+D) ;M12
*(/A+/B+C+/D) ;M13
*(/A+/B+/C+D) ;M14
*(/A+/B+/C+/D) ;M15

a. Truth Table

Figure 3. Finding the Canonical Form from the Truth Table
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Table 6. Conversion of Forms Table

Minterm Maxterm Inverted Minterm Inverted Maxterm
Expansion of  F Expansion of  F Expansion of F Expansion of F

Minterm               – Maxterm numbers List Minterms not Maxterm numbers
expansion are those numbers present in F are the same as
of F not in the Minterm Minterm numbers

list of F of F

Maxterm Minterm numbers                 – Minterm numbers
expansion are those numbers are the same as List Maxterms not
of F not on the Maxterm Maxterm numbers present in F

list of F of F

Desired Form

Given Form

Simplifying Logic
Canonical forms are convenient in that it is easy to de-
rive and convert them. However, the representation is
bulky, since all variables must appear in each sum or
product. These expressions can be simplified by apply-
ing the basic laws and theorems of Boolean algebra.

There are four basic postulates, two of which are the
commutative and distributive laws which were dis-
cussed above. From these postulates, it is possible to
derive nine basic theorems. The postulates and theo-
rems are listed in Table 7.

Table 7. Postulates and Theorems of Boolean Algebra

Postulate 1 (A) X  +  FALSE  = X
(B) X*TRUE = X

Postulate 2  (A) X  +  /X  =  TRUE
(B) X * /X  = FALSE

Postulate 3 (A) X + Y  =  Y + X
(B) X*Y = Y*X

Postulate 4 (A) X * (Y + Z) = (X*Y) + (X*Z)
(B) X + (Y*Z) = (X + Y) * (X + X)

Theorem 1 (A) X + X = X
(B) X * X = X

Theorem 2 (A) X + TRUE = FALSE
(B) X*FALSE = FALSE

Theorem 3 / (/X)  = X

Theorem 4 (A) X + (Y + Z) = (X + Y) + Z
(B) X * (Y*Z) =  (X*Y) * Z

Theorem 5 (A) / (X + Y) = /X * /Y
(B) / (X * Y) = /X + /Y

Theorem 6 (A) X + (X * Y) = X
(B) X * (X + Y) = X

Theorem 7 (A) (X*Y) + (X*/Y) = X
(B) (X + Y) * (X + /Y) = X

Theorem 8 (A) X + (/X*Y) = X + Y 
(B) X * (/X + Y) X*Y

Theorem 9 (A) (X*Y) + (/X*Z) + (Y*Z) = (X*Y) + (/X*Z)
(B) (X + Y) * (/X + Z) * (Y + Z) = (X + Y)*(/X + Z)

Notice that each theorem and postulate (with the excep-
tion of theorem 3) has two forms. This is a result of the
duality principle; once one form of a theorem is estab-
lished, the dual representation follows immediately.
Theorem 3 has no dual because it does not involve any
of the elements that have duals (+, *, 1, or 0).

As the logic expression is simplified, it no longer con-
tains minterms (or maxterms), since some of the
minterms and literals are being eliminated. What was a
sum-of-minterms (product of maxterms) representation
is now simplified to a sum-of-products (product of
sums).
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DeMorgan’s Theorem
Once an expression has been simplified, it is no longer
possible to invert the function by using Table 6. Inverting
simplified logic requires DeMorgan’s theorem:

/(X*Y) = /X + /Y 
/(X + Y) = /X*/Y

This is theorem 5 in Table 7.

There is one shortcut which can be used. The effect of
inversion can be accomplished by inverting all literals
and then using the dual representation. For example,
given the expression

/(A*/B + A*C + /A*B*D)

we can invert to obtain:

/A*B + /A*/C + A*/B*/D ;step one,
invert 
literals

(/A + B)*(/A + /C)* ;step two,
(A + /B + /D) take dual

This expression must still be simplified to obtain a sum-
of-products representation, but this shortcut eliminates
some of the early steps.

Karnaugh Maps:  Minimizing Logic
Simplifying by hand by using algebraic manipulation can
be a tedious and error-prone procedure. When only a
few variables are used (generally less than 5 or 6),
Karnaugh maps (also called K-maps) provide a simpler
graphical means of simplifying logic. K-maps not only al-
low for logic simplification, but for logic minimization,
where an expression has a minimal number of product
terms (or sum terms) and literals.

A Karnaugh map consists of a box which has one cell for
each minterm. These cells are arranged so that only one
literal is inverted when moving from one cell to an adja-
cent cell. The headings placed by each row and column
indicate the polarities of the literals for that row or col-
umn. The literals themselves are indicated in the top left
corner of the map. An example of a Karnaugh map for
three variables is shown in Figure 4.

0

1

C

A
B 00 01 11 10

Values of A

Values of B

Moving to an
Adjacent Cell
Changes the 
Value of one
Variable only. 

Groups Can
Wrap Around

90000A-3

Values of C

Figure 4. A Karnaugh Map for Three Variables

The truth table for a function is then transferred to the
K-map by placing the 1’s and 0’s in the appropriate cells.

Since each cell differs from its neighbor only in the polar-
ity of one of the literals, 1’s in adjacent cells can be
combined by theorem 7a, which says that

x*y + x*/y = x

In this manner, two product terms are combined into
one. This procedure can conceptually be repeated to al-
low groupings of two, four, eight, or any group of
adjacent cells whose size is a power of two. A cell may
appear in more than one group. Just enough groups are
found to include all of the 1’s. The groups should be as
large as possible.

This process provides a minimal sum of products. The
product-of-sums form can be obtained by grouping 0’s
instead of 1’s and inverting the header for each cell.

The two functions from Figure 3 have been placed into
K-maps in Figure 5. The groups are then used as indi-
vidual product terms. When reading the product terms
from the map, the only literals which will appear in the
product term are the ones whose values are constant for
each cell in the group. If that value is 1, then the non-
inverted form of the literal is used.  If the value is 0, then
the inverted form of the literal is used.

For active-LOW functions, the same procedure is used,
except that the 0’s are grouped instead of the 1’s. The
active-LOW version of the functions from Figure 3 are
derived in Figure 6.

Hand simplification and minimization is not needed as
frequently today as in the past, since software is now
available for handling these logic manipulations. Most
software can perform logic simplification and minimiza-
tion automatically.
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/A*/B*/D /A*/C*/D

A*/C*/DA
BC

D

00

01

11

10

B*/C*D1 0 1 1

0 1 1 0

0 0 0 0

1 1 0 0

00 01 11 10

A
BC

D

00

01

11

10

1 1 1 1

1 0 1 0

0 0 0 0

1 1 0 0

00 01 11 10

/A*/D

/C*/D

A*B*/C

/A*/B*/C

X = /A*/B*/D
+ A*/C*/D
+ B*/C*D
+ /A*C*/D

Y = /A*/D
+ /C*/D
+ /A*/B*/C
+ A*B*/C

X Y

Figure 5. Using a K-map to Minimize the Functions in Figure 3
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A*C

A*B*/C*/DA
BC

D

00

01

11

10

1 0 1 1

0 1 1 0

0 0 0 0

1 1 0 0

00 01 11 10

A
BC

D

00

01

11

10

1 1 1

1 0 1 0

0 0 0 0

1 1 0 0

00 01 11 10

/A*B*D

A*/B*D

C*D

/X = C*D
+ /B*D
+ A*C
+ /A*B*/C*/D

/Y = C*D
+ A*D
+ /A*B*D
+ A*/B*D

X Y

A*C

/B*D

C*D

1

Figure 6. Finding Inverse Functions
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Comparison and Equivalence:  the XOR
and XNOR Gates
The Exclusive-OR (XOR) and Exclusive-NOR (XNOR)
gates are two special gates which are relatively com-
mon. These gates have schematic symbols as shown in
Figure 7a. They are actually compound gates, and can
be generated by AND, OR, and NOT gates using the
functions:

x :+: y = x*/y + /x*y  ;XOR gate
x :*: y = x*y + /x*/y  ;XNOR gate

The XOR and XNOR functions are actually inverses of
each other; that is,

x :+: y = /(x :*: y)

The truth tables for these gates are shown in Figure 7b.
Note that the XOR function is true if and only if the oper-
ands are different. For this reason, it is useful as a
comparator. The XNOR function is true if and only if its
operands are the same; therefore it is used as an
equivalence indicator.

XOR

XNOR

a.  Schematic Symbols

A B A:+:B A:*:B

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

90000A-6

b. XOR and XNOR Truth Table

Figure 7. The Exclusive-OR and Exclusive-NOR
Functions

Some basic properties of the XOR and XNOR functions
are listed in Table 8.

Table 8. Properties of the XOR and XNOR Functions

x :+: 0 = x x :*: 0 = /x

x :+ 1 = /x x :*: 1 = x

x :+: x = 0 x :*: x = 0

x :+: /x = 1 x :*: /x = 1

x :+: y = y :+: x x :*:  y  =  y :*: x

x :+: y = :+: z = (x :+: y) :+: z x :*: y :*: z = (x :*: y) :*: z)

= x :+: (y :+: z) = x :*: (y :*: z)

x :+: y = /x :+:  /y x :*: y = /x :*:  /y

/ (x :+: y) = /x :+: y / (x :*: y) = /x :*: y

= x :+:  /y = x :*:  /y

= x :+:  y = x :+:  y

x :+: y  = x* /y + /x*y x :*: y  = x* y + /x*/y

x :+: x* y = x*/y x :*: x* y = /x + y

x :+: /x*y = x + y x :*: /x*y = /x * /y

x* (y :+: z) = (x*y) :+: (x*z) x + (y :*: z) = (x + y) :*: (x + z)

/x*(y :+: z) = (x + y) :+: (x + z) /x + (y :*: z) = (x*y) :*: (x*z)

XOR XNOR

When deriving equations from a Karnaugh map, XOR
and XNOR functions can usually be identified by their
characteristic pattern. Exactly what the operands are
may or may not be obvious for more complicated func-
tions. Some examples are shown in Figure 8.

The XOR gate can be used as an “UNLESS” operator. In
other words, the function, A = X :+: Y can be
interpreted as:

“A will have the same value as X UNLESS Y is true.”

This can be helpful when trying to derive a logic equation
for a function which can be described in words.



AMD

6-11Logic Reference Guide

90000A-7

P
QR

J

00

01

11

10

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

00 01 11 10

P
QR

S

00

01

11

10

0 0 1

1 0 1 0

1 0 1 0

0 0 0 1

00 01 11 10

J = /P*/Q*/R
+ P*Q*/R
+ /P*Q*R
+ P*/Q*R
= ((/P*/Q) + (P*Q))*/R
+ ((/P*Q)+(P*/Q))*R
= (P:*:Q)*/R
+ (P:+:Q)*R
= /(P:+:Q)*/R
+ (P:+:Q)*R

= (P:+:Q):*:R

K = /P*/Q*S
+ P*Q*S
+ P*/Q*/S
= ((/P*/Q) + (P*Q))*S
+ P*/Q*/S

= (P:*:Q)*S
+ P*/Q/*/S

J K

0

Figure 8. Finding  XOR and XNOR Functions in Karnaugh Maps

Basic Storage Elements
Storage elements provide circuits with the capability of
remembering past conditions or events. The prototypi-
cal storage element is just a pair of cross-coupled NAND
gates, as shown in Figure 9. These elements are nor-
mally called flip-flops.

90000A-8

Figure 9. Basic Storage Element

In general, there are two primary classes of flip-flops:

Unclocked flip-flops, or latches

Clocked flip-flops

Clocked flip-flops are sometimes referred to as regis-
ters, although technically speaking, a register is a bank
of several flip-flops with a common clock signal.

Flip-flops can also be characterized by their control
scheme. There are four types of flip-flops, each of which
can be unclocked or clocked:

S-R
J-K
D
T

The discussion below will be divided between un-
clocked and clocked flip-flops. Each of the four flip-flop
types will be treated for each section.

Unclocked Flip-Flops—Latches
S-R Latches

An S-R latch can be built out of NOR gates as shown in
Figure 10, and behaves according to the truth table in
Table 9. ‘S’ stands for ‘set’ and ‘R’ stands for ‘reset,’ as
suggested by the truth table.

Note that the latch actually has two outputs, which are
complementary. These are referred to as Q and Q. If
both S and R are raised at the same time, then both Q
and Q will be HlGH; although this is physically possible,
it does not make sense if Q and Q are to be complemen-
tary signals. Thus, this condition is not allowed.
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S

R

Q

Q

Q

QS

R

Figure 10. An S-R Latch

Table 9. S-R Latch Truth Table

S R Q+

0 0 Q

0 1 0

1 0 1

1 0 Not allowed

The transfer function for this latch can be derived with a
Karnaugh map, as shown in Figure 11. By choosing
either 1’s or 0’s, we can obtain two representations:

a. Q+ = S+/R*Q
b. /Q+ = R+/S*/Q

90000A-10

Q
S

R

00

01

11

10

1

0 0

X X

1 1

0 1

Q+

0

Q
S

R

00

01

11

10

1

0 0

X X

1 1

0 1

0

/Q+

a. Q+ = S + /R*Q b. /Q+ = R + /S*/Q

Figure 11. Karnaugh Map for an S-R Latch

Waveforms illustrating the operation of the S-R latch are
shown in Figure 12.

There are some applications where it is desirable for the
input data to be effective only when another signal—
usually called a control signal—is active. The circuit of
Figure 10 can be modified to give an S-R latch with a
control input, as shown in Figure 13. The operation of
this circuit is summarized in Table 10 and Figure 14.

The S-R latch is somewhat restrictive, since both inputs
cannot be HIGH at the same time. The other latch types
are based on the S-R latch, but have additional logic
which removes the input restrictions.

S

R

Q

90000A-11

Figure 12. S-R Latch Behavior

S

C

R

S

R

Q

Q

Q

Q

S

C

R

Q

Q

90000A-12

Figure 13. Adding a Control Input to an S-R Latch

Table 10. Truth Table for an S-R Latch with a
Control Input

S R C Q+

X X 0 Q

0 0 1 Q

0 1 1 0

1 0 1 1

1 1 1 Not allowed
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S

R

C

Q

90000A-13

Figure 14. Behavior of an S-R Latch with a Control Input

D-Type Latches (Transparent Latches)

A single-input latch can be formed by adding some logic
to the controlled S-R latch in Figure 13; this gives rise to
the D-type latch in Figure 15. This latch is often called a
transparent latch, since data on the input passes right
through to the output as long as the control input is
HlGH. If the control input is set LOW, then the latch
holds whatever data was present when the control went
LOW. With this type of latch, the control is usually called
a gate.

The behavior of the D-type latch is shown in Table 11
and Figure 16.

The basic transfer function for a D-type latch can be de-
rived from the Karnaugh map in Figure 17.

G

Q

Q

D

G

Q

Q

90000A-14

S

C

R

Q

Q

D

Figure 15. A D-Type (Transparent) Latch

Table 11. Truth Table for a D-Type Latch

D G Q+

X 0 Q

0 1 0

1 1 1

D

G

Q

90000A-15

Figure 16. D-Type (Transparent) Latch Behavior
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Q
D

G

00

01

11

10

1

0 0

1 1

0 1

0 1

Q+

0

Q
D

G

00

01

11

10

1

0 0

1 1

0 1

0 1

0

/Q+

a. Q+ = D*G + D*/G b. /Q+ = /D*G + /Q*/G

Q+ = D*G + Q*/G /Q+ = /D*G + /Q*/G

Figure 17. Karnaugh Maps for a D-Type Latch



AMD

6-14 Logic Reference Guide

If realized exactly as the transfer function indicates, the
result is actually a glitchy circuit.

J-K Latches

Another two-input latch can be derived from the S-R
latch as shown in Figure 18. This is called a J-K latch,
and operates in the same manner as an S-R latch, ex-
cept that the condition where both inputs are HIGH is
now allowed. The truth table is shown in Table 12; the
waveforms are shown in Figure 19.

J

K

S

R

Q

Q

Q

Q

J

K

Q

Q
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Figure 18. A J-K Latch

Table 12. Truth Table for a J-K Latch

J K Q+

0 0 Q

0 1 0

1 0 1

1 1 Q

There are still some potential problems here for the case
where J and K are both HIGH. If J and K are left HIGH for
too long, the output may change more than one time; if
left HIGH forever, the output will oscillate. Thus, J and K
should not be asserted for a time longer than the propa-
gation delay of the latch. There are also potential race
conditions if J and K are not asserted and removed at
exactly the same time. If one of the inputs is raised
slightly ahead of the other, it may give the output time to
react, giving the wrong output once the second input is
raised. The same problem can occur if one input is low-
ered slightly before the other. This is illustrated in
Figure 20.

There are several ways to derive transfer functions for
J-K latches. Two can be derived directly from Karnaugh
maps, as shown in Figure 21;  the others are not as obvi-
ous, and make use of the XOR gate described before.
The basic transfer functions are listed in Table 13.

Table 13. Transfer Functions for a J-K Latch

Q + = J * /Q /Q+ = /J* /Q

+ /K*Q + K*Q

Q+ = Q /Q+ = /Q

:+: (J* /Q :+: (J*/Q

+  K*Q) + K*Q)

Q+ = /Q /Q+ = Q

:+: (/J*/Q :+: (/J*/Q

 +  /K*Q)  +  /K*Q)

J

K

Q

90000A-18

Figure 19. Behavior of a J-K Latch
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b. Rising Edge Race Conditions
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c. Possible OscillationtPD OF Latch

Figure 20. Hazards Inherent in a J-K Latch
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90000A-20

Q
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K

00
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11
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1

0 0

1 0

1 1

0 1

Q+

0

Q
J

K

00

01

11

10

1

0 0

1 0

1 1

0 1

0

/Q+

a. Q+ = J*/Q + /K*Q b. /Q+ = /J*/Q + K*Q

Figure 21. Karnaugh Maps for a J-K Latch

T-Type Latches

T-type latches are formed by connecting the J and K in-
puts of a J-K latch together to form a single input, as
shown in Figure 22. This latch has two possible func-
tions: hold the present state or invert the output, as
summarized in Table 14. ‘T’ stands for ‘trigger’ or
‘toggle’ depending on who you talk to. That is, when T is
HIGH, a change at the output is triggered; or, put an-
other way, raising T causes the output to toggle.

J

K

Q

Q

Q

Q

T

Q

Q

90000A-21

T

Figure 22. A T-Type Latch

Table 14. The Truth Table for a T-Type Latch

T Q+

0 Q

1 /Q

This Latch also has the problem that if T is left HIGH for
too long, the output will oscillate. However, since there is
only one input, the race condition problems of the J-K
latch have been eliminated. Unfortunately, this comes at
the cost of initialization. There is now no way to get the
output into a fixed state without knowing what the
previous state was. Thus, this device is not very useful
without some kind of initialization circuit.

The general waveforms for a T-type latch are shown in
Figure 23.

T

Q

tPD OF Latch 90000A-22

Figure 23. Behavior of a T-Type Latch
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From the Karnaugh map in Figure 24, we can generate
the following transfer functions:

Q+ = T*/Q /Q+ = T*Q
+ /T*Q    + /T*/Q

Q+ = Q:+:T /Q+ = /Q :+: T
Q+ = /Q:+: /T /Q+ = Q :+: /T

90000A-23

Q
T

0

1

1

1 0

0 1

Q+

0

Q
T

0

1

1

1 0

0 1

0

/Q+

a. Q+ = T*/Q + /T*Q b. /Q+ = T*Q + /T*/Q

Figure 24. Karnaugh Maps for a T-Type Latch

Clocked Flip-Flops
Latches can be modified by adding a clock input. The
purpose of the clock is to delay any output changes until
the clock signal changes. Whereas latch control inputs
(such as the gate) are level-sensitive, clock inputs are
generally edge-sensitive (or edge-triggered), meaning
that output transitions can occur only when a clock tran-

sition is detected. A device is classified as positive
edge-triggered or negative edge-triggered, depending
on whether it responds to the rising or falling edge of the
clock signal, respectively. The behavior to a clocked
S-R flip-flop is illustrated in Figure 25.

The clock provides two basic advantages. It removes
the hazards inherent in the J-K and T flip-flops, since all
inputs will have settled by the time the clock edge ar-
rives, and only one transition is possible for each clock
edge. The clock also allows the design of synchronous
systems, where all signals are coordinated with other
signals. The entire system is then regulated by the
clock.

The basic behavior of the four flip-flops types does not
change with the addition of a clock; the output changes
are merely made to wait for the clock edge. Thus, the ba-
sic transfer equations for most of the flip-flops are the
same. We can indicate the clocked nature of the flip-
flops by using the “registered” assignment ‘:=’ instead
of ‘=.’

D-Type Flip-Flops

This is the only flip-flop type whose basic transfer char-
acteristic changes, because the clock input replaces the
gate input. Thus the transfer equations become:

Q+:= D/Q+ := /D

That is, whatever data appears on the input will be trans-
ferred to the output after the next clock edge. The input
is not changed in any way.
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The simplicity of this flip-flop makes it the most widely
used flip-flop. However, functions are sometimes more
conveniently expressed using J-K flip-flops, or using
T-type flip-flops. If we replace the D signal with the
transfer function for one of the other flip-flop types, we
can then emulate that flip-flop type in the D-type flip-flop.
This is equivalent to taking a latch and placing a clocked
D-type flip-flop after the latch output for synchronization.
Figure 26 illustrates how each flip-flop can be emulated
in a D-type flip-flop. The standard schematic symbols for
the flip-flop types are also shown.

Table 15 summarizes the transfer functions for all of the
flip-flop types. These functions can directly be used to
emulate a particular flip-flop type in a D-type flip-flop.
This can be particularly useful since D-type flip-flops are
available in most registered PLDs.

S

R

Clock

Qp

Qn

90000A-24

Figure 25. Behavior of a Clocked S-R Flip-Flop for Positive (Qp) and Negative
(Qn) Edge-Triggered S-R Flip-Flops



AMD

6-19Logic Reference Guide

D Q

Q

Q

Q

J

K

Q

Q

90000A-25

J

K

Q

Q

J

K

Clock

D Q

Q
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c. Clocked T-Type Flip-Flop

d. Clocked S-R Flip-Flop

S S
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Figure 26. Clocked Flip-Flops. All can be Emulated with a D-Type Flip-Flop
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Table 15. Clocked Flip-Flop Transfer Functions

D-Type Q+ := D /Q+ := /D

Q+ := J*/Q /Q+ := /J* /Q
+ /K*Q + K*Q

Q+ := Q /Q+ := /Q
J-K-Type :+: (J*/Q :+: (J*/Q

+ K*Q) + K*Q)

Q+ := /Q /Q+ := Q
:+: (/J*/Q :+: (/J*/Q
+ /K*Q) + /K*Q)

Q+ := T*/Q /Q+: = T*/Q
+ /T*Q + /T*/Q

T-Type Q+ := Q:+:T /Q+ := /Q :+: T
Q+ := /Q :+: /T /Q+ := Q :+: /T

S-R-Type Q+ := S /Q+ := R
+ /R*Q + /S*/Q

Binary Numbers
The concept of a number is taken for granted by most
people. And most people equate numbers in general
with the decimal system, with which we are most famil-
iar. However, there is nothing particularly special about
the decimal system; the choice of system is actually
rather arbitrary. History has chosen the decimal system
for most humans.

For electronic systems, the binary system is more ap-
propriate. It makes possible arithmetic and logical
calculations that would be much more difficult—likely
impractical—if implemented directly in a decimal sys-
tem. Closely related to the binary system are the octal
and hexadecimal systems, which will also be discussed
here. Arithmetic is normally performed using binary
numbers in a computer. Octal and hexadecimal repre-
sentations are generally used as a way to “abbreviate”
what might otherwise be lengthy binary numbers. This
will be seen when conversion is discussed below.

There are several terms which must be defined before
proceeding further. A number is an abstract entity
which is used to describe quantity. There are many
ways of representing a number. Normally, the represen-
tation is designed around a base. The number is
expressed as a sum of multiples of the powers of the
base. The decimal system is a base-10 system, mean-
ing that 10 is used as the base. The binary system is
base-2; the octal system is base-8; and the hexadecimal
system is base-16. The binary, octal, and hexadecimal
systems are closely related because 8 and 16 are both
powers of 2. When different bases are being used, a
number will often be followed by its base in subscript, to
indicate exactly what the base is. For example, the

decimal number 25 would be written 2510 if its base were
in doubt.

A number can thus be expressed in terms of some base
x as follows:

anxn+an-1 xn-1 +...+a 1x1+a0x0+a–1x–1+...
+a–mX–m

(1)

The numbers an...a–m are called digits. The value of
each digit can range from 0 to x–1. Each digit is repre-
sented by a symbol, called a numeral. X numerals are
required to represent a number in base x. The most fa-
miliar numerals are the symbols ‘0,’ ‘1,’...‘9.’ There are
ten of them, since they are used for the decimal system.
For binary numbers, only ‘0’ and ‘1’ are used; for octal
numbers, the numerals ‘0’ through ‘7’ are used. Hexa-
decimal numbers are more difficult, since sixteen
numerals are required. Therefore, the numerals ‘0’
through ‘9’ are used to represent the quantities 010

through 910; the letters A through F are used to represent
the quantities 1010 through 1510.

The number expressed by equation 1 is normally repre-
sented as a string of digits:

anan–1...a 1a0.a –1...a –m

The digits representing negative powers of the base are
separated from those representing non-negative pow-
ers by a point. In the decimal system, this is referred to
as a decimal point; in the binary system, it is referred to
as a binary point.

There are two basic classes of manipulation which will
be discussed: conversions between bases and arithme-
tic within a base.
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Converting Between Bases

Base-2 <–> Base-10

Converting a binary number to a decimal number is
accomplished by using equation 1 directly.

Example:

Converting 110100.0112 to decimal:

Y = 110100.011

= 1•25 + 1•24 + 0•23 + 1•22+ 0•21+ 0•20+ 0•2–1 + 
1•2–2 + 1•2–3

= 32 + 16 + 4 +.25 + .125
= 52.375

When converting whole numbers from decimal to bi-
nary, the decimal number is repeatedly divided by 2.
Integer division is used, so the quotients are “rounded
down” to the next integer. The remainders form the dig-
its of the number. The least significant digit is the first
one calculated.

Example:

Converting 6110 to binary:

61/2 = 30 remainder = 1 LSB
30/2 = 15 remainder = 0
15/2 = 7 remainder = 1
7/2 = 3 remainder = 1
3/2 = 1 remainder = 1
1/2 = 0 remainder = 1 MSB

6110  =1111012

When converting a decimal fraction into a binary frac-
tion, the decimal number is multiplied by 2. This results
in a whole number and a fraction. The whole number is a
digit; the procedure is repeated on the new fraction. This
procedure is repeated until the fractional portion is zero.
If the procedure does not terminate, then the result is a
repeating fraction. The first digit calculated is the most
significant digit.

Example:

Converting .162510 to binary:

0.1625•2 = 0.3250 whole portion = 0 MSB
0.3250•2 = 0.65 whole portion = 0
0.65•2 = 1.3 whole portion = 1
0.3•2 = 0.6 whole portion = 0
0.6•2 = 1.2 whole portion = 1
0.2•2 = 0.4 whole portion = 0
0.4•2 = 0.8 whole portion = 0
0.8•2 = 1.6 whole portion = 1
0.6•2 = 1.2 whole portion = 1

Here we see that the fraction will repeat, since we have
already multiplied 0.6 earlier. Thus

0.162510 = 0.00101001100110011...2

For mixed numbers, it is necessary to calculate the
whole and fractional portions separately. Thus, for ex-
ample, we know that

61.162510 = 111101.0010100110011...2

These are actually general procedures which can be
used to convert a decimal number into any base, and
vice versa.

Examples:

1. Converting 321.548 to decimal:

Y = 3•82 + 2•81+1•80+ 5•8–1+ 4•8–2

= 192 + 16 + 1 + .625 + .0625
= 209.6875

321.548 = 209.687510

2. Converting 106.1037510 to octal:

106/8 = 13 remainder = 2 LSB
13/8 = 1 remainder = 5
1/8 = 0 remainder = 1 MSB

Thus, the whole portion is 1518.

0.10375•8  = 0.83 whole portion = 0 MSB
0.83•8 = 6.64 whole portion = 6
0.64•8 = 5.12 whole portion = 5
0.12•8 = 0.96 whole portion = 0
0.96•8 = 7.68 whole portion = 7
0.68•8 = 5.44 whole portion = 5

At this point we have enough significant digits. We could
continue either until the procedure terminated, or until
the pattern started repeating. However, those last digits
are not likely to be significant. Thus, we can approxi-
mate by saying that...

106.1037510=152.0650758

3. Converting 31F.A216 to decimal:

Y = 31F.A216

= 3•162+ 1•161 + 15•160+ 10•16–1+2•16–2

= 768 + 16 + 15 + 0.625 + 0.0078125 
= 799.6328125

31F.A216 = 799.632812510

4. Converting 7689.10085410 to hexadecimal:

7689/16 = 480 remainder = 9 LSB
480/16 = 30 remainder = 0
30/16 = 1 remainder = E
1/16 = 0 remainder = 1 MSB
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Thus, the whole portion is 1EO916.

0.100854•16 = 1.613664 whole portion = 1 MSB 
0.613664•16 = 9.818624 whole portion = 9 
0.818624•16 = 13.097984 whole portion = D 
0.097984•16 = 1.567744 whole portion = 1 
0.567744•16 = 9.083904 whole portion = 9 
0.083904•16 = 1.342464 whole portion = 1

Again, we likely have enough digits at this point. The ex-
act fraction could be either very long or a long repeating
pattern. For our purposes, we can approximate the
overall result as:

7689.10085410 = 1E09.19D19116

Binary <–> Octal, Hexadecimal

Converting between the binary-related systems is very
easy. The procedure consists of dividing the binary dig-
its into groups, and replacing each group with an
appropriate digit. For this reason, octal and hexadeci-
mal numbers are often used to shorten long binary
numbers.

To convert from binary to octal, group the digits by three,
starting on each side of the binary point, and then con-
vert each group of three digits into its corresponding
octal digit. Leading and trailing zeroes may have to be
added to the left of the whole portion and the right of the
fractional portion, respectively, to make complete
groups of three binary digits.

Example:

Converting 11011010110101.0010011012 to octal:

Divide into groups of three digits:

011 011 010 110 101 . 001 001 101
3 3 2 6 5 . 1 1 5

Thus 11011010110101.0010011012 = 33265.1158

To convert from binary to hexadecimal, the digits are di-
vided into groups of four digits, and then given their
corresponding hexadecimal digits. Again, leading and/
or trailing zeroes may be needed.

Example:

Converting 100101011101100.1101100012 to hexa-
decimal:

Divide into groups of four digits:

0100 1010 1110 1100 . 11011000 1000
4 A E C . D 8 8

Thus 100101011101100.1101100012 = 4AEC.D8816

To convert from octal or hexadecimal to binary, merely
expand each digit into its corresponding binary
representation.

Examples:

1. Convert 7324.348 to binary:

7 3 2 4 . 3 4
111 011 010 100 . 011 100

Thus 7324.348 = 111011010100.01112

2. Convert 1A2.3F516 to binary:

1 A 2 . 3 F 5
0001 1010 0010 . 0011 1111 0101

Thus 1A2.3F516= 110100010.0011111101012

Binary Arithmetic
Positive binary arithmetic is very simple, and completely
analogous to decimal arithmetic. However, if we are re-
stricted to positive numbers, then we are also restricted
to addition. We need a means of representing negative
numbers. Using a dash ‘–’ is unacceptable for represen-
tation in a computer. There are two general schemes
which can be used. In binary systems, they are referred
to as 1s complement and 2s complement  representa-
tion, although they can be generalized for any base
system as diminished-radix complement and radix com-
plement representation.

One’s Complement Representation
The one’s complement of a binary number can be calcu-
lated by inverting all of the bits of the number. Fractions
are handled exactly the same way, although this is con-
venient only for fixed-point arithmetic. Floating-point
arithmetic requires other methods, which will not be dis-
cussed here.

Example:

Finding the one’s complement of 110111.0101:

110111.0101 
001000.1010   (Inverting each bit)

Thus, the one’s complement of 110111.0101 is
001000.1010.

The sign of a number is determined by the most signifi-
cant bit. If the MSB is 0 the number is positive; if the MSB
is 1, then the number is negative. Zero is represented by
all bits being zero. However, one normally thinks of zero
as being its own complement. But if we take the one’s
complement of zero,

0000
1111

we see that 1111 is another representation of zero.
Thus, in an eight-bit representation, positive numbers
range from 00000001 to 01111111; negative numbers
range from 10000000 to 11111110. Note that there are
just as many negative numbers as positive numbers.
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This eight-bit code allows us to represent the numbers
from –127 to +127.

When performing addition with one’s complement num-
bers, it is important to watch for overflow results.
Whenever an overflow occurs, a correction must be
made by adding 1 to the result.

In some cases, the results of an operation will not be
meaningful, since the intended result cannot be repre-
sented. For instance, in the eight-bit system above,
adding 127 to 127 will give a meaningless result, since
254 cannot be represented in this system. Thus, the op-
eration must be evaluated to ensure that the result is
meaningful.

Examples:

All examples will use 4-bit systems. Thus, the range of
representable numbers is from –7 to +7.

Add 3 + 2:
0011 3

+ 0010 + 2
   0101 5 result meaningful

Add 7 + 7 (14 cannot be represented):

0111 7
+ 0111 + 7

   1110 –1 result 
meaningless

Subtract 3 from 7:

   0111 7
+ 1100 + –3

 10011 overflow – add 1,
+1 discard overflow 

0100 4 bit

Subtract 5 from 2:

    0010 2
+ 1010 + –5

    1100 –3 result meaningful

Subtract 6 from –5 (–11 cannot be represented):

    1010 –5
+ 1001 + –6

  10011 overflow – add 1, 
+1   discard overflow bit

     0100 4 result meaningless

Subtract 5.25 from 3.5 (fixed point; requires 6 bits):

0011.10 3.5
+ 1010.10 + –5.25

   1110.00 –1.75 result meaningful

Subtract 7 from 7:   
0111 7

+ 1000 + –7
    1111 0 one of the 

representations of 0
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The advantage of one’s complement code is the fact
that it is easy to compute the complement. However, the
fact that there are two representations for zero is a prob-
lem. In addition, the results of subtraction frequently
have to be adjusted for overflow by adding 1.

Two’s Complement Representation
The two’s complement of a binary number is more diffi-
cult to calculate. It is generated by taking the one’s
complement, and then adding 1. Any overflow is dis-
carded. Fractions are again handled in the same way,
although 1 is added to the least significant bit.

Example:

Finding the two’s complement of 110111.0101:

110111.0101
001000.1010 (take one’s

+1 complement)
001000.1011

Thus, the two’s complement of 110111.0101 is
001000.1011. 

The sign of a number is again determined by the most
significant bit. If the MSB is 0 the number is positive; if
the MSB is 1, then the number is negative. Zero is repre-
sented by all bits being zero. In this case, if we take the
two’s complement of zero, we get:

0000
1111

+1
     0000 (overflow is discarded)

giving only one representation for zero.

Thus, in an eight-bit representation, positive numbers
range from 00000001 to 01111111; negative numbers
range from 10000000 to 11111111. This means that
there is one more negative number than there are posi-
tive numbers. So this eight-bit code allows us to
represent the numbers from –128 to +127.

Addition is handled in the same fashion as with one’s
complement code, except that when an overflow oc-
curs, the overflow bit is disregarded. No correction must
be made to the results.

After any operation, one must still make sure that the re-
sults are meaningful.

Examples:

0011 3
+ 0010 + 2

   0101 5 result meaningful

Add 3 + 2:

Add 7 + 7 (14 cannot be represented):

0111 7
+ 0111 + 7

   1110 –2 result meaningless

Subtract 3 from 7:
0111 7

+ 1101 + –3
10100 4 overflow – discard

overflow bit
Subtract 5 from 2:

0010 2
+ 1011 + –5

1101 –3 result meaningful

Subtract 6 from –5 (–11 cannot be represented):

   1011 –5
+ 1010 + –6

 10101  5 overflow – discard 
overflow bit result
meaningless

Subtract 5.25 from 3.5 (fixed point; requires 6 bits):

0011.10 3.5
+ 1010.11 + –5.25

   1110.01 –1.75 result meaningful

Subtract 7 from 7:

    0111 7
+ 1001 + –7

 10000 0 overflow – disregard
overflow bit

The benefits of two’s complement lie in the fact that
there is only one representation for zero, and the fact
that the results of operations never need adjusting due
to overflow. The disadvantage is the fact that it is harder
to generate the two’s complement of a number.


