

AMD

5-17PLD Design Methodology

actual programming and testing on a system board. We
will take a simple design example and go through the
various stages of this design process.

Conceptualize A
Design Problem

Select Device

Implement
Design

Program PLD

Test PLD

Plug PLD
Into Board

90002A-2

Figure 2. Programmable Logic Device Design
Process

Conceptualizing a Design
The first step in the PLD design process is also required
for any SSI/MSI design. An advantage of PLDs is that at
this stage the designer needs to be concerned only with
the required logic function. With SSI or MSI, various
device logic limitations must be accounted for before the
design can be started. Clearly a designer needs to
develop a brief and complete functional description,
based upon the system design requirements.

We will take the example of a simple address decoder
circuit required for a 68000 microprocessor. The
microprocessor has 24 address lines along with
separate read and write signals. It requires some ROM
to store the boot-up code as well as some RAM for
storing and executing programs. The purpose of the
address decoder circuitry is to select one of the memory
addresses at a time. The RAMs and ROMs are assigned
addresses on the 68000 microprocessor address
space. The Address decoder circuit has to select one of
the RAMs or ROMs for a specific range of addresses,
called the address space. This selection is
accomplished by asserting the specific chip-select
signal for the RAM or ROM when the microprocessor
accesses one of the addresses in the address space.
There is additional circuitry in a typical microprocessor
system for addressing I/O devices (such as disk
controllers). These devices also require that chip-select
signals be asserted when the microprocessor
addresses them. Figure 3 shows an example address
map for a 68000 microprocessor.

PROM 1

PROM 2

DRAM 1

DRAM 2

DRAM 3

DRAM 4

000000–0FFFFF

100000–1FFFFF

200000–2FFFFF

300000–3FFFFF

400000–4FFFFF

500000–5FFFFF

600000–6FFFFF

90002A-3

Figure 3. Memory Address Map

AMD

5-18 PLD Design Methodology

Top

Bottom

Reset
Button

Read
Only

Read &
Write

2 A22, A23

D0–16

Interface
Logic

M68000
Microprocessor

RESET

RW

AS

A21, A22, A23

DRAM
Controller

RAMCS

ROMCS2

ROMCS1

INIT

PROM1

PROM2

DRAM1

DRAM2

DRAM3

DRAM4

90002A-4

Figure 4. Microprocessor to Memory Interface

Figure 4 show the circuit diagram. The address signals
from the 68000 microprocessor are inputs to the
interface logic block. The outputs generated are
ROMCS1, ROMCS2 and RAMCS. The generation of
signals for selecting device I/Os is similar and is not
shown here for the sake of simplicity. Other system
inputs to the interface are the address strobe signal
generated by the 68000 microprocessor as well as the
read/write signal. The truth table for generating the
outputs is shown in Table 1. This truth table is derived
from the memory address map and the functional
description of the design.

Table 1. Truth Table for Chip-Select Signals

Addresses Hex Size A23 A22 A21 Signal

000000–0FFFFF 1 MB 0 0 0 ROMCS1

100000–1FFFFF 1 MB 0 0 1 ROMCS2

200000–2FFFFF 1 MB 0 1 0 RAMCS

300000–3FFFFF 1 MB 0 1 1 RAMCS

400000–4FFFFF 1 MB 1 0 0 RAMCS

500000–5FFFFF 1 MB 1 0 1 RAMCS

Device Selection Considerations
The first task for the designer is to identify the design
problem and classify it as a combinatorial function or a
registered function, depending upon whether or not
registers are required. In most cases, this decision

depends upon the functional nature of the problem.
Sometimes timing and logic considerations can also
dictate the use of registers; this will be discussed later.
Registers are usually not required for such simple
combinatorial functions such as encoders, decoders,
multiplexers, demultiplexers, adders, and comparators.
However, registers are required for functions such as
counters, timers, control signal generation, and state
machines. No registers are required for this simple
address decoding example.

The best choice for our combinatorial design would be a
PAL device. The task now is to select a PAL device for
implementing the desired function. General device
selection considerations are listed below. These items
are applicable to most designs.

 Number of input pins

 Number of output pins

 Number of I/O pins

 Device speed

 Device power requirements

 Number of registers (if any)

 Number of product terms

 Output polarity control

AMD

5-19PLD Design Methodology

Address
Decoding

Time

Address
Decoding

Time
Memory Access Time

10 ns 220 ns 10 ns

240 ns

Read/Write Cycle Time 90002A-5

Figure 5. System Timing Requirements

The first resource that must be provided in a PLD is the
number of pins needed for the basic logic function. This
consists of the number of input and output pins. Many
PLDs have internal feedback, which allows the
generated output signal to be reused as an input. The
same feedback also allows the pin to be used as a
dedicated input, if required. This is especially useful for
fitting various designs with different input/output
requirements on the same device. The I/O pin capability
of certain PLDs can also be very useful for certain bus
applications.

The task is as simple as counting the number of input,
output and I/O pins required by the design and picking a
PLD which has the requisite number of pins.

The next selection issue is the device speed. The most
important timing consideration for combinatorial PLDs is
the propagation delay (tPD) of signals from the input to
the output of the device. For registered PLDs, the
important timing consideration is the device clocking
frequency. This clocking frequency is in turn determined
by sum of the register setup time (tS), and
clock-to-output propagation delay (tCO). Most systems
impose some timing restrictions on the internal logic
functions. These restrictions will determine the
necessary tPD (for combinatorial devices) or fMAX (for
registered devices).

In our design example, the PLD will primarily perform
address decoding. The critical system timing constraint
is determined by the read/write cycle time of the
microprocessor and the memory access time available
(Figure 5). Most microprocessors allow anywhere from
10 to 35 ns for address decoding. That is, 10 ns – 35 ns
after the address is available, the correct memory
chip-select signal should be asserted. In our design
example, the available cycle time of 240 ns and memory
access time of 220 ns leaves barely 10 ns for address
decode time. We can check the propagation delay and
select the appropriate speed device for our design,
which is tPD = 10 ns.

We have already briefly discussed the types of
applications where registers are needed. Sometimes
the consideration of system timing can affect whether or
not registers are needed. Devices with registers can

hold a signal stable for the long durations required by the
addressed peripheral or memory. However, this slows
the initial response or access time of the device since
the chip select must wait for the setup time before the
rising edge of the clock cycle. Devices without registers
provide fast access time but hold the signal valid only as
long as the input conditions are valid. In most address
decoders, the address signals are kept asserted by the
microprocessor until the read/write cycle is completed.
In this case, the registers are not required for holding the
signals asserted.

The remaining two general design considerations are
the number of product terms and output polarity. We will
discuss these two as we implement the design in the
next section.

Implementing a Design
Implementing a design (Figure 6) requires the creation
of a design file. The design file contains three types of
information.

 Basic bookkeeping information

 Design syntax

 Simulation syntax

Once the design file is complete, it is then assembled
and simulated. Once it passes assembly and
simulation, the resultant JEDEC file is downloaded to a
device programmer for configuring the device.

Design Syntax
In this example, as shown in Figure 6, there are two
options available to the designer for expressing the
design. The first is through traditional Boolean logic
equations; the second is through a state machine
syntax. The Boolean logic equations are the only option
for combinatorial designs and can also be efficient for
some registered designs. The Boolean equations can
be derived from a combination of the functional
description, the truth table and/or the timing diagrams
(Figure 7). The state machine approach is ideal for large
registered control designs, and can be derived from the
functional description, state table, state diagram and/or
the timing diagram (Figure 8).

AMD

5-20 PLD Design Methodology

Yes

No

Select Device

Creat Design
File Write

Boolean Logic
Equations

Creat Design
File Write

State Machine

Assemble
Design File

Simulate the Design

OK?

Download a
JEDEC File

Program PLD

90002A-6

Figure 6. Implementing a Design

Functional
Description

Assemble
Design File

Truth Table Timing Diagram

Logic Equations

90002A-7

Figure 7. Writing Boolean Logic Equations

AMD

5-21PLD Design Methodology

Functional
Description

Assemble
Design File

State Diagram State Table

State Machine File

Timing Diagram

90002A-8

Figure 8. State Machine Description

Boolean Logic Equations
Boolean equations are used to represent the
sum-of-products logic form. The Boolean equations are
ideally suited for representing the two-level AND-OR
logic available in most PLDs.

A conventional approach to the design is to convert the
design problem to its discrete logic implementation.
Such random SSI and MSI logic can be easily
implemented in PLDs. This usually involves converting
to sum-of-products Boolean logic form. This approach
can be a chore, and much effort can be saved by
implementing a design with PLDs in a sum-of-products
form right from the start. This essentially means that the
designer does not have to design around the limitations
of fixed SSI and MSI functions. A direct implementation
of a design in sum-of-products form in a PLD can also
yield a faster circuit.

Boolean equations can be directly derived from the truth
table or timing diagram (Figure 7). The truth table is
used more often in simple combinatorial designs. The
timing diagram method is used more often in registered
control designs. We will first discuss the truth table
method and then discuss the details of the timing
diagram method.

In addition to specifying the logic function, the Boolean
equations in the design file help document the design.
There is no need to draw out an equivalent schematic.
This allows design modularity; the schematic can just
show a block for a particular PLD. Separate supporting
documentation (the design file) provides the details
without cluttering the drawing.

AMD

5-22 PLD Design Methodology

Truth-Table-Based Design
The requirements for our particular design example can
be easily converted to a truth table format (Table 2). This

truth table is based upon the functional description of the
design, and is derived from the address map (Figure 3)
and the truth table (Table 1).

Table 2. Truth Table for the Address Decoder

A23 A22 A21 INIT AS RW ROMCS1 ROMCS2 RAMCS

0 0 0 1 0 1 0 1 1

0 0 1 1 0 1 1 0 1

0 1 0 1 0 X 1 1 0

0 1 1 1 0 X 1 1 0

1 0 0 1 0 X 1 1 0

1 0 1 1 0 X 1 1 0

Output Generated

There are three additional input signals in this design
example. The first, RW, is generated by the
microprocessor, and distinguishes between read and
write cycles. Since the ROM data is only for reading, the
ROMCS1 and ROMCS2 signals are asserted only when
RW is high (when the microprocessor attempts to read
the ROM) and are not asserted for the write cycle. On
the other hand, RAMCS is generated for both read and
write cycles and the state of signal RW is “don’t care.”

The second additional signal, AS, is the address strobe
signal generated by the microprocessor, and is asserted
only when the address lines carry a valid address. All of
the chip select signals need to be gated with the AS
signal to ensure that they are only generated for valid
addresses, and no spurious chip selects are generated.

The last signal is the INIT signal, which is a system
initialization signal. This signal is used to initialize the
microprocessor for a “warm boot,” and none of the chip
selects is allowed when this INIT signal is asserted.

Writing Boolean equations from the above logic is very
straight forward. The output signal names, along with
their polarity, are assigned to sum-of-product equations,
which are based upon inputs and their polarities.

/ROMCS1 = /A23 * /A22 * /A21 * INIT * /AS * RW

/ROMCS2 = /A23 * /A22 * A21 * INIT * /AS * RW

/RAMCS = /A23 * A22 * /A21 * INIT * /AS

+ /A23 * A22 * A21 * INIT * /AS

+ A23 * /A22 * /A21 * INIT * /AS

+ A23 * /A22 * A21 * INIT * /AS

Figure 9. The Implementation In Boolean
Equations

The equations are derived directly from the truth tables.
Each one of the AND equations uses up one product
term of the device as shown in Figure 9. One device
selection consideration is to ensure that all the outputs
have sufficient product terms to accommodate the
desired function.

This brings us to the issue of output polarity. Suppose
we had to generate active-HlGH outputs. In that case
the output equations for the ROMCS1 signal would be:

ROMCS1 = /A23 + /A22 * /A21 * INIT */AS * RW

If the device has active-LOW outputs only, this
equation’s output polarity needs to be inverted to be
able to fit the device. Using DeMorgan’s theorem for
Boolean logic we get:

/RCMCS1 = A23 + A22 + A21 + /INIT + AS + /RW

This equation requires a large number of product terms
(six). Some signals are efficient and use fewer product
terms in their true form, while others are more efficient in
their inverted form. The device selection issues of
product terms and output polarity also apply to
registered designs.

Timing-Diagram-Based Design
Until now, we have discussed a PLD design using truth
tables as the primary design vehicle. In this section we
will attempt a design using a timing diagram as a design
vehicle.

Earlier in the address decoder design we mentioned the
INIT signal. This INIT signal essentially an initialization
signal for the entire system. The INIT signal is used
internally (via feedback) for disabling the chip selects
during initialization. Externally it can be used to initialize

AMD

5-23PLD Design Methodology

other system signals. This INIT signal is generated from
a RESET switch connected to the inputs of the device as
shown in Figure 10.

Most experienced designers understand the tradeoffs
for device selection. They implicitly go through the steps
of design conceptualization and device selection,
explained earlier. They typically draw a block around the
logic being designed, with the previous knowledge that it
would fit a PLD which has sufficient inputs, outputs, IOs
and product terms.

VCC

TOP

BOTTOM

RESET PAL Device
Debounce

Circuit

90002A-9

Figure 10. RESET Switch for System Initialization

To avoid unwanted initialization, the RESET switch
must be debounced. That is, we want the INIT signal to
remain HIGH until the switch actually contacts the
bottom side. Once the bottom side is hit, INIT should be
asserted active LOW. Once asserted, it should stay
LOW and not change until the top side is hit again. The
timing requirements of the debounce circuitry are shown
in Figure 11. Signals TOP and BOTTOM are inputs to
the programmable logic device. These signals are
activated when the RESET switch touches the top and
the bottom contacts, respectively.

We can formulate the equations by looking at the timing
requirements of the debounce circuitry shown in
Figure 11. The idea is to identify the key elements of this
timing diagram. The arrows in Figure 11 show the critical
events. The first arrow shows the normal state of all the
pins when the RESET switch is not asserted.
Subsequent arrows show each event in the timing of the
INIT signal, depending upon the movement of the
switch.

RESET
Switch

Top

Bottom

Bottom

90002A-10

1 2 3 4 5

Figure 11. Timing Diagram for the
Debounce Switch

The logic level of the signals at each critical event
carries useful logic information for deriving Boolean
equations. This logic information for each event is
converted into direct Boolean equations as shown in
below. For example, at instant 1 the INIT signal remains
HlGH as long as the TOP signal remains LOW; this is
converted to INIT = /TOP * BOTTOM.

1. Normal state INIT = /TOP

2. Switch travels INIT = TOP * BOTTOM *
from TOP to BOTTOM INIT

3. Switch contacts /INIT = /BOTTOM
BOTTOM

4. Switch travels /INIT = /INIT *
from BOTTOM to TOP BOTTOM * TOP

5. Normal State Again

We can combine the two active-LOW events into one
equation:

/INIT = /BOTTOM
 + /INIT * BOTTOM * TOP

AMD

5-24 PLD Design Methodology

Minimizing, this becomes:

/INIT = /BOTTOM
+ / INIT * TOP

This can also be done by way of a truth table and
Karnaugh map.

Table 3. Truth Table of INIT Logic

TOP BOTTOM INIT– INIT+

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 X

0 0 0 X

Here TOP or BOTTOM will be LOW if contacted. Note
that both TOP and BOTTOM can not be contacted at the
same time. The truth table of Table 3 yields the
Karnaugh map shown in Figure 12. Grouping the zeros
(because we are using active-LOW outputs) yields the
Boolean equation identical to the one derived from the
timing diagram.

/RESET

/TOP
/BOTTOM

00 01 11 10

1 0 X 1

0 0 X 1

0

1

90002A-11

Figure 12. Karnaugh Map of INIT Signal Logic

There is essentially no difference between the truth
table and timing diagram techniques for writing Boolean
logic. Also, a careful analysis will indicate that we
implicitly assumed a truth table in the timing diagram
example. Some designers prefer to make a separate
truth table (at least in the first few PLD designs), while
others prefer to design directly from timing diagrams.
While the truth table method allows a more optimal
utilization of product terms, the timing diagram method
is easier to visualize as it retains the design perspective.
In both cases the logic should be minimized by the
design software to ensure that the design is testable.

Most experienced designers understand the tradeoffs
for device selection. They implicitly go through the steps
of design conceptualization and device selection,
explained earlier. They typically draw a block around the
logic being designed, with the previous knowledge that it
would fit a PLD which has sufficient inputs, outputs, IOs
and product terms.

Simulation
Design simulation is an integral part of the design
process, as shown in Figure 13. The purpose is to
exercise all of the inputs and test the response of
outputs to verify that they will work as desired in the
system. These are essentially test vectors which
designate the state of every input on the device; the
outputs are then checked for an appropriate response.
The simulation test vectors identify any flaws in the
design equations which could affect the logical
operation of the devices programmed. Thus, the
simulation vectors serve as a design debugging tool.

Yes

No

Assemble
Design File

Simulate the
Design with

Simulation Vectors

OK?

Program PLD Array

Download JEDEC
File to the Device

Programmer

Verify Array

90002A-12

Fix
Errors

Program
the PLD

Figure 13. Device Simulation and Programming

AMD

5-25PLD Design Methodology

Simulation test vectors will eventually make up part of a
larger set of test vectors called ”functional test vectors”.
These functional test vectors are used to exercise a real
device after programming to identify any individual
devices which are defective. Other means of identifying
defective devices, such as signature analysis, are also
available. In this section we will strictly focus on
simulation vectors.

Simulation is included in the design file along with the
logic equations. There is little standardization in these

simulation expressions among various PLD design
software packages, although most of them rely on test
vectors to exercise the logic.

The simulation vectors or events can be directly derived
from the truth table and the timing diagram of the design.
The logic level and functions of all signals can be
expanded and rewritten in a test vector form by the
software. For example, the truth table for the address
decoder example discussed earlier can be easily
rewritten as shown in Table 4.

Table 4. Truth Table Used to Derive Simulation Vectors

A23 A22 A21 TOP BOTTOM AS RW ROMCS1 ROMCS2 RAMCS INIT

0 0 0 0 1 1 1 H H H H
0 0 0 0 1 0 1 L H H H

0 0 1 0 1 1 1 H H H H
0 0 1 0 1 0 1 H L H H

0 1 0 0 1 1 X H H H H
0 1 0 0 1 0 X H H L H

0 1 1 0 1 1 X H H H H
0 1 1 0 1 0 X H H L H

1 0 0 0 1 1 X H H H H
1 0 0 0 1 0 X H H L H

1 0 1 0 1 1 X H H H H
1 0 1 0 1 0 X H H L H

1 0 1 0 1 X X H H H H
1 0 1 1 1 X X H H H H

1 0 1 1 0 1 X H H H L
1 0 1 1 1 1 X H H H L
1 0 1 0 1 1 X H H H H

These are essentially the simulation vectors which will
allow us to define the inputs to the device and check the
outputs of the device.

The simulator then interprets the design file and
generates the output logic levels and/or waveforms,
which can be checked by the designer.

Once the simulation is complete, the design file can be
assembled to generate the JEDEC file. In the
proceeding discussions we have assumed prior
knowledge of the design file assembly. The procedure
for assembly varies with different software packages.

AMD

5-26 PLD Design Methodology

Device Programming and Testing
Once the design simulation is completed, the final step
is device programming and testing (Figure 14).
Programmers are available from a variety of vendors. It
is important to note that Advanced Micro Devices, Inc.,
qualifies programmers upon verifying that the
algorithms used by the programmers are correct and
that other basic criteria are met. When purchasing a
programmer, check that the programmer is qualified for
the devices you intend to use.

Download JEDEC
File to Device
Programmer

Program Security
Fuse If Desired

Test PLD with
Simulation and

Other Test Vectors

Use on a Board

Program

Test

Program PLD Array

Verify Array

Performed by
Device
Programmers

PLD

PLD

90002A-13

Figure 14. Device Programming and Testing

There are two types of programmers available:
menu-driven or device code based. The menu-driven
programmer directly indicates the part type being
programmed, whereas the latter type requires the user
to enter the device code before programming.

Once the JEDEC fuse file has been downloaded, the
programmer can program the device; the PLD is then
ready for use. The programmer also verifies the
connections after the programming cycle. Programmers
also provide the capability of reading a previously
programmed device and creating duplicates of that
device.

Testing PLDs
The testing of PLDs can be performed by the device
programmer or by other test equipment. For a
manufacturing environment, where high yields are
required, device testing is critical. After testing is
complete, the device security bit may be programmed, if
desired, to secure the design from copying.

