

5-60 Publication# 90005 Rev. A Amendment /0

Issue Date: June 1993

State Machine Design

INTRODUCTION
State machine designs are widely used for sequential
control logic, which forms the core of many digital sys-
tems. State machines are required in a variety of appli-
cations covering a broad range of performance and
complexity; low-level controls of microprocessor-to-
VLSI-peripheral interfaces, bus arbitration and timing
generation in conventional microprocessors, custom
bit-slice microprocessors, data encryption and decryp-
tion, and transmission protocols are but a few examples.

Typically, the details of control logic are the last to be
settled in the design cycle, since they are continuously
affected by changing system requirements and feature
enhancements. Programmable logic is a forgiving solu-
tion for control logic design because it allows easy modi-
fications to be made without disturbing PC board layout.
Its flexibility provides an escape valve that permits de-
sign changes without impacting time-to-market.

A majority of registered PAL device applications are se-
quential control designs where state machine design
techniques are employed. As technology advances,
new high-speed and high-functionality devices are be-
ing introduced which simplify the task of state machine
design. A broad range of different functionality-and-per-
formance solutions are available for state machine de-
sign. In this discussion we will examine the functions
performed by state machines, their implementation on
various devices, and their selection.

What Is a State Machine?
A state machine is a digital device that traverses through
a predetermined sequence of states in an orderly fash-
ion. A state is a set of values measured at different parts
of the circuit. A simple state machine can consist of PAL-
device based combinatorial logic, output registers, and
buried (state) registers. The state in such a sequencer is
determined by the values stored in the buried and/or
output registers.

A general form of a state machine can be depicted as a
device shown in Figure 1. In addition to the device inputs
and outputs, a state machine consists of two essential
elements: combinatorial logic and memory (registers).
This is similar to the registered counter designs dis-
cussed previously, which are essentially simple state
machines. The memory is used to store the state of the
machine. The combinatorial logic can be viewed as two
distinct functional blocks: the next state decoder and the
output decoder (Figure 2). The next state decoder deter-
mines the next state of the state machine while the out-
put decoder generates the actual outputs. Although they
perform two distinct functions, these are usually com-
bined into one combinatorial logic array as in Figure 1.

Combinatorial Logic

Device
Inputs Outputs

Memory

Output
Decode

Next
State

Decode
State

90005A-1

Figure 1. Block Diagram of a Simple State Machine

AMD

5-61State Machine Design

Combinatorial Logic

Inputs

Outputs
Output

Decoder
(Output
Decode

Function)
Memory

(Registers)

Next State
Decoder

(Transition
Function)

Combinatorial Logic

90005A-2

Figure 2. State Machine, with Separate Output and Next State Decoders

The basic operation of a state machine is twofold:

1. It traverses through a sequence of states, where
the next state is determined by next state decoder,
depending upon the present state and input con-
ditions.

2. It provides sequences of output signals based
upon state transitions. The outputs are generated
by the output decoder based upon present state
and input conditions.

Using input signals for deciding the next state is also
known as branching. In addition to branching, complex
sequencers provide the capability of repeating se-
quences (looping) and subroutines. The transitions from
one state to another are called control sequencing and
the logic required for deciding the next states is called
the transition function (Figure 2).

The use of input signals in the decision-making process
for output generation determines the type of a state ma-
chine. There are two widely known types of state ma-
chines: Mealy and Moore (Figure 3). Moore state
machine outputs are a function of the present state only.
In the more general Mealy-type state machines, the out-
puts are functions of both the state and the input signals.
The logic required is known as the output function. For
either type, the control sequencing depends upon both
states and input signals.

Most practical state machines are synchronous sequen-
tial circuits that rely on clock signals to trigger the state
transitions. A single clock is connected to all of the state
and output edge-triggered flip-flops, which allows a
state change to occur on the rising edge of the clock.
Asynchronous state machines are also possible, which
utilize the propagation delay in combinatorial logic for
the memory function of the state machine. Such ma-
chines are highly susceptible to hazards, hard to design
and are seldom used. In our discussion we will focus
solely on sequential state machines.

State Machine Applications
State machines are used in a number of system control
applications. A sampling of a few of the applications,
and how state machines are applied, is described
below.

As sequencers for digital signal processing (DSP) appli-
cations, state machines offer speed and sufficient
functionality without the overkill of complex micropro-
cessors. For simple algorithms, such as those involved
in performing a Fast Fourier Transform (FFT), a state
machine can control the set of vectors that are multiplied
and added in the process. For complex DSP operations,
a programmable DSP may be better. On the other hand,
the programmable DSP solution is not likely to be as fast
as the dedicated hardware approach.

Consider the case of a video controller. It generates ad-
dresses for scanning purposes, using counters with
various sequences and lengths. Instead of implement-
ing these as actual counters, the sequences involved
can be “unlocked” and implemented, instead, as state
machine transitions. There is an advantage beyond
mere economy of parts. A count can be set or initiated,
then left to take care of itself, freeing the microprocessor
for other operations.

In peripheral control the simple state machine approach
can be very efficient. Consider the case of run-length-
limited (RLL) code. Both encoding and decoding can be
translated into state machines, which examine the serial
data stream as it is read, and generate the output data.

Industrial control and robotics offer further areas where
simple control functions are required. Such tasks as me-
chanical positioning of a robot arm, simple decision
making, and calculation of a trigonometric function, usu-
ally does not require the high-power solution of micro-
processors with stacks and pointers. Rather, what is
required is a device that is capable of storing a limited
number of states and allows simple branching upon
conditions.

AMD

5-62 State Machine Design

Inputs

Outputs

Output
Decode

RegistersNext State
DecoderState

Outputs are Functions
of State and Inputs

a. Mealy State Machines

Inputs

Outputs

Output
Decode

RegistersNext State
Decoder

Outputs are Functions
of State Only

b. Moore State Machines 90005A-3

Figure 3. The Two Standard State Machine Models

Data encryption and decryption present similar prob-
lems to those encountered in encoding and decoding for
mass media, only here it is desirable to make the
scheme not so obvious. A programmable state machine
device with a security Bit is ideal for this because mem-
ory is internally programmed and cannot be accessed
by someone tampering with the system.

Functions Performed
All the system design functions performed by controllers
can be categorized as one of the following state ma-
chine functions:

Arbitration

Event monitoring

Multiple condition testing

Timing delays

Control signal generation

Later we will take a design example and illustrate how
these functions can be used when designing a state
machine.

State Machine Theory
Let us take a brief look at the underlying theory for all se-
quential logic systems, the finite state machine (FSM),
or simply state machine.

Those parts of digital systems whose outputs depend on
their past inputs as well as their current ones can be
modeled as finite state machines. The “history” of the
machine is summed up in the value of its internal state.
When a new input is presented to the FSM, an output is
generated which depends on this input and the present
state of the FSM, and the machine is caused to move
into new state, referred to as the next state. This new
state also depends on both the input and present state.
The structure of an FSM is shown pictorially in Figure 2.
The internal state is stored in a block labeled “memory.”
As discussed earlier, two combinatorial functions are re-
quired: the transition function, which generates the
value of the next state, and the output function, which
generates the state machine output.

AMD

5-63State Machine Design

State Diagram Representation
The behavior of an FSM may be specified in graphical
form as shown in Figure 4. This is called a state diagram,
or state transition diagram. Each bubble represents a
state, and each arrow represents a transition between
states. Inputs that cause the transitions are shown next
to each transition arrow.

State A

State B

State C State D

State E

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

90005A-4

Figure 4. State Machine Representation

Control sequencing is represented in the state transition
diagram as shown in Figure 5. Direct control sequencing
requires an unconditional transition from state A to state
B. Similarly conditional control sequencing shows a
conditional transition from state C to either state D or
state E, depending upon input signal I1.

State C

State D State E

State A

State B

I1 = 0 I1 = 1

a. Direct Control
Sequencing

b. Conditional Control
Sequencing

90005A-5

Figure 5. Control Sequencing

For Moore machines the output generation is repre-
sented by assigning outputs with states (bubbles) as
shown in Figure 6. Similarly, for Mealy machines condi-
tional output generation is represented by assigning
outputs to transitions (arrows), as was shown in
Figure 4. More detail on Mealy and Moore output gen-
eration is given later.

State A

State B

a. Moore Machine

State A

State B

b. Mealy Machine

O1

O2

I1
O1

90005A-6

Figure 6. Output Generation

For this notation, there is a specification uncertainty as
to which signals are outputs or inputs, as they both occur
on the drawing next to the arrow in which they are active.
This is usually resolved by separating the input and out-
put signals names with a line (Figures 4 and 6). Some-
times an auxiliary pin list detailing the logic polarity and
input or output designations is also used.

State transition diagrams can be made more compact
by writing on the transitions not the input values that
cause the transition, as in Figure 4, but a Boolean ex-
pression defining the input combination or combinations
that cause this transition. For example, in Figure 7,
some transitions have been shown for a machine with
inputs START, X1, and X2. In the transition between
states 1 and 2, the inputs X1 and X2 are ignored (that is,
they are “don’t cares”) and thus do not appear on the
diagram. This saves space and makes the function
more obvious.

1

2

3 4

X1 * X2 X1 * X2

Start

Start

90005A-7

Figure 7. State Transition Diagram with
Mnemonics

There can be a problem with this method if one is care-
less. The state transitions in figure 8 show what can hap-
pen. There are three input combinations, (I0, I1, I2, I3) =
{1011}, {1101} and {1111}, which make both (/I0 * /I2 +
I3) and (I0 * I1 + I0 * I2) true. Since a transition to two
next states is impossible, this is an error in the

AMD

5-64 State Machine Design

specification. It must either be guaranteed that these in-
put combinations never occur, or the transition condi-
tions must be modified. In this example, changing (I0 * I1
+ I0 * I2) to (I0 * I1 + I0 * I2) * /I3 would solve the problem.

A

D

B

C

90005A-8

All Other
Combinations

I0 * I2 + I3

I0 * I1 + I0 * I2

Figure 8. State Diagram with Conflicting Branch
Conditions

State Transition Table Representation
A second method for state machine representation is
the tabular form known as the state transition table,
which has the format shown in Table 1. Listed along the
top are all the possible input bit combinations and inter-
nal states. Each row gives the next state and the next
output; thus, the table specifies the transition and output
functions. However, this type of table is not suitable for
specifying practical machines in which there is a large
number of inputs, since each input combination defines
a row of the table. For example, with 10 inputs, 1024
rows would be required!

Table 1. A State Transition Table

Present Outputs
State Inputs Next State Generated

S0 – Sn I0 – Im S0 – Sn O0 – Op

Flowcharts
Another popular notation is based on flowcharts. In this
notation, states are represented by rectangular boxes,
and alternative state transitions are determined by
strings of diamond-shaped boxes. The elements may
have multiple entry points, but in general have only one
exit. The state name is written as the first entry in the
rectangular state box. Any Moore outputs present are
written next in the state box, with a caret (^) following
those that are unregistered. The state code assignment,
if it is known, is written next to the upper right corner of
the state box. Decision boxes are diamond or hexagonal
shaped boxes containing either an input signal or a logic
expression. Two exits labeled “0” and “1” lead to either
another decision box, a state box, or a Mealy output.

The rounded oval is used for Mealy machine outputs.
Again, a caret follows those outputs that are unregis-
tered. All the boxes may need to be expanded to accom-
modate a number of output signals or a larger
expression.

The use of these symbols is shown in Figure 9. Each
path, through the decision boxes from one state to an-
other defines a particular combination or set of combina-
tions of the input variables. A path does not have to
include all input variables; thus, it accommodates “don’t
cares.” These decision trees take more space than the
expressions would, but in many practical cases, state
machine controllers only test a small subset of the input
variables in each state and the trees are quite manage-
able. Also, the chain of decisions often mirrors the de-
signer’s way of thinking about the actions of the
controller. It is important to note that these tests are not
performed sequentially in the FSM; all are performed in
parallel by the FSM’s state transition logic.

A benefit of this method of specifying transitions is that
the problem of Figure 8 can be avoided. Such a conflict
would be impossible as one path cannot diverge to de-
fine paths to two states.

This flowchart notation can be compacted by allowing
more complex decisions, when there is no danger of
conflicts due to multiple next states being defined, Ex-
pressions can be tested, as shown in Figure 10a, or mul-
tiple branches can extend from a decoding box, as in
Figure 10b. In the second case, it is convenient to group
the set of binary inputs into a vector, and branch on dif-
ferent values of this vector.

The three methods of state machine representation
state diagrams, state tables, and flowcharts

are all equivalent and interchangeable, since they all de-
scribe the same hardware structure. Each style has its
own particular advantages. Although most popular, the
state transition diagrams are more complex for prob-
lems where state transitions depend on many inputs,
since the transition conditions are written directly on the
transition arrows. Although cumbersome, the state ta-
bles allow the designer tight control over signal logic.
Flowcharts are convenient for small problems where
there are not more than about ten states and where up to
two or three inputs or input expressions are tested in
each state. For larger problems, they can become
ungainly.

Once a state machine is defined, it must be imple-
mented on a device. Software packages are then used
to implement the design on a device. The task is to con-
vert the state machine description into transition and
output functions. Software packages also account for
device-specific architectural variations and limitations,
to provide a uniform user interface.

AMD

5-65State Machine Design

Some software packages accept all three different state
machine representations directly as design inputs.
However, the most prevalent design methodology is to
convert the three state machine design representations
to a simple textual representation. Textual representa-
tions are accepted by most software packages although
the syntax varies.

Since the most common of all state machine represen-
tations is the state transition diagram representation, we
will use it in all subsequent discussions. Transition table
and flowchart representation implementations will be
very similar.

(A^, B^, C^, ...)

State 2 State 3

Mealy
Output

Asyn Sync

Input Cond.
(Expression)

(X^, Y^, Z^, ...)
(X, Y, Z, ...)

State
Name

NN State Code

Asyn

Sync
Moore Output

0 1

90005A-9

(A, B, C, ...)

Figure 9. Flowchart Notation

State 1

A * B

A * C

State 4 State 2 State 3

0 1

10

a. Testing Expressions b. Multiway Branch

State 1

A (0...3)

90005A-10

Figure 10. Using Flowcharts

AMD

5-66 State Machine Design

State Machine Types: Mealy & Moore
With the state machine representation clarified, we can
now return to the generic sequencer model of Figure 1,
which has been labeled (Figure 11) to show the present
state (PS), next state (NS), and output (OB, OA). This
will illustrate how Mealy and Moore machines are imple-
mented with most sequencer devices that provide a sin-
gle combinatorial logic array for both next state and
output decode functions. There are four ways of using
the sequencer, two of which implement Moore ma-
chines and two Mealy. First, let us look at the
Mealy forms.

The standard Mealy form is shown in Figure 12, where
the signals are labeled as in Figure 11 to indicate which
registers and outputs are used. The register outputs PS
are fed back into the array and define the present state.
The combinatorial logic implements the transition func-
tion, which produces the next state flip-flop inputs NS,
and the output function, which produces the machine
output OB. This is the asynchronous Mealy form.

Combinatorial Logic

Device
Inputs

Outputs
Memory

(Registers)

Output
Decode

Next
State

Decode
I

NS

OB

OA

Present State
PS

90005A-11

Figure 11. Generic Model of an FSM

Inputs

OB
Outputs

Output
Function

Register
(State

Memory)

Transition
Function

Present State
PS

Next
State
NS

I

Clock
90005A-12

Figure 12. Asynchronous Mealy Form

An alternative Mealy form is shown in Figure 13. Here
the outputs are passed through an extra output register
(OA) and thus, do not respond immediately to input
changes. This is the synchronous Mealy form.

AMD

5-67State Machine Design

Inputs

OA
Outputs

Output
Function

Register
Transition
Function

Present State
PS

Next
State
NS

I

Clock

Register

90005A-13

Figure 13. Synchronous Mealy Form

Inputs

OB
Outputs

Output
Function

Register
(State

Memory)

Transition
Function

Present State
PS

Next
State
NS

I

Clock 90005A-14

Figure 14. Asynchronous Moore Form

Inputs

OA
OutputsRegister

Transition
Function

Present State
PS

Next
State
NS

I

Clock 90005A-15

Figure 15. Synchronous Moore Form

The standard Moore form is given in Figure 14. Here the
outputs OB depend only on the present state PS. This is
the asynchronous Moore form. The synchronous Moore
form is shown in Figure 15. In this case the combinato-
rial logic can be assumed to be the unity function. The
outputs (OB) can be generated directly along with the

present state (PS). Although these forms have been de-
scribed separately, a single sequencer is able to realize
a machine that combines them, provided that the re-
quired paths exist in the device.

AMD

5-68 State Machine Design

In the synchronous Moore form, the outputs occur in the
state in which they are named in the state transition dia-
gram. Similarly, in the asynchronous Mealy and Moore
forms the outputs occur in the state in which they are
named, although delayed a little by the propagation de-
lay of the output decoder. This is because they are com-
binatorial functions of the state (and inputs in the Mealy
case).

However, the synchronous Mealy machine is different.
Here an output does not appear in the state in which it is
named, since it goes into another register first. It ap-
pears when the machine is in the next state, and is thus
delayed by one clock cycle. The state diagram in Fig-
ure 16 illustrates all the possibilities on a state transition
diagram.

S2 / O2

S3 / O3

S1 / O1

I1 / O4

Asynchronous
Mealy Output
Available

Synchronous
Moore Output
Available

Asynchronous
Moore Output
Available

I3

I2 / O5

Synchronous
Mealy Output
Available

90005A-16

Figure 16. State Diagram Labelling for Different
Output Types

As a matter of notation, Moore outputs are often placed
within the state bubble and Mealy outputs are placed
next to the path or arrow that activates them.

The relationship of Mealy and Moore, synchronous and
asynchronous outputs to the states is shown in
Figure 17.

Device Selection Considerations
There are three major criteria for selecting the correct
state machine device for a design:

Number of inputs/outputs

— I/O flexibility

— Number of output registers

Speed

Intelligence/functionality

— Number of product terms
— Type of flip-flops
— Number of state registers

Number of I/Os
The number of inputs, outputs and I/O pins determine
the signals that can be sampled or generated by a state
machine.

Timing and Speed
The timing considerations for sequencer design are
similar to those for registered logic design. A system
clock cycle forms the basic kernel for evaluating control
function behavior. For the most part, all input and output
functions are specified in relationship to the positive
edge. Registered outputs are available after a period of
time tCO, the clock-to-output propagation delay. Asyn-
chronous outputs require an additional propagation de-
lay (tPD) before they are valid.

For the circuit to operate reliably, all the flip-flop inputs
must be stable at the flip-flop by the minimum set-up
time (tS) of the flip-flops before the next active clock
edge. If one of the inputs changes after this threshold,
then the next state or synchronous output could be
stored incorrectly; the circuit may even malfunction. To
avoid this, the clock period (tP) must be greater than the
sum of the set-up time of the flip-flops and the clock to
output time (tS + tCO). This determines the minimum
clock period and hence the maximum clock frequency,
fMAX, of the circuit. Metastability and erroneous system
operation may occur if these specifications are violated.

The timing relationships are shown in Figure 18. In each
cycle there are two regions: the stable region, when all
signals are steady, and the transition region, when the
machine is changing state and signals are unstable. The
active clock edge causes the flip-flops to load the value
of the new state that has been set up at their inputs.

AMD

5-69State Machine Design

Clock

State

Input

Registered
Moore Input

Registered
Mealy Output

Asynchronous
Moore Output

Asynchronous
Mealy Output

Sn Sn + 1 Sn + 2

On On + 1 On + 2

In

On On + 1

On On + 1 On + 2

On On + 1 On + 2

State n State n + 1 State n + 2

90005A-17

Figure 17. State Machine Timing Diagram

Clock

Input

Registered
Output

Asynchronous
Output

State n + 1 n + 2n n + 3

tCLKtSUtP

tPD

90005A-18

Figure 18. Timing Diagram for Maximum Operating Frequency

AMD

5-70 State Machine Design

At a time after this, the present state and output flip-flop
outputs will start to change to their new values. After a
time has elapsed, the slowest flip-flop output will be sta-
ble at its new value. Ignoring input changes for the mo-
ment, the changes in the state register cause the
combinatorial logic to start generating new values for
the asynchronous outputs and the inputs to the flip-
flops. If the propagation delay of the logic is tPD, then the
stable period will start at a time equal to the sum of the
maximum values of tCO, and tPD.

Asynchronous Inputs
The timing of the inputs to an asynchronous state ma-
chine is often beyond the control of the designer and
may be random, such as sensor or keyboard inputs, or
they may come from another synchronous system that
has an unrelated clock. In either case no assumptions
can be made about the times when inputs can or cannot

arrive. This fact causes reliability problems that cannot
be completely eliminated, but only reduced to accept-
able levels.

Figure 19 shows two possible transitions from state “S1”
(code 00) either back to itself, or to state “S2” (code 11).
Which transition is taken depends on input variable “A”
which is asynchronous to the clock. The transition func-
tion logic for both state bits B1 and B2 include this input.
The input A can appear in any part of the clock cycle. For
the flip-flops to function correctly, the logic for B1 and B2
must stabilize correctly before the clock. The input
should be stable in a window tS (setup time) before the
clock and tH (hold time) after the clock. If the input
changes within this window, both the flip-flops may not
switch, causing the sequence to jump to states 01 or 10,
which are both undefined transitions. This type of erro-
neous behavior is called an input race.

Clock

Input

B1

tSU th

B2

S1

S2

A

00

A

11

90005A-19

Figure 19. Asynchronous Input Cascading Race

AMD

5-71State Machine Design

A solution to this problem is to change the state assign-
ment so that only one state variable depends on the
asynchronous input. Thus, the 11 code must be
changed to 01 or 10. Now, with only one un-
synchronized flip-flop input, either the input occurs in
time to cause the transition, or it does not, in which case
no transition occurs. In the case of a late input, the ma-
chine will respond to it one cycle later, provided that the
input is of sufficient duration.

There is still the possibility of an input change violating
the setup time of the internal flip-flop, driving it into a me-
tastable state. This can produce system failures that can
be minimized, but never eliminated. The same problem
arises when outputs depend on an asynchronous input.

Very little can be done to handle asynchronous inputs
without severely constraining the design of the state ma-
chine. The only way to have complete freedom in the
use of inputs is to convert them into synchronous inputs.
This can be done by allocating a flip-flop to each input as
shown in Figure 20. These synchronizing flip-flops are
clocked by the sequencer clock, and may even be the
sequencer’s own internal flip-flops. This method is not
foolproof, but significantly reduces the chance of me-
tastability occurring.

Functionality
The functionality of different devices is difficult to com-
pare since different device architectures are available.
The number of registers in a device determines the
number of state combinations possible. However, all the
possible state combinations are not necessarily usable,
since other device constraints may be reached. The
number of registers does give an idea of the functionality
achievable in a device. Other functionality measures in-
clude the number of product terms and type of flip-flop.
One device may be stronger than another in one of
these measures, but overall may be less useful due to
other shortcomings. Choosing the best device involves
both skill and experience.

In order to give an idea of device functionality, we will
consider each of the architecture options available to
the designer and evaluate its functionality.

Input
Register

Combinatorial
Logic Output

Register

State
Register

I

Clock

AO

SO

90005A-20

Figure 20. Input Synchronizing Register

PAL Devices as Sequencers
A vast majority of state machine designs are imple-
mented with PAL devices. Early versions of software re-
quired the user to manually write the sum-of-products
Boolean equations for using PAL devices. Second gen-
eration software allows one to specify the design in
“state machine syntax,” and handles the translation to
sum-of-products logic automatically. PAL devices im-
plement the output and transition functions in sum-of-
products form through a user-programmable AND array
and a fixed OR array.

PAL devices deliver the fastest speed of any sequencer
and are ideally suited for simple control applications
characterized by few input and output signals interact-
ing within a dedicated controller in a sequential manner.
The number of flip-flops in a typical PAL device range
from 8 to 12, which offer potentially more than one thou-
sand state values. Since some of the flip-flops are used
for outputs, and the number of product terms is limited,
the usable number of states is reduced drastically. Gen-
erally, up to about 35 states can be utilized.

AMD

5-72 State Machine Design

PAL Device Flip-Flops
PAL device based sequencers implement small state
machine designs, which have a relatively large number
of output transitions. Since the output registers change
with most state transitions, they can be used simultane-
ously as state registers, once the state values are care-
fully selected. Most PAL devices are used for small state
machines, and efficiently share the same register for
output and state functions. High-functionality PAL de-
vice based sequencers provide dedicated buried state
registers when sharing is difficult.

As a state machine traverses from one state to another,
every output either makes a transition (changes logic
level) or holds (stays at the same logic level). Small state
machine designs require relatively more transitions and
fewer holds. As designs get larger, state machines sta-
tistically require relatively fewer transitions and more
holds.

Most PAL devices provide D-type output registers. D-
type flip-flops use up product terms only for active transi-
tions from logic LOW to HIGH level, and for holds for
logic HIGH level only. J-K, S-R, and T-type flip-flops use
up product terms for both LOW-to-HIGH and HlGH-to-
LOW transitions, but eliminate hold terms. Thus, D-type
flip-flops are more efficient for small state machine de-
signs. Some PAL devices offer the capability of config-
uring the flip-flops as J-K, S-R or T-types, which are
more efficient for large state machine designs since they
require no hold terms.

Many examples of PAL-device-based sequencers can
be found in system time base functions, special count-
ers, interrupt controllers, and certain types of video dis-
play hardware.

PAL devices are produced in a variety of technologies
for multiple applications, and provide a broad range of
speed-power options.

