
PALs

PAL Programmable Logic Devices.

Consider implementing a general Boolean function of two variables A and B. This can
be expressed as a sum of product terms.

The device shown in figure produces all possible (22) product terms formed by two
variables. The inputs entered into the logic sum are selected by programmable fuses.
Such devices are collectively termed as Programmable Logical Devices or PLDs.

Figure 1

Example: X = A.B + A’.B’ requires that fuses f1 and f4 to be “blown”.

The above PLD has “fixed” AND gates and a “programmable” OR gate. If we wanted to
implement m different functions, each having n inputs we would need a similar PLD with
n inputs and m outputs. Inside the chip we would have 2n AND gates and m OR gates.
Each OR gate would have 2n inputs, so the PLD would have to have a m x 2n+1 matrix of
programmable fuses.

 1

PALs

Figure 2 Simplified PROM

A simplified diagram of a 3 input x 2 output chip is shown in figure 2.
The 2 x 8 x 8 = 128 programmable fuses in the OR matrix are located at the intersections
of the 16 horizontal with the 8 vertical lines. Each of the first 8 horizontal lines
represents a possible minterm entering for the sum of products into the function X and
similarly the lines 9 to 16 represent all the possible minterms entering into the sum for the
function Y.
The PLD with fixed AND and programmable OR matrices is called PROM
(Programmable Read Only Memory). It allows us to store m different truth tables, each
having the same number of n variables.
PLDs are particularly useful for storing data. Imagine that we want to store 64 arbitrary 8
digit numbers. If we use a PROM with at least 5 inputs and 8 outputs, then each input
combination (there are 25 =64) gives a different 8 digit number on the output. We can
consider any given input combinations as an address in the memory were the eight digit
number resides.

 2

PALs

PAL (Programmable Array Logic).

Although great for data storage, PROMs are wasteful when used to represent logic
functions. Most logic functions contain only a small number of minterms, whereas
PROM provides us with all the minterms, whether we need them all not.
To implement a particular logic function it is more convenient to have a smaller number
of product terms to choose from. But then we need the facility to “program in” those
minterms which are actually contained in that function. This can be achieved using a
PLD with programmable AND and fixed OR matrices. Such a PLD is known under the
acronym PAL.

Figure 3: Structure of PAL

Returning to our example of two logic functions, each having 3 variables, consider how
to implement on PAL the following two functions:

 X = A.B.C’ + A.B.’C + A’.B’.C’
 Y = A’.B.C + A’.B’.C + A.B.C’ + A.B.C

 3

PALs

The first function requires 3 AND gates and the second four AND gates. Thus we need at
least 7 AND gates and two OR gates.

The implementation using a 3 input x 2 output PAL is shown in figure 3.

The programmable AND array consists of six columns and 16 rows. Each intersection of
a column and a row represents a programmable fuse. Rather than talking about the fuses
we will picture an intersection where the fuse has not “blown” as a link.
Thus there are 6 x 16 = 96 programmable fuses (or links), somewhat smaller number than
was needed for PROM.
If we denote a link by (row, column) it connects we see that we need the following links
to implement the minterms in function X:

Minterm ___Links__
A.B.C’ ~ (0,0) (0,2) and (0,5)
A.B’C ~ (1,0) (1,3) and (1,4)
A’.B’.C’ ~ (2,1) (2,3) and (2,5)

Similarly for function Y.

Commercial PLDs come in several sizes. PAL chips have been around from early
seventies so there is a “de facto” standard. The type of PAL is denoted as

PAL#inputs (designation letter) #outputs .

The most popular sizes are 16 inputs x 8 outputs (e.g. PAL16L8) and 20 inputs x 8
outputs (e.g. PAL20L8).

Consider PAL16L8. It has 16 inputs and 8 outputs. That is a total of 24 pins, adding the
two power supply pins, we would expect a 26 pin package. Yet PAL16L8 is housed in a
20 pin package. This is possible because six pins can be configured to act either as
outputs or inputs (they are bi-directional).

The figure 4 shows is the PAL shown in figure 3 with a modified pin X capable of
providing input or output. The zero row minterm is used to program the tri state OR gate.
If the OR gate output is enabled the pin is nominally an output pin, but it can be also used
to provide internal feedback to the other OR gate. When the OR gate output is disabled
the pin X can be used as an input pin.

 4

PALs

Figure 4: Structure of PAL with a combined input/output pin.

Figure 5 shows a detailed of another PAL modification allowing to programmatically
invert the output pin. If the fuse on the input to the XOR is blown then the output of the
OR gate will be inverted.

Figure 5: Programmatic selection of inverted output

 5

PALs

Programming of PALs.

The programming file for PAL devices includes the so called fuse map and a set of test
vectors. The fuse map shows which fuses have to be blown by the device programmer.
The fuses that correspond to the nodes in the programming AND matrix are referred to
by their “fuse address”, i.e. sequentially increasing numbers. The file also contains
information on fuses that represent the internal configuration of the device, such as
whether any particular OR gate has to have the output inverted or whether any feedback
loops are present. The test vectors represent the expected outputs for a set of pre-defined
inputs. Test vectors are used by the device programmer to test the PLD after it has been
programmed. The format of the programming file has been standardized and is known as
a JEDEC (Joint Electron Device Engineering Council) file.

Hardware Description Languages (HDL).

There are several HDLs that can be used to program PALs. The most commonly used
are Abel, Verilog, VHDL and CUPL. In order to produce a downloadable JEDEC file, a
source file using one of the above mentioned HDLs is compiled by an appropriate HDL
compiler. Many PLD manufacturers produce CAD packages incorporating HDL compiler
with additional utilities such as schematic capture software and functional and in-time
simulation of the design.
Few examples of using the CUPL (Universal Compiler for Programmable Logic) are
given below.

Example of CUPL Source for Logic Functions.

/* All comments are bracketed by /* and */ (similar to C source) */
/* All CUPL statements terminate by a semicolon ; */
/* CUPL key words are not case sensitive, but the variable names are. */

/***/
/* THIS PROGRAM DEMONSTRATES HOW CUPL COMPILES SINGLE GATES */
/***/

/*== */
/* GAL 16L8 Chip Diagram */
/*===*/

/* ______________ */
/* | | */
/* a x---|1 20|---x Vcc */
/* b x---|2 19|---x xnor */
/* x---|3 18|---x xor */
/* x---|4 17|---x nor */
/* x---|5 16|---x or */
/* x---|6 15|---x nand */
/* x---|7 14|---x and */
/* x---|8 13|---x invb */
/* x---|9 12|---x inva */
/* GND x---|10 11|---x */
/* |______________| */

/* The device has ten dedicated inputs (pins 1 to 9 and 11), pins 13 through 18 */
/* can be configured either as inputs or outputs. Pins 12 and 19 can be only */
/* outputs. All outputs can be switched into a high impedance by the product */

 6

PALs

/* term on the eighth OR gate input. The outputs of all OR gates can be inverted */
/* by blowing a corresponding internal configuration fuse. */
/* Note: In this example pins 1 and 2 are the inputs and pins 12 to 19 outputs */
/* The true source code starts here: */
/* The Mandatory Header has to be included in every CUPL source file */

Company Logical Devices, Inc.; /* does not matter what you enter here */
Location None; /* does not matter what you enter here */
Assembly None; /* does not matter what you enter here */
Device 16L8a; /* Important info: PAL 16L8 device */

/* Inputs: define inputs to build simple gates from two input variables a and b.*/
/* PIN is a CUPL keyword which assigns the variable to an IC pin */

Pin 1 = a; /* First input variable as pin 1 is dedicated to input */
Pin 2 = b; /* Second input variable as pin 2 is dedicated as an input*/

/* Outputs: Define the bidirectional pins as outputs active HI levels. */
/* That these pins are outputs is not yet obvious but they are */
/* implicitly defined because, as we shall see, they will appear */
/* on the Left HS of logic equations which determine their values. */
*/

Pin 12 = inva; /* a’ */
Pin 13 = invb; /* b’ */
Pin 14 = and; /* a.b */
Pin 15 = nand; /* (a.b)’ */
Pin 16 = or; /* (a+b) */
Pin 17 = nor; /* (a+b)’ */
Pin 18 = xor; /* (a⊕b) */
Pin 19 = xnor; /* (a⊕b)’ */

/*Now follows the Logic: examples of simple gates expressed in CUPL */
equation statements using CUPL specific BOOLEAN operators */
/* Left hand side is output <= Right hand side is input */

inva = !a; /* inverters */
invb = !b;
and = a & b; /* and gate */
nand = !(a & b); /* nand gate */
or = a # b; /* or gate */
nor = !(a # b); /* nor gate */
xor = a $ b; /* exclusive or gate */
xnor = !(a $ b); /* exclusive nor gate */

As a by-product of compilation the WINCUPL compiler also produces a document file
providing the information on the way the design is implemented. Below given are few
extracts such as the Symbol Table and the Fuse Map appropriate to the above source code
with the explanations as appropriate.

 7

PALs

===
 Symbol Table
===

Pin Variable Pterms Max Min
Pol Name Ext Pin Type Used Pterms Level
--- -------- --- --- ---- ------ ------ -----

 a 1 V - - -
 and 14 V 1 8 1
 b 2 V - - -
 inva 12 V 1 8 1
 invb 13 V 1 8 1
 nand 15 V 1 8 1
 nor 17 V 2 8 1
 or 16 V 2 8 1
 xnor 19 V 2 8 1
 xor 18 V 2 8 1

LEGEND: v = variable

Note: Each OR gate of the 18L6 can take of up to 8 product terms (AND gates). The above table shows the
utilization of the internal gates.

===
 Fuse Plot (see the fuse map shown below)
===
Explanations:

1. Each row represents the status of fuses connected to the input of a single
AND gate. Thus the number of rows under each pin gives the number of AND
gates for each output OR gate. For example PIN #19 has eight rows, i.e. the
output NOR gate has eight inputs, one from each of the eight AND gates.

2. Each AND gate has to take a pair of direct and inverted inputs, so it has
twice as many inputs as there are input pins on the chip. E.G. 16V8 has up to
16 input pins so all AND gates can have up to 32 inputs.

3. Each input literal (variable and its inverted value) is represented by a
single columns. For the 16L8 there are 16 variables, thus 32 literals and
therefore 32 columns. In our case we use only two input variables: a (pin 1)
and b(pin 2). The first column represents the literal a, the second column
its inverted value a’, the third one b and the fourth column b’. The other
columns represent the other input pins which are not used in this example.

4. The intersections of columns and rows are termed the AND Programming Matrix.
5. Each node of this matrix represents a single fuse which connects the literal

represented by the corresponding column to the AND gate input represented by
the row. A X signifies fuse not blown (that literal is connected to input of
the AND gate) and a – fuse blown (not connected). So in our example the first
row that represents the single AND gate has only the a and b’ inputs
connected. The second row that represents the second AND gate has only the
inputs a’ and b connected. The remaining six AND gates connected to output
pin 19 NOR gate are not used. Thus there are only two minterm inputs to the
OR gate associated with the output pin 19: a.b’ , a’.b.

6. Each row that starts with an output pin number provides internal
configuration for the output “macro cell”. In the example below the important
data is the polarity of the output, designated by the POL fuse. If the
polarity bit fuse is left connected the output polarity of the OR gate is
inverted giving an NOR gate. Otherwise it is unaffected. In our example the
fuse is intact so the gate at pin 19 will be inverting (NOR gate). The output
of this pin will thus be : (a.b’ + a’.b)’ which is the formula for an
inverting exlusive OR (XNOR). Similarly, the output at pin 18 (not
inverting as fuse is blown) yields a.b’ + a’.b and that is a XOR function.

7. The fuses are labelled by sequential numbers known as “fuse addresses”. The
left hand side column gives the starting address of the first fuse in each
row. For example, the AND matrix corresponding to the output pin 19 has fuses

 8

PALs

from address 0000 to 00255. In our example only the fuses with addresses 0,
3, 33 and 34 are connected.

8. The fuse map information is contained in a JEDEC file which (alongside other
data) holds a table of fuse addresses and their state (intact or blown).

Syn 02192 - Ac0 02193 x

Pin #19 02048 Pol x 02120 Ac1 x
 00000 x--x----------------------------
 00032 -xx-----------------------------
 00064 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00096 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00128 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00160 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00192 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00224 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #18 02049 Pol - 02121 Ac1 x
 00256 x--x----------------------------
 00288 -xx-----------------------------
 00320 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00352 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00384 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00416 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00448 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00480 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #17 02050 Pol x 02122 Ac1 x
 00512 --x-----------------------------
 00544 x-------------------------------
 00576 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00608 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00640 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00672 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00704 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00736 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #16 02051 Pol - 02123 Ac1 x
 00768 --x-----------------------------
 00800 x-------------------------------
 00832 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00864 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00896 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00928 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00960 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 00992 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #15 02052 Pol x 02124 Ac1 x
 01024 x-x-----------------------------
 01056 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01088 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01120 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01152 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01184 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01216 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01248 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #14 02053 Pol - 02125 Ac1 x
 01280 x-x-----------------------------
 01312 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01344 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01376 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01408 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01440 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01472 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01504 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #13 02054 Pol - 02126 Ac1 x
 01536 -x------------------------------
 01568 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 9

PALs

 01600 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01632 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01664 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01696 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01728 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01760 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin #12 02055 Pol - 02127 Ac1 x
 01792 ---x----------------------------
 01824 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01856 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01888 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01920 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01952 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 01984 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 02016 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Example of CUPL Source for Table Entry.

To enter a table of (say) three inputs and six outputs we can use CUPL syntax TABLE.

First, define the input and output variable vectors using the syntax of FIELD and
then use the syntax of TABLE to assign the values:
/* I
PIN 1 = a;

nputs */

PIN 2 = b;
PIN 3 = c;

/* O
PIN 12 = u;

utputs */

PIN 13 = v;
PIN 14 = w;
PIN 15 = x;
PIN 16 = y;
PIN 17 = z;

/* Define multi-bit variables for the input and the output */
FIELD my_inputs [a, b, c];
FIELD my_outputs [u, v, w, x, y, z];

/* Ass
TABLE my_inputs => my_outputs {

ign output values to input values */

[0, 0, 0] => [1, 0, 1, 1, 0, 0];
[0, 0, 1] => [1, 1, 1, 1, 0, 1];
[0, 1, 0] => [1, 1, 1, 1, 0, 0];
[0, 1, 1] => [1, 0, 1, 1, 0, 0];
[1, 0, 0] => [1, 0, 0, 0, 0, 0];
/* and more entries if required */
}

 10

PALs

PALs for Sequential Logic Design.

To implement sequential circuits the so called registered PALs are available. These have
the output OR gates connected to internal flip flops. For example the PAL 16R8 is the
registered version of the logic PAL 16L8. The main difference is that the six bidirectional
outputs of 16L8 are routed through six separate D-flip flops. The clock input is pre-
assigned to a specific input pin (pin 1 on 16R6) that cannot be used for other purposes.

GAL 16V8 - OMCL

Logic and registered PALs are job specific PLDs and are normally OTPs (one time
programmable) only. The so called GAL devices feature CMOS re-programmable fuses
so there is no practical limitation on the number of times they can be re-programmed. In
addition, the GAL devices have another very useful feature. They can be
programmatically configured to behave as PALs of various degrees of complexity. This
is achieved by them having the so called Output Logic Macro Cell (OMCL) that can be
configured to one of the three device modes: simple, complex and registered.
An example of a OMCL used is shown above. The configuration of the OMCL is
determined by the fuses that control the inputs to the three multiplexers. In simple and
complex modes 16V8 acts as a logic PAL by-passing the D flip flops. The simple mode
allows no loop back. In registered mode 16V8 behaves as a registered PAL 16R8.

 11

PALs

Explanations of some of the PLD Acronyms.

JEDEC File A standardized format file containing the fuse map. The file is

downloaded to the PLD during the programming cycle.

OTP One Time Programmable PLD. The fuse map once programmed

cannot be changed.

EP PLD Electrically Programmable PLD. The fuse map can be deleted by

exposing the PLD to UV light. The PLD then can be re-
programmed.

EEP PLD Electrically Erasable Programmable PLD. The fuse map can be

deleted electrically. The PLD then can be re-programmed.

Register PAL A PAL (such as 18R) where the outputs of OR gates are connected

to D flip flops. Register PALs can be used for sequential logic
design.

OLMC The Output Logic Macro Cell. An output sub-circuit of a PAL

which can be programmed to act either as a combinatorial or
register PAL.

GAL Generic Array Logic, the term used for EEP PAL having OLMC

outputs.

CPLD Complex PLD. Several hundred PLDs on a single chip with

programmable interconnections.

FPGA Field Programmable Gate Arrays. Contains a very large number of

EEP cells. Each cell can typically contain a small PROM, a register
and some gates. The interconnections between cells are also
programmable.

 12

PALs

 13

PALs

 14

	Minterm ___Links__
	As a by-product of compilation the WINCUPL compiler also produces a document file providing the information on the way the design is implemented. Below given are few extracts such as the Symbol Table and the Fuse Map appropriate to the above source code
	
	OLMCThe Output Logic Macro Cell. An output sub-circuit of a PAL which can be programmed to act either as a combinatorial or register PAL.

