by
Stephen
L. Wasson

@ Programmable Logic

Automatic tools do not necessarily automate
success. When given less than optimal input,
EDA tools often generate less than optimal out-
put. When appropriate design tradeoffs aren't
made, results for designs pushing performmance
limits may be disappointingly slow. Without
designing to the target technology, designs
pushing performance limits may not fully route.
Still, with a little knowledge of the device
architecture and some hand-crafted assistance,
the automatic partition, place, and route tools
will produce excellent results.

Overview Although the following design tips
are particularly applicable to the Xilinx 3K and
4K FPGAs, these guidelines are generally
adaptable to other FPGA architectures. These
guidelines will significantly improve FPGA
implementation results—especially where in
route-resource bound architectures are con-
cerned. Although illustrations are provided in
schematic representation—where the “power
hooks” currently are—these design hints are
also pertinent in text-based design
environments.

Some tips for designers in pursuit of higher
performance designs are as follows: An intelli-
gent pin assignment will maximize device uti-
lization and flexibility, and a route budget
analysis maximizes performance. Synchronous
design eases analysis, while gated clocks
complicate analysis. Pipelines, state-per-bit
state machines, and linear-feedback shift reg-
isters and prescaled counters all increase cir-
cuit speeds. Combinatorial clock-enables and
duplicate circuits increase routability.
Customized macros improve mapping and
placement, while over-constraining the design
hampers routing and performance.

The design tips that follow will result in
increased performance margins, fewer design
iterations, reduced time to market, as well as
higher performance results.

The performance of every FPGA design
will improve if you follow a few simple
guidelines.

Never pre-assign pins The fastest way to
get into routing trouble is to arbitrarily assign
package pins before taking device architec-
ture into consideration. Conversely, a well-
planned pin assignment makes the difference
between a successful or unsuccessful route; a
mediocre or stellar result, a low- or high-per-
formance margin, and the number of future
FPGA modifications that can be absorbed
without PCB redesigns. When considering
Xilinx 3K and 4K architectures, it is important
to note that bused data flow is preferentially
horizontgl, due to horizontal tristate long
lines. Ftli\thermore, data structures—such as
registers and counters—are preferentially ver-
tical due to the vertical clock-enable long lines
in the 3K and carry chains in the 4K.
Therefore, data bus I/Os are best assigned to
the left and right device rails, while control
signals are best placed along top and bottom
rails. Temporarily assigning these I/0s while
verifying the routability of the entire design
ensures the greatest opportunity for imple-
mentation success. The largest margins will
be obtained if the final pin assignment is left
open until the end of post-route analysis. It is
more likely that design schedules will demand
that some pinout be turned over to PC design
so board layout can proceed in parallel to
FPGA design. Under these conditions, the
best compromise is a wise assignment of the
data buses and critical control signals; the
remaining pin assignments should be based
on an average of a few preliminary routes.
Hand-crafted pin assignments help to avoid
re-implementations, reduce design iterations,
save time, and shorten the FPGA design

October 1984

Programmable Logic

cycle. (Note: Optimal pin assignments can be
produced by floorplanning—a procedure that
‘considers design data flow ,in conjunction
with device architecture. lflporplanning is
beyond the scope of this article and will be
the subject of a future article.)

Perform route budget analysis Route bud-
get analysis (see Sidebar figure) provides a
method for predicting which circuit implemen-
tations will need special attention, either in
redesign, mapping, or placement constraints.

design entry isn't as conducive to this kind of
analysis as graphic-based entry.)

Design synchronously Designing synchro-
nously whenever possible has these distinct
advantages in the FPGA environment: timing-
driven routers will have fewer complicated
paths to analyze and will reach completion
sooner; post-route delay analysis tools will
have fewer and shorter paths to trace, making
it easier to extract performance results; and
simulation tools will be less confused by
fewer timing viola-
tions and will thus
be more useful. In
the Xilinx 3K and
4K devices, the
asynchronous path
through the config-
urable logic block
(CLB) is the slowest
of all CLB paths and
degrades circuit per-
formance. The flip-
flops within the CLB
share with the same
asynchronous input,
effectively reducing
mapping and place-
ment flexibility. In
general, frivolous
asynchronous design
does not optimize
FPGA, computing, or
human resources.
Consider a design
that has “just-in-
case"” asynchronous
resets. Some of
these resets must be
considered in the
synchronous path
analysis, while oth-
ers can be ignored.
Determining
whether a reset can
be ignored may take
10 minutes for every
path analyzed. By
comparison, in a
fully synchronous design, the performance
analysis can be limited to a single query—
about a 10-second task. ’
Don't gate clocks Ideally, keep the number
of unique clocks in the design to one.
Although gating clocks may be suitable for
simple devices, in architectures with clock
enables, this introduction of multiple time
domains is unnecessary. Moreover, it intro-

Figure 1

State-per-bit state mach

Figure 1. Three representations for the same state machine of three states S[0:2], three synchronous
input variables V[1:3], and one output function out,. Figure 1c illustrates the schematic state-per-bit
implementation most conducive to “route budget” analysis and manual mapping. State 0 is low active,
and asserted at power-up (darkened bubbles). The next-state function for state 1 (bounding box) is a
function of five variables; therefore, in an architecture with four-input function generators, this func-
tion will have to map into multiple function generators. If output function out, is implemented as
above, it will also have to map into its own function generator. A faster implementation for out; would
be to duplicate the source gate. (Note: The synthesis for next-state 1, function NS1, may not be as terse
as the schematic version. An alternate—and slower—implementation could be (S1* /V2) +(S1* /V3), in
which each AND term would end up in its own function generator.)

In this analysis, logic element delays are sub-
tracted from the target clock period to calcu-
late the allocatable time remaining for all
intermediate routes. If the average allocatable
is reasonable—about equal to a typical logic
cell delay—then that implementation should
route without further consideration.
Performing such discovery prior to compila-
tion should eliminate most non-performance

surprises, as well as determine the maximal
performance obtainable from a particular
implementation. (Note: Currently, text-based

asic &eda

duces unnecessary skew. No advantage is
gained, and the risk of problems is greater
when signals gate the same clock from
which they originate. Instead, use the gat-
ing signals as clock-enables. It is far easier
to analyze a design with fewer clocks.

Programmable Logic

Figure 2
Linear feedback shift register

Pipeline Pipelining—the introduction of a
sequential element into a combinatorial
path—is an easy way to improve performance
by trading resources and latency for speed
and routability. This holds especially true for
pre-decoding. Pipelining state machine next-
state functions, counter decodes, and arith-
metic intermediate carries are all excellent
speed enhancers (see Figures 2 and 3).

Implement state-per-bit state machines In
the days before PALs, state machines were
implemented as timing chains, that is, as
unencoded sequences of flip-flops. The advent
of devices with large product terms made it
easy to encode large state machines (above
32 states) without performance penalties.
However, in architectures with low fan-in
function blocks, these encoded state
machines, although still easy to implement,
are significantly slower due to-the increase in
intermediate logic levels. In the flip-flop rich
Xilinx 3K and 4K architectures, the state-per-

Use linear-feedback shift registers If a
function requires a terminal count and not a
binary output—such as a divide-by-n
counter—(see Figure 3) then linear-feedback’
shift registers (LFSRs), are more space and
route efficient (see Figure 2) than their binary
counterparts. Since LFSRs have minimal next-
state logic and no carry logic, they are even
more logic-resource efficient than binary
counters. They produce 27! states for n bits.
LFSRs also have the same serpentine routing
advantage as state-per-bit state machines,
and therefore rarely require placement.
Although the count sequence may be discom-
forting, the LFSR operability may easily be
verified during simulation. Even with their
random count sequence, the non-intuitive
LFSR count sequence can still be used for
such functions as RAM address counters or
FIFO pointers—provided that all RAM or FIFO
ports use the same LFSR polynomial. (Note:
LFSR polynomials can be obtained either from

Figure 2. If a binary count sequence is not needed, a linear feedback shift register is more routable than its binary coun-
terpart. Above, a divide-by-24 counter is implemented as an LFSR with pre-decoded and pipelined TC. Additional perfor-
mance is gained by optimizing the TC decode to a function of four variables (in this example, Q[4:1] are sufficiently
unique), and by minimizing the reset net (by resetting only the counter bits which would set on the next clock).

bit or “one-hot"” implementation (see Figure 1)
is advantageous for machines with as few as
four states. By trading the next-state function
generators for state flip-flops, intermediate
logic levels are reduced for both the state-per-
bit state machine and the associated output
function generators. While encoded state
machines with decoded output functions tend
to become placed in a tight ball—thus increas-
ing the routing snarls of the state bits—state-
per-bit state machines may place and route in
a serpentine fashion resulting in an increase
in both routability and performance.

asic eda

a math text relevant to the subject or a small
executable [LFSR.zip] freely available on the
HighGate BBS at 408-255-9742.)

Prescale (FAST) binary counters If a binary
count sequence is required, consider imple-
menting a prescaled counter (see Figure 3) in
which the prescalar terminal count (PTC) can
be used as the count-enable (CE) to the
remaining counter stages. One advantage of
this technique is that the remaining stages
can then be implemented with a daisy-chain-
style carry that will operate at a fraction of
the clock frequency that is a function of the
prescale. An example of this is using a 2-bit
prescalar to allow the remaining stages to
operate at one-fourth the clock rate. A further

Programmable Logic

Figure 3a
Prescalin

Figure 3a. Counter speeds and routability can be improved by prescaling. The N-bit counter above has a
two-bit prescalar that allows the Q[2:N] stages to operate at one-fourth the clock frequency. This reduces

the number of critical paths to three: Q0, Q1, and CE.

Figure 3b
Predecoded and pipelined prescaling

Figure 3b. Greater counter performance can be obtained with a pre-decoded and pipelined prescalar. By

eliminating the intermediate combinatorial delay in the critical CE path, the entire route budget can be

allocated to the PCE route.

advantage is the reduction of critical routing,
since only the prescale bits and the PTC-to-
CE line are in critical paths. In some cases,
the PTC-to-CE line can be sped up by pre-
decoding and pipelining PTC, because that
critical path suffers no intermediate combina-
torial delay. (Note: If the counter is loadable,
the pipelined pre-decoded PTC flip-flop must
also be set when loading the counter with a
modulo-pre-decode value. When using the
daisy-chain style carry, large counters will not
likely be “load-and-go” because of the extra
time required after loading to permit the
daisy-chain carry to propagate to the
last stage.)

Consider combinatorial clock-enables In
the Xilinx 3K and 4K architectures, each CLB
has two flip-flops with a common, dedicated
clock-enable. For flip-flops with different CEs
to share the same CLB, at least one of the two
CEs must be changed to a combinatorial-style
CE. This is easily done by inserting a 2-to-1
mux inline to the flip-flop's D input. The mux

asic ¥eda

select is steered by the clock-enable signal,
the mux 1-input is connected to the original D-
input signal, and the mux O-input is sourced
by the flip-flop Q feedback (Note: Some library
flip-flop macros are built using the dedicated-
style, and some using the combinatorial-style,
CE. You should check on this before using
them.) Combinatorial CEs are more routable
since a CLB has more function generator
inputs than dedicated CE inputs. The disad-
vantage of the combinatorial CE is that it con-
sumes two of the function generator inputs.
This may force the next-state function into an
intermediate level of logic that could adverse-
ly affect performance. Therefore, status and
control registers with simple D-input func-
tions are better candidates for this treatment
than accumulators and other arithmetics with
complex D-input functions.

Programmable Logic

Duplicate Duplicating critical pins, gates,
flip-flops, and macros is another simple perfor-
mance enhancing technique. When a critical
input signal needs to reach several distant
destinations, consider assigning multiple
input pins. If a highly loaded net can be re-
sourced from signals already globally distri-
uted, consider using several source gates. If
the clocked version of a synchronous signal is
used by several functions, then design in
duplicate flip-flops that will place near their
destinations. If the Q outputs or terminal
count (TC) of a small counter is required in
multiple or disparate areas, consider duplicat-
ing the entire counter macro. (Note: In most
cases, mapping and placement constraints
will be necessary to obtain the desired
results.)

Customize macros Library macros are a
double-edged aid. As generalized functions,

they expedite design entry, but they will like-

~ ly obscure mapping, placement, and naming

processes. The same veil that clogks target
technology also inhibits needed insight.
Generalized macros are a hindrance when
routing can be improved by interleaved data-
path structures. For performances that could
benefit from specific object placement, para-
meterized macros are less advantageous.
Using off-the-shelf macros makes recognizing
signal names difficult when generating post-
route simulation vectors. Use customized
macros—which can be tailored copies of the
library versions—to facilitate custom map-
ping, placement, and naming. They cost less
in compile time to expand, and have fewer
deletions to verify. Customized macros are
easy to create by using cut-and-paste or auto-

Route budget analysis

The goal of the route budget exer-
cise is to determine whether a par-
ticular circuit implementation will
meet desired performance criteria. If
calculations yield reasonable num-
bers, then that implementation can
be expected to place and route with-
out additional mapping or place-
ment constraints. Marginal numbers
suggest that, from route to route, a
particular implementation may or
- may not meet requirements. If the
calculated numbers are unreason-
able, an alternate implementation
will have to be found before synthe-
sis or schematic entry.
For the given implementation of a
given path of concern—usually the
longest path—the route budget
exercise is as follows:

. ldentify the synchronous source

. Identify the synchronous
destination

. Determine the number of inter-
mediate combinatorial logic levels

Sidebar figure a. Route budget analysis
for a synchronous circuit with one inter-

mediate level of combinatorial logic.

asic &eda

4. Subtract path delays from the tar-
get clock period
5. Calculate the delay-per-route

In Sidebar figure a, for example,
between the synchronous source A
and the synchronous destination B,
there is a single intermediate level of
combinatorial logic C. Given clock
period t(p), clock-to-Q delay t(c),
setup t(s), and combinatorial delay
t(d), the route budget for routes X
and Y is given by:

t(x) + tly) = t(p) - tlc) - tid) - t(s)

If the target device is a Xilinx 4005-5
and the target frequency is 50MHz,
then for a combinatorial delay
through the F function and a setup
through the G function, the route
budget (using numbers given on
pp. 2-53 of the 1994 Xilinx data
book) is: :

t(x) + tly) = 20.0-3.0-4.5-4.5 =
8.0 => 4.0 ns/route

Sidebar figure b. Route budget analysis
for a synchronous circuit with two inter-

mediate levels of combinatorial logic.

From experience, a roh_te'delay

approximately equal to a single func-

tion generator delay is reasonable,

and can be expected to route WIth-

out alteration.

If, however, the same cnrcunt were

expanded in such a way that with

optimal mapping, a second interme-

diate combinatorial logic level were -
to be introduced into the calcula-
tions (see Sidebar figure b), the

route budget would yield the follow-

ing less favorable numbers

t(x) + tly) + t(z) = t(p) t(c) 2t(d) S (OF
=20.0-3.0 - 2(4.5)-4.5 = 35ﬁ,’>'
1.2 nslroute :

Subsequently, it Vsh'ould come 'as no

surprise that without special consid-

erations, the route results of imple-
mentation 1b will not, in all probabil-
ity, meet 50MHz timing.

Legend 7 :
(®) Synchronous source
Synchronous destination’
@ Intermediate
combinatorial logic
tp, Clock period
te Clock-to-Q delay
tg Setup =
tq Combinatorial delay
..ty Route delay for x :
_.‘ty ‘Route delay fo; Y.
 t, Route delay for z

array commands, and they can be copied
quickly. In the long run, customized macros
save time and prevent frustration. '
Don't over-constrain Some final words of
caution: Don't over-constrain. After following
the advice on how to interfere with the auto-
matic tools, leave the tools to do what they do
well. That is, don't constrain “blobular,” com-
binatorial, serpentine, or random logic just
because it looks good. Arbitrarily doing so will
probably hamper routing efforts and decrease
design performance. For example, columniz-
ing a set of 4-to-1 muxes may be good for the
the (1x) output, but will be bad for the
(4x) inputs.

For your tool kit Until interactive floorplan-
ners come of age, intelligently hand-crafted
pin assignments provide the greatest margins
for implementation success. Conversely, arbi-
trary pin pre-assignment that diminishes flexi-
bility is the best invitation to routing trouble.
When pre-implementation route budget
analyses uncover disappointing performance
calculations, re-implemented solutions can be
substituted early in the design process.
Synchronous design will save time by simpli-
fying analysis, while gated clocks waste
resources and complicate calculations.
Pipelines—trading resources for latency—pro-
vide significant gains in throughput. State-
per-bit state machines—trading next-state
function generators for flip-flops—provide sig-
nificant gains in speed. Linear feedback shift
registers and prescaled counters increase cir-
cuit performance by simplifying intermediate
logic and reducing route congestion.
Combinatorial clock-enables will make their
respective flip-flops easier to place, and dupli-
cate functions will make their signals more
accessible. Customized macros will improve
mapping, placing, and naming—all of which
simplify routing, analysis, and simulation.
Finally, remember that over-constraining may
offset these gains.

Put these tips in the designer tool kit, and
your FPGA designs can be minimized for
design iterations and time to market, and
maximized for utilization and performance. ®

Stephen L. Wasson is a principal of HighGate
Design Inc., Saratoga, Calif., consultants
specializing in FPGA implementations.

Please indicate the value of this article on the reader service card.

High Medium Low

FOR THE FIRST
TIME IN HISTORY!

~ PROcapture
Eile Edit View Simulate Values Help

EETimes
1993

Introducing EDA OFFICE!
3] ALLYOLR g%
S¥8 PROGRAMS =N

PRE-INTEGRATED LIKE ONE...

WITHOUT UNIX AND
WITHOUT THE COST.

EDA Bridge® (/E;DR
~
Engineering Wide Solutions in Windows EDA.

EDA Office®

Call us today for your EDA OFFICE Videotape.

email: ken_auga@team_usa.uucp.netcom.com.

1+300-EDA*OFFICE

[For more information circm

