e

by
Stephen L.
Wasson

integrated
system design

@ Programmable Logic

Life is a fractal; FPGAs are not. FPGAs are
two-dimensional, rigid, crystalline structures
with finite route and logic resources aligned
along fixed orthogonal axes. Life's most suc-
cessful designs are those adapted to natural
law; your most successful FPGA designs will
be those adapted to target device constraints.
Implementing FPGA designs irrespective of
target constraints is like buying furniture
before you've seen the house: a less than opti-
mal interior design strategy. A more success-
ful design strategy is to craft interior objects
within their destination constraints. Therefore,
floorplanning is as much about designing the
objects within a floorplan as it is about plan-
ning the design floor.

Floorplanning is the design methodology
that maps given design specifications into
specific target architectures by considering
device constraints to develop an optimal
implementation. Optimal implementations
improve design routeability and device uti-
lization which mean higher performance at
lower cost. An effective floorplanning
methodology also reduces redesign risks and
unnecessary iterations through the design
cycle which mean greater competitive edge
and less time to market. Following is an
introductory treatise on the precepts of
FPGA floorplanning.

In general, floorplanning is most advanta-
geous in architectures with limited or fixed
resources and is less applicable in EPLD or
CPLD architectures. Moreover, it is especial-
ly well suited to software environments that
provide floorplan enforcement mechanisms:
mapping and placement constraint hooks.

Floorplanned designs save weeks in
the design schedule and typically
achieve 25 to 50 percent improvements
in performance.

Such “human-aided-design” hooks allow
designers to make the trade-offs that auto-
mated tools cannot divine. Additionally, as
devices increase in size and designs
increase in complexity, floorplanning is
becoming ever more essential to FPGA
design success.

The basic procedure The general FPGA
floorplanning procedure is as follows:

I. Design to the block diagram level
II. Floorplan a best-case partitioning and
placement
A. Identify the primary data paths
B. Identify the primary data-path objects
C. Lay out an interconnect pattern
1. minimize route resource
consumption
2. maximize route distribution
III. Implement the remaining hierarchy.

Specifically, design the block diagram hierar-
chically down to the level where blocks most
nearly approximate autonomous objects
(individual registers, counters, adders, RAM
arrays, etc.). The most significant buses are
the primary data paths, and the objects they
interconnect are the primary data-path
objects. Laying out the interconnect pattern
between data paths and data-path objects is
the step during which alternate implementa-
tion trade-offs are made to accommodate
device constraints while maintaining perfor-
mance requirements — the bulk of the floor-
planning effort. For simple designs (Xilinx
4002s), this process takes about an hour; for
more complex designs (full Xilinx 4013s), this
process may require up to five days — all of
which is easily regained in the design sched-
ule by improvements in routing predictabili-
ty, facilitation of performance analysis, and
the subsequent reductions in design
re-implementation.



OSSN

Figure 1A and 1B. This simple circuit is an 8 x 8 logic array, with four

Specific objectives Minimization of route
resource consumption is accomplished by
devising data objects that will partition in
such a way as to permit the greatest number
of signals to traverse the shortest distances
along the fewest routing channels with the
least crossovers. This most often means plac-
ing interconnected objects adjacent to each
other with related elements aligned to the
routing axes. Maximizing route distribution is
accomplished by placing these well-parti-
tioned objects in such a way as to evenly
spread out the allocation of routing channels
across the target device.

Data object partitioning and placement are
primarily concerned with structured objects
(objects that exhibit uniform interconnectiv-
ity patterns) such as registers and counters,
and not with unstructured objects, such as

Figures 1A and 1B

21/0 Pads
__ Per Row

16-bit objects and a 16-bit data path. Mux is a 2:1 combinatorial multi-
plexer. 1B is a floorplan for circuit 1A. Each Figure 1A data object may
be partitioned 2-bits per logic block, and should be placed so that all

bit-n elements are in the same resource row. Horizontal data-path

lines are meant to indicate overall horizontal route requirements, not

to imply the routing allocation of a specific row.

Programmable Logic

Figure 2 : 7 3
An expanded circuit

REG MUX

1115:0]

Figure 2. This is an expansion of the circuit in
Figure 1A, with two more 16-bit objects. Mux
becomes 4:1.

decoders and state machines. An important
objective in the floorplanning process is to
maintain consistency of structure between
related objects to ensure objects are placed
with the same number of elements per logic
block and sequenced in similar directions
along preferred orientations. For example,
in the Xilinx 3000 and 4000 FPGAs, logic
blocks may contain either one or two ele-
ments, and preferred orientations are hori-
zontal for data paths and vertical for data-
path objects.

Note that the procedure outlined above pro-
poses floorplanning on a pre-netlist design;
that is, on an incomplete and uncompiled
design. Floorplanning prior to compilation is
recommended because, at this early stage,
the design is malleable. More than at any
other time in the design process, pre-netlist
implementations are most amenable to
change with least cost and greatest advan-
tage. Waiting until the netlist is syntactically
correct before considering device constraints
is an invitation to considerable rework or per-
formance degradation.

If you have considered device constraints in
your implementation, a well-targeted netlist
is an excellent candidate for the benefits of
a post-netlist floorplanning tool: efficient
constraints file generation. Prior to this, in
the absence of a pre-netlist floorplanning
CAD package (where the “A" stands for
“assisted,” not “automated”), I currently
recommend the use of good, old-fashioned
pencil and paper. Here is the abbreviated

March 1995



Programmable Logic

formula for the pre-netlist floorplanning and placement; study the interconnect dis-
recipe: transform the block diagram into tribution; and re-partition and re-place
suitable floorplanning representation; objects until an optimal interconnect pat-

approximate best-case object partitioning tern is obtained.

Figures 3A and 3B
Floorplanning the circuit in Figure 2

Figure 3A and 3B. The cumulative routes per column indicate that,
with floorplan 3A, maximum route consumption will occur across
columns three, four, and five. 3B is the improved floorplan for the cir-
cuitin Figure 2, achieved by re-implementing mux with tri-state dri-
vers (two per row). Note the reductions in the cumulative routes per
column compared to figure 3A.

integrated
system design @

The paper exercise One suit-
able paper floorplanning repre-
sentation simply depicts the
device array as a grid, the data
objects as generic rectilinear
symbols, and the interconnect-
ing data paths as heavy, bus
lines. The array grid connotes
routing axes and delineates
available logic resources. Within
the grid, data object symbols
should be drawn to illustrate
both object placement and logic
consumption. Data-path inter-
connect should be drawn to
show route resource allocation
from source(s) to destination(s).
Best-case partitioning and place-
ment are approximated by itera-
tive rearrangement of the data
object symbols and their inter-
connect lines. An optimal inter-
connect pattern is obtained after
such iterative rearrangements
have maximized data-path align-
ment to the routing axes and
minimized route resource con-
sumption (quantity and length)
across all routing channels. Keep
in mind that, for pre-netlist floor-
planning, the data objects are
still malleable and should be
(re)implemented to accommo-
date these goals.

In the accompanying floorplan
figures, data flow is horizontal
and data structures are vertical.
Device I/0 rails are illustrated by
vertical rectangles and data-path
objects are drawn as solid verti-
cal lines. Data-path sources are
shown originating from solid
“solder dots"” and data-path des-
tinations are shown terminating
at clear solder dots. The solid
horizontal bus lines are data
paths. All objects, including pin
assignments along the rails, have
identical bit ordering (either
ascending or descending) and
identical bit pairing (either 1-bit
or 2-bits per logic block).
Mnemonic notations on the left
margins are data-path names;
numeric notations on the right
margin are data-path sizes (in




Programmable Logic

bits). Labels along the top are Figure 4 c

object names. Numerics along the A more complex circ
bottom indicate the cumulative :
number of routes per-column. The - MUX

11[11:0]
o

cumulative per-column route num-
bers are the ones to track, mini-
mize, and distribute.

Example one For example,
given that the circuit in Figure
1A consists of four 16-bit struc-
tured objects (two registers, one
two-to-one combinatorial mux,
and one loadable counter),
Figure 1B depicts a preliminary
floorplan with topology that easi-
ly mimics the circuit data-path
flow. The input bus (I), assigned
along the left rail, immediately
connects to its two destinations
(reg A and reg B), adjacently
placed in the two left-most
columns. The two register out-
puts (bus A and bus B) then hori-

Figure 5 zontally traverse right two and

one columns respectively to
their destination (mux Y) in col-
umn three. Next, the mux out-
put (bus Y) traverses right a sin-
gle column to its destination
(entr S), which finally sources its
output bus (S) to the right
device rail. Note that the maxi-
mum horizontal routing demand
occurs between columns one
and two and columns two and
three, as indicated by the per-
column route numbers along the
bottom.
If the circuit in Figure 1A is then
expanded from two to four reg-
isters, as shown in Figure 2, and
then if the registers are all
placed contiguously, as shown
in Figure 3A, an increase in
route congestion will occur
across columns two through
five. Furthermore, if the target
is a Xilinx 3000 or 4000 device,
and if the mux is implemented
as a combinatorial 4:1 mux, then
- object mux will actually require
/ 24 48 48 24 24 24 \ - two resource columns of 1-bit
21/0 Pads = per logic block elements. These
Per Row - C > two columns for object mux
. ' could be placed amongst the reg
objects so as to reduce the per-

Figure 5. All objects are partitioned 2-bits per logic block, bit ascending. I/0 column route allocations, but
buses I1 and O1 are sequentially assigned to the left and right upper device rather than explore that option,
rails; 12 and 02 are sequentially assigned to the lower device rails. Objects re-implementing the mux with

R1, R2, M1, S1, and M3 are placed in the upper half of the array. Note the
diagonal routing required for buses R1, R2, S1, and S2.

integrated
system design @



Programmable Logic

Figure 6
Improved floorplan for the circuit in Figure 4

tri-state logic will yield better results, as
shown in Figure 3B.

Example two Figure 4 shows a more
involved circuit of ten 12-bit objects and the
topologically similar floorplan in Figure b.
However, in this preliminary plan, input buses
I1 and I2 and counter buses S1 and S2 have to
make less desirable diagonal traverses. One
way to “orthogonalize” this layout is to bit-
interleave both the I/0 pins and the data-path
objects. Figure 6 depicts one such layout in
which the I1 and I2 input pins are interleaved
along the left rail; the two register destina-
tions for input bus I1 are interleaved in col-
umn one; the two register destinations for bus
12 are interleaved in column two; the M1 and
M2 muxes are interleaved with their respec-
tive counter destinations S1 and S2 in
columns three and four; the M3 and M4

muxes are interleaved with each other in col-
umn five; and the O1 and O2 output pins are
interleaved on the right rail. This second plan
achieves both data path orthogonality and
route resource reduction certain to increase
overall performance.

But wait, there's more... These two generic
examples illustrate the rectilinear models of
floorplanning covering about 90 percent of
the design cases. (The other 10 percent are
better floorplanned using a circular model.)
Example one demonstrates the time-saving
advantage of floorplanning: by determining
the most route-efficient structures prior to
final implementation, redesign, and therefore
time-to-market, are reduced. Example two
demonstrates the performance-enhancing
advantage of floorplanning: by crafting the
most route-efficient mapping and placement
prior to initial route, routeability,
and therefore performance, are
improved (typically more than
25 percent, often 50 percent.)
Example two also makes the case
for hand-crafted floorplanning
since an interleaved scheme—
applicable to about half the
design cases—is unlikely to be
generated without human-aided
design assistance. @

Stephen L. Wasson is a principal of
HighGate Design Inc. (Saratoga,
Calif.), consultants specializing in
FPGA implementations.

An in-depth case study on inter-
leave techniques will be presented
in the tutorial “Floorplanning
Xilinx FPGA Designs for High
Performance,” scheduled for pre-
sentation on February 28 in the
On-Chip Systems Design portion
of Design SuperCon '95.

Please indicate the value of this article on the
reader service card.

High Medium Low

Figure 6. Objects are here partitioned 1-bit per logic block, bit ascending,
and bit interleaved. That is, within a column, bits from two objects alter-
nate resources. For example, in column one, starting from the bottom row,
the ascending bit-sequence is R1 bit 0, R3 bit 0, R1 bit 1, R3 bit 1, etc. The 11,
12 and 01, 02 1/0 buses are also interleaved along the full heights of the left
and right device rails. Note that all diagonal routing has been eliminated with
the bit-interleaved scheme.

integrated
system design

i



