INTRODUCTION

This tutorial guide is an introduction to digital logic simulation and synthesis using the Mentor
Graphics (Modelsim and Precision RTL) and Xilinx (ISE and Impact) tools. You should have
working knowledge of the Linux operating system (using text editors, copying files, creating
directories, printing, etc.). Knowledge of the VHDL language is not required to complete this
tutorial. The VHDL code for every example has been included. The examples have been kept
simple, the focus is on learning the tools rather than learning how to write VHDL code. There are
many fine books dealing with VHDL; there are not so many books dealing with simulation and
synthesis tools. This tutorial attempts to bridge the gap between the novice users’ knowledge of
such tools and the documentation available from the tool vendors. This tutorial is not meant as a
definitive guide to the tools, rather it gently introduces the student to the many facets of the tools.
It is hoped that after having completed the material contained in this guide that the on-line vendor
documentation will not appear as foreboding and intimidating.

The tutorial is divided into five parts. Part | deals with VHDL simulation using the Modelsim
simulator from Mentor Graphics Corporation. Part Il focuses on logic synthesis; the Precision
Synthesis software from Mentor Graphics being the tool of choice. Part Ill concerns itself with
implementation using the Xilinx ISE software. In this section, the netlist file obtained as a result
of the synthesis step (performed in Part Il) is converted into physical hardware which (hopefully)
functions correctly. Part IV gives details of the Xilinx FPGA demonstration board. This is the
board which will be used to program and test the field-programamble gate array. Part V describes
the use of the Mentor and Xilinx tools using the command line interface.

The examples in this tutorial were simulated, synthesized and downloaded to the FPGA demon-
stration board using Modelsim SE version 6.6d , Precision RTL Synthesis 2010a from Mentor
Graphics, and Xilinx ISE 9.2i.

PART | : VHDL Simulation using MODELSIM

This section explains the use of the Modelsim tools to perform simulation of source code written
in the VHDL langauge. Several examples will illustrate various aspects of the different tools
available. Most of the tools are available in command-line version and also in graphical-user
interface mode.

l. Setting up the user environment to run the Modelsim VHDL simulation tools.
Throughout this tutorial the Linux prompt is indicated by:
ted@brownsugar ~ 11:27am >

Your prompt may appear different depending upon the configuration of your account. Note also
that the Linux hostname (brownsugar in the above example) changes from section to section in
this tutorial as it was developed while running the various software from several different ECE
workstations.

Prior to running the Modelsim tools, it is necessary to set up your Linux computer account. Per-
form the following from your Linux prompt:

Step 1:
ted@brownsugar ~ 11:27am > source /CMC/ENVIRONMENT/modelsim.env

Alternatively, one may copy the file /CMC/ENVIRONMENT/synopsys.env to one’s home
directory and source it from there (make sure you have the most recent version of the file):

ted@brownsugar ~ 11:27am > cd
ted@brownsugar ~ 11:27am > cp /CMC/ENVIRONMENT/modelsim.env
ted@brownsugar ~ 11:27am > source modelsim.env

It is necessary to source the modelsim.env file every time you login in, or whenever you open a
new terminal window.

Step 2:

We will first create a directory callédodelsim , and within this directory a subdirectory called
Code will be created. Th€ode subdirectory will be used to contain the VHDL code to be sim-
ulated, and a directory callegbrk (which will be used to hold intermediate files created by the
simulation tools). Th&ork directory will be created using a special Modelsim command (the
vlib command) Figure 1 illustrates the directory hierarchy which will be created.

fhomedirst_letterfogin_name

Maodelsim

© = a subdlrectory name

iny_flle.vhd

Figure 1: Directory hierarchy for VHDL Simulation using Modelsim
Issue the following commands from the UNIX prompt:

ted@brownsugar ~ 11:27am > cd
ted@brownsugar ~ 11:27am > mkdir Modelsim
ted@brownsugar ~ 11:27am > cd Modelsim
ted@brownsugar ~ 11:27am > mkdir Code
ted@brownsugar ~ 11:27am > cd Code

This sequence of commands will create the Modelsim directory and the Code subdirectory. We
will now create the work directory used by the simulator:

ted@deadflowers Code 2:17pm >vlib work
This command will create a subdirectory called work and will create a file caitdd contain-
ing some setup information used by the simulator. Do not deleteitiie file as it is needed by

the simulator. The above steps need only be performed one time.

This completes the setup for perfroming VHDL simulation using the Modelsim tools. In the next
section we will present several examples on how to use Modelsim to perform VHDL simulation.

Il. Performing VHDL simulation using Modelsim

This section will illustrate the use of the Modelsim tools used to perform VHDL simulation. The
examples will illustrate various features of the tools.

Example 1: Simulating a 2-input AND gate (using the Graphical User Interface).

(1) Change into youmodelsim/Code directory and create a file calladd2.vhd with the
following contents:

entity and2_gate is
port(in_1, in_2:in bit;

output : out bit);
end,

architecture example of and2_gate is
begin

output<=in_l1 andin_2;
end;

You can use any Linux text editor (vi, emacs, nedit, gedit, etc) to create and save this file.

The next step is to “compile” the VHDL source file. This is a process similar to compiling source
code written in a high-level programming language such a C++ or FORTRAN. During compila-
tion of VHDL code, any syntactical errors will be reported.

The Modelsim tool used to compile VHDL source code is caitean .
(2) Analyze the and2.vhd file usingom.

ted@deadflowers Code 2:23pm >vcom and2.vhd

Model Technology ModelSim SE vcom 6.6d Compiler 2010.11 Nov 1 2010
-- Loading package standard

-- Compiling entity and2_gate

-- Compiling architecture example of and2_gate

ted@deadflowers Code 2:24pm >

A small message giving the version number of the tool will be displayed along with some infor-
mation pertaining to the VHDL code being compiled and you will be returned to theLinux prompt
if your code contains no syntax errors.

If there are syntactical errors in the source code, vcom will report the line number and attempt to
describe the source of the error. For example, suppose that in the line port(in_1, in_2: in bit; the
word bit was misspelled as bitt:

ted@deadflowers Code 2:25pm >vcom and2.vhd

Model Technology ModelSim SE vcom 6.6d Compiler 2010.11 Nov 1 2010
-- Loading package standard

-- Compiling entity and2_gate

** Error: and2.vhd(3): (vcom-1136) Unknown identifier "bitt".

** Error: and2.vhd(5): VHDL Compiler exiting

If you encounter syntax errors in your VHDL source code, correct them and recompile the code.
The vcom command will compile the VHDL source code and create some intermediate files in the
work directory:

ted@deadflowers Code 2:31pm >cd work
ted@deadflowers work 2:31pm >Is -al

total 20

drwx------ 4 ted ted 4096 Jul 20 14:30 .

drwx------ 3 ted ted 4096 Jul 20 14:29 ..
drwx------ 2 ted ted 4096 Jul 20 14:30 and2_gate
-fW------- 1 ted ted 361 Jul 20 14:30 _info
drwx------ 2 ted ted 4096 Jul 20 14:30 _temp
-rW------- 1tedted 26 Jul 20 14:30 _vmake

(3) The next step is to simulate the VHDL model. This is done withidinecommand From
the Linux enter:

ted@deadflowers Code 2:33pm >vsim and2_gate &

The name following the vsim command refers to the entity name that has been compiled into the
work library.

You will see lines similar to the following:

[1] 28373
ted@deadflowers Code 2:41pm >Reading /nfs/sw_cmc/linux-32/tools/mentor.2011/
modelsim_6.6d/modeltech/tcl/vsim/pref.tcl

Three windows will open as shown in Figure 2. These are the Objects window, the main Model-
sim simulation window and and Wave window. The Objects windows shows the names and val-
ues of data objects in the current main simulation window. In this example, the Objects windows
shows the two input ports (in_1 and in_2) and the output port and indicates their mode (in or out)
and that they are of type signal. Simulation commands are entered in the Transcript portion (bot-
tom portion) of the Simulation window and the results are displayed in thwe Waveform window.

Before entering and simulation commands, it is necessary to add any signals you wish to have dis-
played in the Waveform window. This is done by moving the mouse cursor over the Add choice
of the top menu bar of the Objects window and selecting:

Add ----> To Wave ----> Signals in Region.

You will now see listed in the Wave window the three ports of the design. Refer to Figure 3.

. |objects: =R
File Edit Wiew Add Toals
$a Objects
0@

Window

kall-ip S

EENEW TN

&

E a5
%

lEiIe Edit Miew Compile Simulate Add Wave Tools Layout Window
i BE ii'.éi.fiée“)vﬂgaéﬂ Help ['&Héé
(@t e B MEABBEC BEPAB RUYUD
‘ Layout [sinulate w] H ColumnLayaut [B11¢oT;

KERER File Edit Yiew Add Fomat Tools Window
&) sim i
¥|Instance | Design unit
- andz_pate andz_gatel...
L. line_9 andz_gate..

M standard standard

f= Transcript

" Mote: (vsim-3812) Design is being opti
Loading std.standard
Loading work.andZ_gate(example)

YEIM 1=

j|Now: 0 hs Delta: 0

4 | =
| 0nsto 12980 ns |

Figure 2: Modelsim simulation windows.

: ev./wMJE'éH@: RN EE
i || Hg,sg cg“» Cereille @ @ @ || [1 M |

c e Mo 0 ns |I-”““””””” I'“”I”””I_Illl:lllllll|:”””””““ v boocecoco borcrcoror becccccen Deccecoee occececo nveeeee

000 ns G000 ns 2000 ns 10000 ns 12000 ns
T Cursor 1 | 0 ne |||

I | || - - |
| 0ns to 12980 ns |

[|]

Figure 3: Wave window after signals have been added.

(5) One can manually assign values to signals usingahee command. This command is issued
from the Transcript portion of the Simulation window. Enter the following commands from the
bottom portion of the Simulation window as shown in Figure 4:

forcein_10
forcein_ 20
run

File Edit *iew Compile Simulate Add Transcrpt Tools Layout Window

Help
L o || rew || S @ |
| @3- 4 «= X P TS S SR RN R || xOox s
‘ Layout [Simulate | H ColumnLayout [Defanlt il H S B O £
Aomlal i || R R e s
1 sim v + & x|| |98 rocesses (active) s H & x|
|Instance |Design unit |Design unit type | Visibility |Total coverage | [][|~ame | T
= andz_gate andz_gate(... architecture +acc=<n...
o line__13 andZ_gate(.. Process +ACC==<n...
W standard standard Fackage +acc==fu...
I, Library @siml K El i =

WSIk 1= force in_1 0 |
WSIk 2= force in_Z 0
WSk 3= run 3

|
WS 4 | Al
| Mowe: 3 ns Delta: 0 |sim:fand2_gate

Figure 4: Issueing a force command from the Simulation window.

The force command assigns a signal the specified value. The signal keeps this value until a new
force command sets it to another value. The run command advances simulation time by the spec-

ified number of timesteps.

Examine the waveform in the Wave window. One may zoom to a full view format by selecting:

View ---> Zoom ---> Zoom Full
from the Wave window.

Use the force command to set the inputs to their different possible values:
forcein_10

forcein_21

run 2

forcein_11

forcein_20

run 2

forcein_11

forcein_11

run 2

Figure 5 shows the results of the simulation.

h 4

File Edit Wiew Add Format Tools Window

0 EIIREE T
LLerifsf|a-a2q|3 & aa&an| [N

EHS $BBO O-MED |28

e Cursar 1

|DnstDan |

[

Figure 5: The Wave window containing the simulation results.

(6) To obtain a printout of the Wave window, select File -> Print Postscript. In the Write Post-

script window, specify whether to print to a printer or to print to a file. One can also specify the
time range to print. Select OK to generate the file. Refer to Figure 6 for the details of setting the
various print options.

Printer
Print command: |[1p -d 1pl -
* File narme: andZ gate. ps Browse. .. Setup...

E=port EFS File

Signal Selection Time Range
All signals = Full Range 0 ns g ns
= Current wiew Current wiewy 0 ns g ns
Selected Custom Fram: |0 ns = To: |37 ns =

(0] Cancel

Figure 6: Setting the Print options.
To print the file to a printer, use the Linux command:

Ipr -Pprinter_name filename
where printer_name is the name of the printer you wish to print to.
To quit the simulator, select File -> Quit from the Simulation window.

This concludes this introductory example.

Example 2: Simulating a two-input and gate (using a DO file)

Entering commands through the simulator prompt can be tedious, especially if it necessary to
enter the commands a number of times. It is possible to store theses commands in a file and have
the simulator read and execute these commands from the file. This example makes use of the
same and2_gate.vhd file, but uses a DO file to store the commands in.

Create a subdirectory called DO within your Modelsim directory and within this subdirectory cre-
ate a text file called and2.do containing the following:

add wave in_1
add wave in_2
add wave output
forcein_10

10

forcein_ 20
run 2
forcein_10
forcein_21
run 2
forcein_11
forcein_ 20
run 2
forcein_11
forcein_ 20
run 2

Once can invoke the simulator specifying that it should read and execute the contents of a specific
DO file using the following syntax:

ted@deadflowers Code 5:59pm >vsim -do ../DO/and2.do and2_gate &

The -do command line option is used to specify the path to the DO file to be read in. The .. is
Linux shorthand notation for the parent of the present working directory. Alternatively, one may
save the DO files in any directory and simply specify the complete pathname to the location of the
specific DO file. The three windows will appear and the simulation will run to completion. Zoom
to a Full view in the Wave window and you will oberve the same simulation results as obained
earlier in Example 1.

An alternative method of reading in a DO file is the first load the design into the simulator:
ted@deadflowers Code 5:59pm >vsim and2_gate &

and then from the Simulation Transcript window, enter the following command:

do ../DO/and2.do

Example 3: Simulating a design consisting of multiple VHDL source code files.

This example illustrates the use of DO files and also illustrates the use of a multi-level hierarchical
design style. Three separate VHDL source files will be analyzed, and the top-level entity will
make references to the the lower-level files. The two bottom-level files specify the entity-archi-
tecture pairs foran AND gate and a OR gate respectively.. The top-level entity consists of a com-
binational logic circuit consisiting of two AND gates and a single OR gate.

(1) Create a file called tedand.vhd (save it in your Code directory) with the following contents:
entity ted_and is

port(A,B : in BIT ; OUTPUT : out BIT);
end ted_and;

11

architecture ted_arch of ted_and is
begin

OUTPUT <= A and B after 5 ns;

end ted_arch;

(2) Create a file called tedor.vhd with the following VHDL statements in it:
entity ted_or is

port(A,B : in BIT ; OUTPUT : out BIT);

end ted_or;

architecture ted_arch of ted_or is
begin

OUTPUT <=Aoor B;

end ted_arch;

(3) Create afile called tedcircuit.vhd with the following contents (this will be our top-level entity):
entity tedcircuit is

port(A,B,C,D : in BIT; E : out BIT);

end tedcircuit;

architecture ted_arch of tedcircuit is

-- declare the components found in our entity
component ted_and

port(A, B : in BIT; OUTPUT : out BIT);

end component;

component ted_or

port(A,B : in BIT; OUTPUT : out bit);

end component;

-- declare signals used to interconnect components
signal s1, s2 : BIT;

-- declare configuration specification

for U1, U3 : ted_and use entity WORK.ted_and(ted_arch);
for U2: ted_or use entity WORK.ted_or(ted_arch);

12

begin

Ul :ted_and port map(A=>A,B=>B, OUTPUT =>sl);
U2 :ted_or port map(A=>C, B=>D, OUTPUT =>s2);
U3 : ted_and port map(A =>s1, B =>s2, OUTPUT => E);

end ted_arch;

(4) Note how the entity tedcircuit (whose architecture is specified in the file tedcircuit.vhd) makes
references to entities whose architecture is specified in a separate file. Specifically, the two com-
ponents ted_and and ted_or are specified in two separate files. The rules specifying the order of
compilation of VHDL units require that the two files tedand.vhd and tedor.vhd be compiled prior

to the compilation of the file tedcircuit.vhd. We would compile these three files in the following
order:

ted@deadflowers Code 6:18pm >vcom tedand.vhd

Model Technology ModelSim SE vcom 6.6d Compiler 2010.11 Nov 1 2010
-- Loading package standard

-- Compiling entity ted_and

-- Compiling architecture ted_arch of ted_and

ted@deadflowers Code 6:18pm >vcom tedor.vhd

Model Technology ModelSim SE vcom 6.6d Compiler 2010.11 Nov 1 2010
-- Loading package standard

-- Compiling entity ted_or

-- Compiling architecture ted_arch of ted_or

ted@deadflowers Code 6:18pm >vcom tedcircuit.vhd

Model Technology ModelSim SE vcom 6.6d Compiler 2010.11 Nov 1 2010
-- Loading package standard

-- Compiling entity tedcircuit

-- Compiling architecture ted_arch of tedcircuit

-- Loading entity ted_and

-- Loading entity ted_or

ted@deadflowers Code 6:18pm >

(5) Create a DO file (save it in your DO directory) called tedcircuit.do which contains the fol-
lowing:

add all the signals to the wave window
add wave *
setup some input values and run the simulator

forcea O
forceb O

13

forcec O
forced O
run 2

forcea 0
forceb 1
forcecO
forced 1
run 2

forceal
forceb 1
forcecO
forced 1
run 2

forceal
forceb 1
forcec1
forced 1
run 2

Note how comments within a DO file are specified using the # character as the first character of
the line. Instead of explicitly adding all the signals, one can use the wildcard character * to add all
the signals contained in a given entity to the Wave window.

(6) Load the compiled design into the simulator together with the specified DO file:

ted@deadflowers Code 6:25pm >vsim -do ../DO/tedcircuit.do tedcircuit &

Figure 7 shows the simulation results for this example.

14

Cursor 1 0
1=
[0nsto10ns |

. I

Figure 7: Simulation results for Example 3.
Example 4: Specifying repeating signals.

When simulating VHDL designs, it is often neccessary to specify a repeating pattern for a certain
signal such as a clock input to a synchronous system. There are several methods of doing so
through a DO file. This example will illustrate three methods ranging from a brute-force
approach to a more consice and refined manner. The three methos make use of the following
VHDL code which describes a simple 3-bit counter with an asynchronous reset (active-low), and
a count enable signal.

1. Create the following VHDL code in your Code directory with the flename count3.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity count3 is
port(clk, resetn, count_en : in std_logic;
sum : out std_logic_vector(2 downto 0);
cout : out std_logic);
end count3;

architecture rtl of count3 is
signal count : std_logic_vector(2 downto 0);
begin

process(clk, resetn)
begin
if resetn ='0’ then
count <= (others =>"0");
elsif clk’event and clk =1’ then
if count_en ="1" then
count <= count + 1,
end if;
end if;
end process;

sum <= not count; -- invert the outputs for the demo board
-- since its LEDs are active low

cout <="0" when count =7 and count_en ='1’" else '1’;

end rtl;

2a: The “brute-force” DO file.

Create the following DO file in your DO directory called count3.do:
This is a comment line in a .do file

add all signals to the Waveform window
add wave *

apply a reset to the counter
force resetn O

force clk O

force count_en 1

run 2

unassert the reset signal and clock
for several cycles

force resetn 1

run 2

force clk 1

15

16

run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

force clk 1
run 2
force clk O
run 2

This simplistic DO file simply asserts a reset pulse, then applies 9 clock pulses in repetition.
Clearly, one would not want to adopt such a manner if it were necessary to simulate a design over

hundreds of clock cycles... there are far easier ways of doing this as shown in 2(b).
2(b) A DO file which makes use of another DO file.

Create the following two DO files called clock.do and count3b.do respectively:
clock.do:

toggle to clock between 1 and O

force clk 1
run 2
force clk O
run 2

count3bdo:

This .do file reads in another .do file which
toggles the clock signal for 9 cycles

add all signals to the Waveform window
add wave *

apply a reset to the counter
force resetn O

force clk O

force count_en 1

run 2

unassert the reset signal and clock
for several cycles

force resetn 1

run 2

do clock.do
do clock.do
do clock.do
do clock.do
do clock.do
do clock.do
do clock.do
do clock.do
do clock.do

Simulate the design:

18

ted@deadflowers Code 7:20pm >vsim -do ../DO/count3b.do count3 &

The first part of this DO file is similar to the brute-force one, it differs in that it reads in the
clock.do file 9 times instead of repeating the

force clk 1
run 2
force clk O
run 2

statements explicitly 9 times. This is a slight improvement over the brute-force method, but still
awkward to use if it is necessary to simulate a design over many clock cycles.

2(c:) Using a force command with a repeat.
Create the following DO file called count3c.do:

This is a comment line in a .do file
add all signals to the Waveform window
add wave *

apply a reset to the counter
force resetn O

force clk O

force count_en 1

run 2

unassert the reset signal and clock
for several cycles

force resetn 1

run 2

forceclk1 2-r4
forceclk 0 4-r4

run for 9 clock periods

9 clock periods x 4 timesteps per period

= 36 timesteps

run 36

The two force commands make use of the -r option which is used to repeat the action.

The syntax of this force command is:

force signal_name signal_value start time -r repeat_time

19

Thus, the first force command will set the clk signal to a value of 1 at a time equal to 2 time units
after the current simulation time and this will be repeated at a time commencing at 4 time units
after the current simulation time. In a similar manner, the second force command will set the clk
signal to a value of 0 at a time equal to 4 units after the current simulation time and this will be

repeated starting at 4 time units after the current simulation time. Note that the two force com-
mands may be combined into one in the following manner:

forceclk1 2,0 4-r4

This command forces the signal called clk to a value of 1 at a time value of 2 units after the cur-
rent simulation time, and then it forces the signal to value 0 at a time equal to 4 units after the cur-

rent simulation time and this cycle is repeated at time 4 units after the current simulatibn time.

This method is the most practical for creating a periodic clock signal over many cycles.

Figure 8 shows the simulation results obtained from using the count3c.do file.

| e I T T

O-= & % P BB - e R SEER|| ol B

il 0 nsto 42 ns

Figure 8: Simulation results obtained with the repeated force command.

20

PART Il : Logic Synthesis with Precisior® RTL

In this section we will use the Mentor Graphics Precision RTL tool to perform logic synthesis. In
synthesis, VHDL code will be translated into an EDIF (Electronic Design Interface Format)
netlist file. This netlist file can then be used as input to third-party implementation tools. In this
tutorial we will be using the Xilinx ISE tool suite which will perform the translation from EDIF
netlist f into an implemented design downloaded to a FPGA development board.

|. Performing Logic Synthesis

This section will explain the use of the Preci§idRTL Synthesis tool from Mentor Graphics
Corporation. To quote the User’'s Manual, “Precision™ RTL is a comprehensive tool suite, pro-
viding design capture in the form of VHDL and Verilog entry, advanced register-transfer-logic

logic synthesis, constraint based optimization, and schematic viewing.”

You will have to create a subdirectory called FPGA_ADV (from within your Modelsim directory)
to hold the files created by the Precision RTL synthesis tool. This directory may be created in the
following manner:

ted@brownsugar Code 1:23pm > cd (this will return you to your home directory)
ted@brownsugar ~ 1:23pm > cd Modelsim
ted@brownsugar Modelsim 1:23pm > mkdir FPGA_ADV

Example 1: Synthesizing a structural VHDL design.

This example consists of a full adder circuit constructed from two half adders and an OR gate.
The port map statement is used to instantiate two instances of a half-adder component. Note that
the top level output ports (sum_out_neg, carry_out_neg) have been negated since the FPGA board
LED's are active LOW (this means the LED is illuminated when it is driven by a logic 0).

(1) Create the following files in your Code directory:

(i) afile called half_adder_regular_outputs.vhd with the following contents:

library ieee;
use ieee.std_logic_1164.all;

entity half_adder is
port (inl, in2: in std_logic;
carry, sum : out std_logic);
end half_adder;

architecture true_outputs of half_adder is
begin
carry <= (inl and in2);

sum <= (inl xor in2);
end true_outputs;

(ii) a file called full_adder_negated_outputs.vhd with the following contents:

library ieee;
use ieee.std_logic_1164.all;

entity full_adder_negated is

port(carry_in, inputl, input2 : in std_logic;

sum_out_neg, carry_out_neg : out std_logic);

end full_adder_negated;
architecture structural of full_adder_negated is
-- declare a half-adder component
component half_adder

port (inl, in2: in std_logic;

carry, sum : out std_logic);

end component;
-- declare internal signals used to "hook up" components
signal carryl, carry2 : std_logic;
signal sum_int . std_logic;
signal sum_out, carry_out : std_logic;
-- declare configuration specification
for hal, ha2 : half_adder use entity WORK.half_adder(true_outputs);
begin

-- component instantiation

hal: half_adder port map(inl => inputl, in2 => input2,
carry => carryl, sum => sum_int);

ha2: half_adder port map(inl => sum_int, in2 => carry_in,
carry => carry2, sum => sum_out);

carry_out <= carryl or carry2;
-- negate the internal sum and carry to the external port signals
-- since the XUP Virtex2 Pro demo board has active LOW LED outputs

-- DIP switch in UP position will produce a logic-'0’ value.

carry_out_neg <= not carry_out;
sum_out_neg <= not sum_out;

end structural;

21

22

(2) The next step is to setup your Linux environment to run the Precision RTL synthesis tool. This
is done by sourcing the setup file /CMC/ENVIRONMENT/fpga_advantage.env as shown below:
Change into you FPGA_ADV directory and then source the file:

ted@deadflowers FPGA_ADV 12:43pm >source /CMC/ENVIRONMENT/fpga_advantage.env

After this command is issued, you will be returned back to your Linux prompt. As a double check
to ensure that your environment is configured properly, issue the which precision command:

ted@deadflowers FPGA_ADV 12:43pm >which precision
/encs/pkg/Precision-2010aUl/root/Mgc_home/bin/precision

Note that this tutorial has been written using version 7.1 of Precision RTL. This may change as
newer versions are installed. The actual results returned from the ‘which’ command may vary
from the ones given above.

(3) Invoke the Precision RTL tool:

ted@brownsugar FPGA_ADV 1:24pm > precision

The following will be displayed and two windows shown in Figures 9 and 10 will appear:
ted@deadflowers FPGA_ADV 2:22pm >precision: Setting MGC_HOME to /encs/pkg/Precision-
2010aU1/root/Mgc_home ...

precision: Executing on platform: Scientific Linux SL release 5.5 (Boron) 2.6.18-238.12.1.el5
i686

B2 File Edit *iew Toaols Window Help — e =]
= @m§|5a|nw|@| @ == [EEE
=l =
I B j? Precision Synthesis Z2005=a. 69 (Production Relea |
Froject A7 Copwright (o) Mentor Graphics Corporation, 199
o Portions copwyright 1991 2004 C oIy
A THMPUELISHED. LICEMSED SOF°
A CONFIDENTIAL AND PROPRIETARY INFORMA
q ey PROPERTY OF MENTOR GEAPHICS CORPORATIOL
Mew Project s
S4 RBurnding on Sun0S ted@acmilan. ece. concordia. ca
j o
I=%u S Start time Thu Jun 22 09:52:58 2006
Dpen Project e e e et
Logging session transcript to file "smfs softwarc
[<11 _»l_I
oot AI
-
| 3
B2 Transcript |
Ready [Input Directory: kot =

Figure 9: Main window for the Precision RTL synthesis tool.

23

v x

Tip of the Day...

Enter "report_constraint” from the command line or
double-click on "RTL or Tech Constraints Report” icon
to see the current design constraints.

Show tips at startup

Previous Hext Close

Figure 10: Tip of the Day window.

Click on theClosebutton in the Tip of the Day window.
(4) Select the New Project icon and fill out the New Project form specifying the following:

Project Name: Full_Adder_Test
Project Folder: /nfs/home/first_letter_of first_ name/your_login_name/Modelsim/FPGA_ADV

The information in th&€reate Impl: field will change to what you have entered as the Project
Name (Full_Adder_Test_impl). Refer to Figure 11 for the details. Click o®khéutton once
the form has been filled.

Froject Mame : IFuII_.-‘-‘-.dder_Tesﬂ

Project Folder Ifnfsfhnmem‘tedeVNOF‘SVS_EDDDIFF‘G.ﬂ._.&. I

¥ Create Impl: IFuII_.-‘-‘-.dder_Test_i

(o] 8 I Cancel |

Figure 11: New Project form.

(5) The next step is to specify the VHDL files which to be synthesized. This is performed by

24

selecting theAdd Input Files icon which appears in the left hand pane of the main Precision win-
dow. The specified files will be read into memory and used to build a database used by the syn-
thesis tool. Precision will analyze all of the files together, consequently the order in which your
VHDL files are specified is immaterial. Futhermore, the top-level entity will be automatically
detected.

Selecting theAdd Input Files will result in theOpen form appearing. Specify the
full_adder_negated_outputs.vhd file in ik field by using the Up arrow yellow folder icon to
navigate in your Code directory and select the specified file. OlickRefer to Figure 12.

Look in: IﬁCDdE _'_'i Lgil .ﬂ‘

jﬂnatmg ports_from_signal.vwhd :lhalf subtractaor.
=] fredkin.vh =] haque_shift_an
jfredklnz whd jhazard whd
adn gatec auts. v he =] hazard_free.vhi
grn:uund Wwire T’rn:um sugnal vhd @hazardz.uhd
jgru:uund_wwe_fr-:um_s|ng|e_var|able.vhd E’lhazardauhd
ilgrn:uund_wire_frnm_variahle.vhd i‘lhu_li.v
=] half_adder_regular_outputs.vhd =] hu_li_register.y
<] _J]
File name: IfulI_adder_negated_nutputs Dpen |
Files of tvpe: ISynthesis Files (".VHD;*.VHDL;“.VHO;*.HDL:_I Cancel |

Figure 12: Open form.

(6) Repeat the above procedure to add the half_adder_regular_outputs.vhd file. You will now see
that the files you specified are listed in the Project files pane of the main window as shown in Fig-
ure 13.

25

_aAadder Test — Hentor Graphics Precoci: =

oS Precision REL Sy

ndowy Help

[B e

Froject Files

Desi

— m= Project Full_adder_Test
—mal Il Full_Audder Test ampl_1 {unsawved)
— = Input Files
] Tull_adder_negated_outputs_ «hd
] half_adder_regular_outputs.whd
] constraint Files

Z= Script Files
24 racro Files

— e Dutput Files
L JLog File

Figure 13: Project files pane of the main Precision window indicating added files.

(7) The next step is to specifiy the FPGA device you wish to use. This is performed by selecting
theSetup Designicon. Clicking this icon will open th€roject Settingsform. In this form select
Xilinx as the technology as shown in Figure 14.

—Technology

s actel
-&dtera
-atmel

- Lattice
- il

BEH8-2

— Design Fregquency

¢ Current Freguency: none

= Set Freguency: II‘I oo rAHZ

i Remove Fregquency & Constraints

— LD CTonstraints

= Current Delay:
Input Delayw:
i Set Delay:
U = e e B =) PRt s

none Ot put

Il-, Fi
EHb L el Il:l FES

& Remove Delays & MO Constraints

nong

= BTy Betinminne

—ancel I

Figure 14

: Project Settings Form.

26

Selecting ther symbol to the left of the worHilinx will list the available Xilinx devices. Scroll
through this list and sele®IRTEX-II Pro as the familyXC2VP30ff896as the Device an¥ as

the speed grade. ClicRK after you have specfied the values. This is the FPGA used in the devel-
opment board the lab is equipped with. Refer to Figure 15 for the details of this form.

— Technology —Design Freguency
-~ @Pro VIRTEX-E Military 4] i Current Frequency: none
- @Pra VIRTEX -1 Mdilitary
- GPro VIRTEX- Il Rad Taler: ¥ Set Frequency: |1DD hHz
- SPARTANZ ¢ Remove Fregquency & Constraints
.- SPARTANZE
L SPARTAMS — QO Constraints
- SPARTANIE & Cutrent Delay:
= IRTE % Input Delay: none Output nane
- WIRTEX-E
i Set Delay:
- WIRTEX -1
- WIRTEX-1l Pra it ety [0 ot
- WIRTEX - 1W i }
(i e P B = fis
£ Tl i i |D
iy = Remove Delays & YO Constraints
IZVF‘SDﬁ’BSE "I
Speed Grade: " Run Retiming

Figure 15: Specifying the Family, Device, and Speed grade.

(8) You are now ready to compile the .vhd files. You will note that there are now two new icons in
the main window:

synthesize

Select theCompile icon. As the Compile command executes, messages will be displaye din the
middle pane of the window. Observe these messages for any warnings or error messages. These
messages are also written to a log file with filename precision.log within the FPGA_ADV direc-
tory. The following is an excerpt of the contents of this log file:

COMMAND: compile

27

#

Info: Reading file: '/nfs/software/cmc/tools/MentorB.4/fa_71/Precision/
Mgc_home/pkgs/psr/techlib

s/xcv2p.syn'.

Info: vhdlorder, Release 2005a.11

Info: Files sorted successfully.

Info: hdl-analyze, Release RTLC-Precision 2005a.11

Info: 2502: Analyzing input file "/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
../Code/half_adder_reg

ular_outputs.vhd" ...

Info: 2502: Analyzing input file "/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
../Code/full_adder_neg

ated_outputs.vhd" ...

Info: Top of Design has been set to: full_adder_negated.

Info: Current working directory: '/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
Full_Adder_Test_temp_1/

Info: RTLC-Driver, Release RTLC-Precision 2005a.11

Info: Last compiled on Jul 5 2005 15:52:47

Info: 4512: Initializing...

Info: 4504: Partitioning design

Info: RTLCompiler, Release RTLC-Precision 2005a.11.2

Info: Last compiled on Jul 7 2005 22:09:45

Info: 4512: Initializing...

Info: 4522: Root Module work.full_adder_negated(structural): Pre-process-
ing...

Info: 4506: Module work.half_adder(true_outputs): Pre-processing...

Info: 4508: Module work.half_adder(true_outputs): Compiling...

Info: 4523: Root Module work.full_adder_negated(structural): Compiling...
Info: 4842: Compilation successfully completed.

Info: 4835: Total CPU time taken for compilation: 0.0 secs.

Info: 4856: Total lines of RTL compiled: 59.

Info: 4513: Overall running time 7.0 secs.

Info: Current working directory: '/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
Full_Adder_Test_temp_1/

Info: Finished compiling design.
compile

(9) The next step is to synthesize your design. Sele&ythihesizeicon in the left hand pane.
Synthesis messages will appear in the middle pane. You may read them from the precision.log
file if any errors occur. The following are the messages relevant to the Synthesize command from
the log file:

COMMAND: synthesize

#

Info: Current working directory: '/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
Full_Adder_Test_temp_1

Info: 2 Instances are flattened in hierarchical block
.work.full_adder_negated.structural.

-- Optimizing design .work.full_adder_negated.structural

Info: Starting a constant propagation on the mapped netlist.

28

Info: Writing file: '/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
Full_Adder_Test_temp_21/full_adder_negated.edf'.

Info: Writing file: '/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
Full_Adder_Test_temp_1/full_adder_ngated.ucf.

Info: Finished synthesizing design.

Infs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/Full_Adder_Test_temp_1/
precision_tech.sdc

synthesize

ted@brownsugar FPGA_ADV 12:46pm >

(10) The last step is tBavethe project. From the main Precision window select:

File : Save Project

The files which have been written into the Full_Adder_Test_temp_1 directory will be copied into
the Full_Adder_Test_impl_1 directory. The Full_Adder_Test_temp_1 will still exist until you
exit from Precision by selecting:

File : Exit (answer Yes when prompted “Are you sure you want to exit?”).

Once you have exited from Precision, the Full_Adder_Test_temp_1 will be deleted.

The end result of the Synthesize command is the generation of an EDIF netlist. This is high-
lighted in the above messages in boldface font. In this example, the name of the EDIF file is
full_adder_negated.edf. Thisis an ASCII text file. You should examine the contents of this file so

that you become familiar with its contents (look in the Full_Adder_Test_impl_1 directory)

(11) Upon completion of the Synthesize command, the middle pane of the main window will
appear as shown in Figure 16.

29

miling - WIRTEX -l Pro : 2WP30ff336 : 7; Fregquency = 100 MHZ

Froject Files Design Hierarchy
-z Project Full_Adder_Test = full_adder_negated {structural_=R
-z Impl Full_Adder_Test_impl_1 {unsaved) + 3% Clocks
+- B Input Files ¥ B Pors
1 constraint Files +. B Mets
#4 Script Files +- B Instances

#8 Macro Files

-z Output Files
L] Log File [Warnings: 1, Infos: §]
RTL Schematic
Technology Schematic
R] Area Report
R] Timing Report
R] Timing “iolation Report
R] RTL Constraints Report

e R ST R L S o

Figure 16: Main window after the Synthesize command.

To view the RTL schematic diagram of your synthesized hardware double clRKth&che-
matic icon in the left hand pane of the middle pane. The schematic diagram will appear in the
right hand pane of the middle pane as shown in Figure 17.

Tools Window Help Aglil
tmes e || [as s8]
1 =k full_adder_negated =
-8 Clocks
@23 Ports
-3 Mets

-3 Instances

I S I I |
B2 Transcript |2 Design C.. 4 RTL Desig..
| lInput Directory: . /FPGa_ADWS |

=

Figure 17: RTL Schematic of synthesized hardware.

30

The RTL Schematic window is very useful for analyzing and debugging a design if there are
errors. For example, one may locate any net (a net in logic synthesis terminology is basically a
wire connecting two terminals) by selecting the + symbol to the eft of the word Nets in the left
hand portion of the pane. All the nets within the design will be listed. You may choose one of
these (carryl for example). The wire corresponding to this net will be highlighted in red in the
schematic area of the window as inidicated in Figure 18.

a3 Inputs
-3 Outputs
=3 Mets
g LAY _in
-~ inputl
—Fa [hputz .
- SUmM_out_neg 0.
~cfg Cary_out_ne . i1 —
~oFo carnyl i i
cfo Carmy2 _ i [
—f slm_int
Fo sum_out i S
= GAry_out
&1 Instances

Figure 18: RTL Schematic highlighting a chosen net.

(12) If your design is hierarchical (i.e. it makes us of components and port map statements), you
may view the hierarchy within the schematic by moving the cursor to an empty area of the sche-
matic and right-clicking with the mouse button and selecting the Show Hierarchy item. You may
print your schematic to a Postscript file by selecting the yellow printer icon located top left por-
tion of the main window:

P4 File Edit
T2 EH &

WMiews

31

In the Print form, specify Print to File and select OK as shown in Figure 19. A Print to File form
will appear, specify location and a filename such as ‘Full_Adder_Schematic’ and click on the
Save button. A file called Full_Adder_Schematic.prn will be created in the location you speci-
fied. This is a Postscript file which may be printed to a laser printer with the ‘lpr -P printer_name’
command. Figure 20 is the schematic diagram of the full-adder circuit showing the design hierar-

chy.

|Generic PostScript Printer |_

o EE | ETE

Figure 19: Print to File form.

infl] :
i in[@DLIt - |n>O°Ut T sm_out ey
. in2
camy_n :
> . fﬂﬂ]—\put] s t
: ?n Duut m o in[lJ]] e cary ot fe
it [—t Ll Falf_ader
. ine
2 [:
fnlll b ey
lnfﬂl_)
half_adder

Figure 20: RTL Schematic of Full Adder circuit showing hierarchy.

32

PART Il : Implementation using Xilinx ISE

The end result of the steps performed in the previous section was the creation of a netlist file in a
format known as Electronic Design Interchange Format (EDIF). An EDIF file is a netlist of basic
logic gates. The Xilinx ISE tools use EDIF as one possible input format. The steps involved to
arrive at a functioning implementation beginning with an EDIF file are summarized below:

() the EDIF file is converted into a netlist of Xilinx Logic Cells. This step is referred teds
nology mappingor partitioning. The mapping also attempts to perform some optimization
either in terms of the number of Logic Cells required or timing requirements.

(i) the next step is tplaceeach of the Logic Cells generated from the mapping phase into a spe-
cific location within the target FPGA. Once the Logic Cells have been placed, they must be inter-
connected using the available wiring resources and switches within the FPGA. This is referred to
asrouting.

(iif) once a design has been placed and routexhrdiguration file is created which is used to pro-
gram the FPGA. The Xilinx CAD tools will create a file with a .bit extension. This file is then
used to generate a configuration file using the Xilinx Impact tool.

|. Setting up the user environment to run the Xilinx ISE program

Prior to running the Xilinx tools, it is necessary to setup the Linux environment to run the Xilinx
tools. Type the following from the Linux prompt:

ted@acmilan 12:58pm > source /CMC/ENVIRONMENT/xilinx.env

Note that the abowvelinx.envfile is actually a symbolic link pointing to /CMC/ENVIRON-
MENT/xilinx_9.2i.env. The symbolic linkilinx.envpoints to the currently installed and sup-

ported version of the Xilinx tools. Occasionally, there may co-exist other versions. Graduate
student researchers may need to run other versions, they should refer to the .env files found in the
directory /ICMC/ENVIRONMENT and source the appropriate file (if it exists).

Il. Implementing a Design with the Xilinx ISE Project Navigator

(1) create a subdirectory called Xilinx from within your Modelsim diretory. This directory will be
used to hold the intermediate files produced by the Xilinx tools. The .bit file created during the
configuration step will also be saved within the structure of this directory.

(2) Place and route is performed with the ISE software. To start the ISE software type ise from
the Linux prompt (the & symbol after the command name will cause the tool to run in the back-

ground and you will be returned back to the Linux prompt after the window appears)

ted@deadflowers Xilinx 2:35pm > ise &

33

(3) The Xilinx Project Navigator window will appear as shown in Figure 21. A Tip of the Day
window will also appear, select OK in it to close the Tip of the Day.

YT = O~ I

=
A (Empty Log)

Figure 21: Xilinx Project Navigator window.

SelectFile -> New Projectfrom the list of items located across the top of this window. Nesv
Project window will appear. Specify the following in tiNew Projectwindow:

Project Name: Full_Adder

Project Location: specify the full path to your Xilinx directory, for example:
Infs/home/t/ted/Modelsim/Xilinx/Full_Adder

Top-Level Module: select EDIF from the list.

SelectNext>when you have entered the values. Refer to Figure 22 for the details of this form.

34

—Enter a Name and Location for the Project

Project Mame: Project Location:

Full_Adder ﬂfsfhclmeftftede‘r’NOF’S“r’S_EDDD»I.‘:(iIin}:fFuII_ J

—Select the type of Top-Level module for the Project

Top—Lewvel Module Type:

EDIF v

Mext = Cancel Help

Figure 22: New Project window.

(4) You will need to create a User Constraints File in order for the Xilinx ISE tools to associate
input/output ports in your design with physical pin numbers on the FPGA chip. For the purpose
of this tutorial, create a text file called full_adder_negated.ucf file in the same directory that the
Precision RTL tool generated your .edf (EDIF netlist) file. The contents of this full_adder_ne
gated.ucf file should be:

CONFIG STEPPING="0";

NET carry_in LOC = AC11;

NET inputl LOC = AD11;

NET input2 LOC = AFS;

NET carry_out_neg LOC = AC4;
NET sum_out_neg LOC = ACS3;

Usually, such a constraints file is creal@fore one begins implementation with the ISE tools.
The .ucf file tells the ISE implementationt tools that the carry_in input should be mapped to I/O
pin AC11 of the FPGA device. This pin is connected to a user DIP switch on the board. Simi-
larly, the two outputs of the full_adder (carry_out_neg, sum_out_neg) are mapped to pins AC4
and AC3 which are connected to LEDs on the download board.

Once you have selectgiext>, the New Project form will change and you will be prompted to
enter the Input File and the User Constraint File. Specify your full_adder_negated.edf file and the

35

full_adder_negated.ucf file you have created. You may use. tbattons to the right of each field
to browse and select a particular file from your directory structure. $&&tt when you are
done. Refer to Figure 23.

intsfhomeftfted/SYNOPSYS 20000FPGA_ADN |_

=

infs/homeftted!SYNOPSYS_2000/FPGA_ADN | :

- Copy &

Figure 23: Specifying the Input File and the User Constraints File.

(5) You must now specify whcih device you use to use. Refer to Figure 24 and specify the follow-
ing in the form:

Device Family: Virtex2P
Device: xc2vp30
Package:ff896

Speed Grade:-7

Top_level Module Type:EDIF
Simulator: Other

SelectNext>.

36

CEVRE0
jif=i=]s

Figure 24: Specifying the Device.

(6) In the New Project Information window sel&anish. See Figure 25.

LS wias .

Device Family: Virtex2P

130

Package: ffg96
Speed Grade: -7

Top-Level Module Type: EDIF

Synthesis Tool: MiA

Simulator: Other

Generated Simulation Language: M,
Sources:

TRUE /nfsfhomeftited/SYMOPSYS 2000/FPGA ADVIFull_Adder_impl_1/full_adder _negated edf ot
TRUE /nfsfhomeftited/SYMOPSYS 2000/FPGA ADVIFull_Adder_impl_1/full_adder negated ucf oo

Figure 25: New Project Information window.
(7) The Project Navigator window will change to that shown in Figure 26.

37

G 6] | Eel (| ENEM | |)R ES
| =] =
Sourees in Project: |

; Full_adder ise
B- . xc2vpd0-7ifoae
B- . full_adder negated {full_adder ne
------ B full_adder_negated.ucf

i |« 2 =
3 Module... | g Snaps.. | [Library .. |

=]

| Processes for Source: "xc2vpl0-7ifoog" I

Add Existing Source

[l Create New Source
- [l Design Utilties

Figure 26.

(8) Select the full_adder_negated.edf file (the file listed beneath xc2vp30-7{f896). You will now
note that thé’rocesses for Source: “xc2vp30-7ff89&iave changed to include the “Implement
Design” as shown in Figure 27.

T mzpdodule [«m Snaps . | [Libra

F’rocesses for Source: "full adder n

-------- - Wiews Design Sumimary

EI ----- - Cesign Litilities

e Bl -~ Command Line
=l _ User Constraints

Create Timing Constr
-_ Assign Package Pins
Tl Create Area Constrai
‘-l Edit Constraints (Tex
=l ' mplement Design
H = 0 1 +

T

B3 Process Wiew |

Figure 27: Process including Implement Design.
To start the Implement Design process, double click on Implement Design. Messages indicating

38

the progress of the process will be displayed in the bottom pane of the Project Navigator. These
messages are also written to a log file (__projnav.log) in your specified Xilinx Project directory
(i.e. Infs/home/t/ted/Modelsim/Xilinx/Full_Adder). If there are any errors or warnings, you

should consult the log file to determine their cause. Most warnings can be safely ignored, others
merit futher investigation and removal. Incidentally, the entire Xilinx ISE implementation flow

can be executed using a command-line interface, rather then the GUI method illustrated in this
tutorial. One can even create a shell script consisting of the appropriate commands and execute
this command in the background. This can be useful for large designs which may take up to sev-
eral hours/days to implement. Essentially, the log file indicates the commands and their agru-
ments as in:

ngdbuild -intstyle ise -dd
Infs/home/t/ted/Modelsim/Xilinx/Full_Adder/_ngo -uc full_adder_negated.ucf -p
xc2vp30-ff896-7 full_adder_negated.edf full_adder_negated.ngd

edif2ngd -quiet "full_adder_negated.edf" " ngo/full_adder_negated.ngo"

/CMC/tools/xilinx_7.1i/bin/sol/map -ise
Infs/home/t/ted/Modelsim/Xilinx/Full_Adder/Full_Adder.ise -intstyle ise -p
xc2vp30-ff896-7 -cm area -pr b -k 4 -c 100 -tx off -0

full_adder_negated _map.ncd full_adder_negated.ngd full_adder_negated.pcf

par -w -intstyle ise -ol std -t 1 full_adder_negated_map.ncd
full_adder_negated.ncd full_adder_negated.pcf

The actual details may vary, but this should be a sufficient starting point for the UNIX gurus to
implement their design using the command line interface.

The Xilinx Project directory also contains a number of useful reports giving the device resource
utilization and timing values. For example, the file full_adder_negated.twr gives the following
(useful) information:

ted@acmilan Full_Adder 11:16am >more full_adder_negated.twr

Release 7.1i Trace H.38
Copyright (c) 1995-2005 Xilinx, Inc. All rights reserved.

/CMC/tools/xilinx_7.1i/bin/sol/trce -ise
/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/Full_Adder/Full_Adder.ise -intstyle ise -
e

3 -1 3 -s 7 -xml full_adder_negated full_adder_negated.ncd -0
full_adder_negated.twr full_adder_negated.pcf

Design file: full_adder_negated.ncd
Physical constraint file: full_adder_negated.pcf
Device,speed: xc2vp30,-7 (PRODUCTION 1.90 2005-01-22)

Report level: error report

39

Environment Variable Effect

NONE No environment variables were set

INFO:Timing:2698 - No timing constraints found, doing default enumeration.
INFO:Timing:2752 - To get complete path coverage, use the unconstrained paths
option. All paths that are not constrained will be reported in the
unconstrained paths section(s) of the report.

Data Sheet report:

All values displayed in nanoseconds (ns)

Pad to Pad

+ + +
Source Pad |Destination Pad| Delay |

+ + +
carry_in |carry_out_neg | 6.044|
carry_in [sum_out neg | 5.835|
inputl |carry_out_neg | 5.607|
inputl |[sum_out_neg | 5.981]
input2 |carry_out_neg | 5.654|
input2 |[sum_out_neg | 5.839|

+ + +

The full_adder_negated.mrp file reports the amount of FPGA resources used to implement the
design:

ted@acmilan Full_Adder 11:21am >more full_adder_negated.mrp

Release 7.1i Map H.38
Xilinx Mapping Report File for Design 'full_adder_negated’

Design Information

Command Line :/CMC/tools/xilinx_7.1i/bin/sol/map -ise
Infs/home/t/ted/SYNOPSYS_2000/Xilinx/Full_Adder/Full_Adder.ise -intstyle ise -
p

xc2vp30-ff896-7 -cm area -pr b -k 4 -c 100 -tx off -0
full_adder_negated_map.ncd

full_adder_negated.ngd full_adder_negated.pcf

Target Device : xc2vp30

Target Package : ff896

Target Speed : -7

Stepping Level : 0

Mapper Version : virtex2p -- $Revision: 1.26.6.3 $
Mapped Date : Tue Jun 27 11:00:56 2006

Design Summary

40

Number of errors: 0
Number of warnings: 1
Logic Utilization:

Number of 4 input LUTSs: 2 outof 27,392 1%
Logic Distribution:

Number of occupied Slices: 1outof 13,696 1%

Number of Slices containing only related logic: 1 out of 1 100%

Number of Slices containing unrelated logic: 0 out of 1 0%

*See NOTES below for an explanation of the effects of unrelated logic

Total Number 4 input LUTSs: 2 outof 27,392 1%

Number of bonded IOBs: 5outof 556 1%

Number of PPC405s: 0 out of 2 0%

Number of GTs: 0 out of 8 0%

Number of GT10s: 0 out of 0 0%

Total equivalent gate count for design: 12
Additional JTAG gate count for IOBs: 240
Peak Memory Usage: 166 MB

The full_adder_negated.pcf (Physical Constraints FilePhgsical Graffitti - aLed Zeppelin
album title) lists the inputs/outputs and the physical pinds they are associated with. Recall that the
.ucf file originally specified these locations.

ted@acmilan Full_Adder 11:23am >more full_adder_negated.pcf

/ﬂ kkkkkkkkkhkkkkkkhkkkkhkkkhkkkkkkkkkhkkkkkkhkkkkkkhhkkhkkkkkkkkkhkkkkhkkkkkkhkkkk

/I Written by: Map H.38 on Tue Jun 27 11:01:08 2006

/ﬂ kkkkkkkkkhkkkkkkhkkkkhkkkhkkkkkkkkkhkkkkkkhkkkkkkhhkkhkkkkkkkkkhkkkkhkkkkkkhkkkk

SCHEMATIC START;

COMP "carry_out_neg" LOCATE = SITE "AC4" LEVEL 1,
COMP "sum_out_neg" LOCATE = SITE "AC3" LEVEL 1,
COMP "carry_in" LOCATE = SITE "AC11" LEVEL 1;
COMP "inputl" LOCATE = SITE "AD11" LEVEL 1,
COMP "input2" LOCATE = SITE "AF8" LEVEL 1;
SCHEMATIC END;

(9) The next step is to generate a .bit file. This is a special file which is used to program (config-
ure) the FPGA. A .bit file may be downloaded directly to a FPGA board using a special commu-
nications cable (MultiLinx cable), or the .bit file may be used to produce a configuration file
which may be copied onto a Compact Flash card. This tutorial will explain the use of program-
ming the board using the System Ace Compact Flash method.

VERY IMPORTANT! PAY YOUR ATTENTION! READ THIS FIRST !

Prior to generation of the .bit file, JTAG clotRUst be selected as the Startup Clock (see page 3-
3 of Impact User’'s Guide). Failure to specify JTAG CLK as the Startup Clock will result in an
error during the download of the configuration file to the board. See Impact User’s Guide page 5-

41

6:

"NOTE: THE SAME STARTUP CLOCK RESTRICTIONS THAT APPLY FOR CONFIGUR-
ING DEVICES WITH A CABLE ALSO APPLY TO ADDING BITSTREAMS TO THE SYS-
TEM ACE FILES. FOR SYSTEM ACE CF, ONLY BITSTREAMS WITH STARTUP CLOCK
SETTINGS OF BOUNDARY SCAN (JTAG) CLOCK ARE ALLOWED"

To specify JTAG clock as the Startup Clock select:
Generate Programming File

from the Processes for Current Source in the Project Navigator window so that it becomes high-
lighted as shown below:

=

Processes for Saurce: "full_adder ne... |
I ViewEdi Routed Ded
- Analyze Power ((Po
7 Generate Power Dat
3 [Generate Post-Place
3 [Generate Post-Place
3 [Generate IBIS Mode
- [Wt Pass Place & R
i [Back-annotate Pin L

E
E
E
E
E

B

B

e -
la i ¥
B Process View

i

Next, selecProcesdrom the Project Navigator, this will cause a popup menu to appear listing the
following choices:

Run

Rerun
RerunAll
Properties...

SelectProperties...from this list. The Process Properties window will appear as shown in Figure
28. Select th&tartup Options button located at the top left-hand side.

42

Startup Cptions | Readback Options Encryption COptions
General Options | Configuration Cptions
Property Name Value

Hun Desian Bules Checker (DR

Credte Bit File

Create Binary Configuration File
Create ASCI Configuration File

reate IEEE 1532 Confiauration File
Enable BitSiream Combrassion

Enable Debudgding of Serial Mode BiiStres
Enable Cyvelic Bedundancy Checking { CRC

IO OREE

Figure 28: Process Properties window.

Next, select JTAG clock as the FPGA Startup Clock as shown in Figure 29 an@Klick

General Options Configuration Cptions
Startup Options | Readback Options Encryption Options
Property Mame Value
FPGA Start-Up Clock JTAG Clock N
Enable Internal Donge Fipe I
Dane (Dutput Events) Default 747
Enable Sutputs (OpUt Events) Default (51
Belease Write Enable (Output Events) Detault (61
Paloaze ML T (C0dnnt Furantsh Matanlt Fklednraity

Figure 29: Specifying JTAG Clock as the Startup-Clock.

Once this Startup Clock has been specified, double click@merate Programming Fileto gen-
erate the full_adder_negated.bit file. The file size should be similar to:

ted@acmilan Full_Adder 11:30am >Is -al *.bit
-rW------- lted ted 1448824 Jun 27 11:56 full_adder_negated.bit

You may now seledtile -> Save Allfrom the Project Navigator and thERit the application.

43

l1l. Using Xilinx Impact to program a Compact Flash card with a System ACE File

The Xilinx Impact software will now be used to generate a System ACE file which can be copied
to a Compact Flash card. The System ACE file contains all the information needed to program
the FPGA device. It has the added benefit of being non-volatile. The default configuration mode
of the demonstration boards is such that the FPGA configures itself from the Compact Flash card
upon power-up.

(1) Source the /CMC/ENVIRONMENT/xilinx.env file if you have not already done so.
ted@deadflowers Xilinx 3:29pm >source /CMC/ENVIRONMENT/xilinx.env

(2) Change into your Xilinx/Full_adder directory and start the Impact software:

ted@deadflowers Xilinx 2:59pm >cd Full_Adder/
ted@deadflowers Full_Adder 2:59pm >impact &

Select OK in the “The Project Directory / is either not writeable or does not exist. IMPACT has
changed the Project Directory to the current working directory ...” message window if it appears.
(3) In the Impact Project window, select

| want to

* create a new project (.ipf) default.ipf

and Select OK.

v i 4

| want to

¢ load most recent project I J |

[T Load most recent project file when iMPACT starts

& create a new project (.ipf) I Browse... |

oK Cancel |

(4) Select : Prepare a System ACE file and select Next in the Welcome to iIMPACT window.

e (MPACT - Welcome to iMPACT

—Please select an action from the list below

 configure devices using Boundary-Scan (JTAG)

I L]

 Prepare a PROM File

= Prepare a System ACE File

i Prepare a Boundary-Scan File

¢ Configure dewvices

(5) Choose Novice as the Operating Mode and select Next.
(6) Select System ACE CF Size
Size : 128 MBits
and select Next
(7) Specify Collection Name and Location:

Name : Full_Add (give some nice meaningful name)
Location: it will have the path to your Full_Adder directory

44

el iMPACT - System ACE Mame And Location

Name (Max. 8 Characters): [my_add|

’—Specify Collection MName and Location

Location: Ifnfsfhomeftf‘ted}s\’hl OPSYS_ 2000/Xilinx/Full_aAddery Browse... |

= pBack |[mexc= | cancel

(8) Assign Configuration Address And Design Name ...

Select the Configuration Address 0 tick box.

L iMPACT - Systerm ACE Configuration Address And Desil

—Assign Configuration Address and Design Mame (Max. 8 Characters)

Ficenfiguration address o} [revo

Configuration Address 1 I

Configuration Address 2

Configuration Address 3

Configuration Address 5

Configuration Address &

—
r I
- I
I cConfiguration Address 4 |
(o |
(o |
(o |

Configuration Address 7

= Back |[mext=] cancel

Select Next

(9) Select Finish in the System ACE file Generation Summary

45

bl iIMPACT - System ACE File Generation Summary

—You have entered following information:
File Type: Systerm ACE CF file (.ace)

Device Density 128 Mbits

Reserved Space O Mhbits

Total Usable Sp 128 Mbits

Collection Mam my_add

o]
1
2
]
4
5

=1

Click "Finish™ to start adding device files.

= Back I Finish I Cancel I

(10) Select OK in the “Now sart assigning device file to Config Address:0 dialog box.

(11) Select your full_adder_negated.bit file in the Add Device window and select OPEN

Look in: Ia'neftf‘tedr'SYNOPSYS_ZDDDI){iIinfouII_Adder};I L o £
& ..

A Full_add

1 _nge

1__projnawv

L1 _xmsgs

File name: Ifull_adder_negated_bit
File type: IAII Design Files (*.bit *.rbt *.nky *.isc *.bsd} LI Cancel |

y

.

(12) Select OK in the Add Virtex-Il Pro/Virtex4 Obiject file window.

47

—Virtex-1l Pro/Virtex4 File
—Wirtex-ll Pro/Virtex4 Configuration File—

full_adder_negated.bit

g
[

—BMM File

Add... Remove

I

—Power PC Software Files

Add...

(13) Answer No to the “Would you like to add another design file to Config Address:0 ? dialog
box.

(14) Select the ==> Generate File in the bottom left portion of the main Impact Window.

i@ [gl e Operetiees reiow el =12
[IF A Y A -Tr e - 1EE
]

TR Rrm Ty T e
T L i

e TTEYE T P]

o TR S TR SR
e | BF Comdfiguasdinn
1g] SpErarmal

B R Pl P el L

i gy b Cmrmpani Pk
[Cearasce Flash irsgEity LR

L LT
e npsiarmach ||

| BT R

48

(15) Select OK in the ACE file Generation Option

= i

v x

—System Ace CF Active Collection

Total Collection Number: 1

Active Collection: Im'_n,.f_add j

OK I Cancel |

o

The ACE file Generation Successful message will be displayed in the main Impact window. Select
File -> Save Project and then File -> Exit.

(16) Examine the contents of the directory you specified in step 7:
ted@acmilan Full_Add 12:56pm >pwd

Infs/home/t/ted/SYNOPSYS_2000/Xilinx/Full_Adder/Full_Add
ted@acmilan Full_Add 12:56pm >Is -al

total 16

drwx------ 3ted ted 4096 Jun 27 12:26 .
drwx------ 2ted ted 4096 Jun 27 12:26 rev0
-rW------- lted ted 81 Jun 27 12:26 xilinx.sys

ted@acmilan Full_Add 12:56pm >cd rev0
ted@acmilan rev0 12:57pm >Is -al

total 1428

drwx------ 2ted ted 4096 Jun 27 12:26 .
drwx------ 3ted ted 4096 Jun 27 12:26 ..
-FW------- 1 ted ted 1449797 Jun 27 12:26 rev0.ace

The default name of the SystemAce file that Xilinx creates is “rev0.ace”. If you wish, you may
copy it to some other file name such as “full_adder.ace” . This is the file which is to be used to
program the FPGA.

(17) Copy the rev0.ace to the Compact Flash card and plug the card into the board . The board
will configure itself from the compact flash card (ensure that there is only one .ace file stored in
the card). The DONE LED on the development board should light up when the FPGA has been
configured. If there is an error during the programming of the FPGA device, ask your lab instruc-
tor to verify the postion of the DIP switches on the FPGA board.

49

(18) Under Linux, the filesystem for the removable Compact flash card will be automounted
only after the icon representing it on the KDE desktop has been selected:

32M
Removab...

Use the mouse to select this icon (by double clicking) and the filesystem called /media/disk
will be mounted. In addition, a Media window will open:

A - 0 X
Location Edit Miew Go Bookmarks Tools Settings Window Help
4> a0 S Q8 [EEmE
@< Location: [JE[media:/sdbl |'] =

@ Home Folder E

T 313.xlsx

&
£y ® CI8STUFF @

T AdderGeneratorExe m

CIADMS

CIALLEGRO

AaMS

CIANALOGLIB
CIANAL TEST
CIANNUAL_REPORT E

D Aapollo
E1 DY)

f|% &} Home Folder

& count3.ace (1.4 MB) ACE Archive

The df command may be used to verify that the /media/disk filesystem has been mounted:

ted@deadflowers ~ 6:04pm >df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 9920624 3820496 5588060 41% /
/dev/shm 1782792 12 1782780 1% /dev/shm

filer-software:/vol/sw_cmc
1717986944 294931136 1423055808 18% /nfs/sw_cmc

50

filer-users:/vol/users/users_unix

1760285184 958833056 801452128 55% /nfs/home
filer-software:/vol/software/software/encs

742391808 439336384 303055424 60% /nfs/encs

/dev/sdbl 31202 7080 24122 23% /media/disk

One may copy the “rev0.ace” (any other file) to the Compact flash card using the cp command as
in:

ted@deadflowers rev0 6:08pm >cp rev0.ace /media/disk
Use the Is command to veirfy that the file has been copied:

ted@deadflowers rev0 6:08pm >Is -al /media/disk
total 2856

drwxr-xr-x 2 ted root 16384 Jul 21 18:08 .
drwxr-xr-x 4 root root 4096 Jul 21 17:59 ..
-rwxr-xr-x 1 ted root 1449797 Jul 21 18:08 rev0.ace

IMPORTANT: After having copied the System Ace file to to compact flash card, it is necessary
to use the ‘sync’command to flush to file buffer.

ted@deadflowers rev0 6:09pm > sync
After the 'sync’, it is now safe to remove the CF card from the reader to program the FPGA

board. If you don't 'sync’ after writing to the card, the file size on the CF card will be
0 bytes, and there will be a SystemAce Error on the FPGA board.

51

PART IV : Xilinx FPGA Development Board

The Xilinx University Program Virtex-11 Pro development board contains a Virtex-11 Pro
XC2VP30 FPGA device in an FF896 BGA (Ball Grid Array) package. This FPGA device has the
equivalent logic capability of approximately 30 000 000 logic gates. It contains 13 969 slices (a
slice contains a RAM look-up table which is used to implement combinational logic, a slice also
contains dedicated flip-flops for sequential logic implementation), 428 Kb (kilobits) of distributed
RAM, over 2000 Kb of Block RAM, and 136 multipliers (18 bit x 18 bit). Figure 30 is a top view
photo of the XUP Virtex-Il Pro development system.

Thres high current power supplies
witlh Contineaus manitaring

Platform
Power Flash for
connacior . storing
and switch "k FPGA
; config-
uratans
X564,
Video ™ USB2 port
Paort for FPGA
config-
urations
Compact
SATA /‘ flash card
connectors pairt feir
for Gigabit > FPGA
serial VD config and
removable
slorage
10100
Ethernet —j»
MACHRHY == P52
mouse and
1-' keyboard
- ; parl
Slared "k m iU : e R
audio via f N 1 11 gm0 0
ACaT L e FIS.-E‘.ISE
plliots \ i sarial port

High-speed expansion connactor - Buttons, swilchas, Low-spead axpansion connector
compatitla with Dio#ant boards and LEOs camoatihle with Diallant boasds

Figure 30: XUP Virtex-11 Pro development sysl?em

52

User LEDS and Switches

The XUP Virtex-1l Pro development board contains four user-defined LEDs as well as four DIP
switches and five pushbutton switches. Note that none of the switches are debounced. The LEDs
areactive LOW. Table 1 provides the connections between these LEDs and switches and the
FPGA device.

Table 1: User LEDs and Switch Connections

Device FPGA Pin
LED 0 AC4
LED 1 AC3
LED 2 AA6
LED_3 AA5
SW_0 AC11
SW_1 AD11
SW 2 AF8
SW 3 AF9
PB_ENTER| AG5
PB_UP AH4
PB_DOWN | AG3
PB_LEFT AH1
PB_RIGHT | AH2

The 4 DIP switches (SW_0 - SW_3 in Table 1) produlogyiz-0 value when placed in theP

position. The 5 momentary contact pushbutton switches produce a logic-0 when they are pressed
upon, otherwise they produce a logic-1 value. Thus, they are useful for active low reset inputs.
The 4 LEDs (LED_O - LED_3) aractive LOW, this means that the LED will light up when

driven by a logic-0 signal.

Expansion LEDs and DIP Switches

Due to the limited number of available user LEDs and switches on the XUP Virtex-1l board, an
expansion input/output module was added to the develoment board by our ECE technical team.
This expansion module consists of a debounced clock implemented with a 555 timer integrated
circuit, 8 dual inline pin (DIP) switches, and 8 LEDs. Table 2 lists the connections between the
expansion |10 and the FPGA device.

53

Table 2: Expansion IO Connections

Device FPGA Pin
555 timer | T4
output
(clock)

SW_1 N5
SW_2 L4
SW 3 N2
SW_4 R9
SW_5 M3
SW_6 P1
SW_7 P7
SW_8 N3
LED1 P2
LED2 R7
LED3 P4
LED4 T2
LEDS RS
LEDG6 R3
LED7 V1
LEDS8 T6

Note that the expansion module’s LEDs artive LOW. Refer to Figure 31 for the numbering of
the 8 switches, 8 LEDs, and the location of the clock pushbutton switch, as well as the operation
of the DIP switches.

54

clock pushbutton

LED= (ZEPPELIN)

1 2 3 4 56 738

12 3 4 5 6 78

DIP S¥WITCH

E switch In up posttion = legle O
: swhch In down postlon = loglc 1

Figure 31: Expansion 10 module switch and LED locations.
Board Documentation

Complete documentation and schematics for the XUP Virtex-1l Pro development board may be
found in the directory:

/CMC/Xilinx_Boards/XUP_V2PRO_BOARD.

This directory contains Postscript files for HardWare Reference Manual as well as complete sche-
matic diagrams for the board.

55

PART V: Command Line Interface

This section explains how to use the Precision RTL synthesis, Xilinx ISE, and Xilinx Impact soft-
ware tools from the Linux/UNIX command line instead of running the software tools through use
of the various graphical user interfaces (GUIs) provided by the software tools. Itis very useful to
be able to run the tools from the command line for the following reasons:

* ease of use - the same basic steps are performed in the design flow, all that changes is the VHDL
source code and perhaps some .ucf files (Xilinx user constraints file) and perhaps the target FPGA
device. The use of UNIX scripts allows for rapid modification of existing scripts so that a new
design may be implemented without having to redo the entire setup procedure with the various
GUIs.

* scripts execute much faster - this is useful for large designs which may require significant pro-
cessing time to complete.

* scripts may be executed in the background with the UNIX nohup command - long synthesis
compiles may be run on a fast server without requiring any intervention from the user; back-
ground processes continue to execute even if you logout from the system which you initiated them
on.

This section that the user is familiar with basic UNIX shell scripting. If you lack such experience,
refer to any UNIX guide or textbook.

l. Running Precision RTL from the Command Line

Prior to invoking Precision in command line mode, it is necessary to source the
fpga_advantage.env file to setup up the Linux environment. A typical command line to setup the
environment is (make sure you have ssh into a Linux system) :

ted@focus FPGA_ADV 12:17pm > source /CMC/ENVIRONMENT/fpga_advantage_linux.env
The Precision RTL tool can now be invoked in non-GUI mode by using the command
precision -shell

In this mode, you can enter commands in an interactive manner. For example,

ted@brownsugar FPGA_ADV 12:19pm >precision -shell

precision: WARNING: Executing on unsupported platform: SunOS 5.9

precision: Setting MGC_HOME to /nfs/software/cmc/tools/MentorB.4/fa_71/Preci-
sion/Mgc_home ...

/I Precision Synthesis 2005a.69 (Production Release) Fri Jul 15 00:30:14 PDT
2005

I

/I Copyright (c) Mentor Graphics Corporation, 1996-2005, All Rights Reserved.

I Portions copyright 1991-2004 Compuware Corporation

56

I UNPUBLISHED, LICENSED SOFTWARE.

I CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE

I PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS
I

/I Running on SunOS ted@brownsugar.ece.concordia.ca Generic_118558-34 5.9
sun4u

I

/[Start time Thu Mar 8 12:22:27 2007

#

Logging session transcript to file "/nfs/home/t/ted/SYNOPSYS_2000/FPGA_ADV/
precision.log”

Precision{1}:

Precision{1}:

The tool displays some messages then issues the pPoegision{1}:
You may enter Precision RTL commands at this prompt. A very useful commandh&ghe
command:

Precision{2}: help

"activate_impl" -- "activate the specified implementation”

"add_input_file" -- "Adds a file(s) to the input files list"

"add_macro_file" -- "Adds macro(s) file, .mdb, to the macro files list"

"add_placement_file" -- "Adds a physical database, pdb/fdb pair, to the
list of physical databases"

"alias" -- "define alternative command for a (set of) command(s)"
"all_clocks" -- "list all clocks"

"all_inouts" -- "list all the inout bidir ports"

"all_inputs" -- "list all the input ports"

"all_outputs" -- "list all the output ports"

The help command lists all the available commands (only a small portion of the total number of
commands are listed above).

Information concerning a particular command may be obtained helpgcommand_name :

Precision{3}: help add_input_file
"add_input_file" -- "Adds a file(s) to the input files list"
usage : "add_input_file" File name(s) to be added to the list of input files

[-format <string>] -- input format : vhdl|ver-

ilog|edif|syn|lib]tcl|xnf|xdb|sdf. Default will automatically detect the for-

mat.

[-work <string>] -- specify library where design should be stored.
Default = work

[-exclude] -- Exclude this file from the Compile phase.

[-reset] -- Reset the existing list before adding the spec-
ified file(s).

|[-insert_before <integer>]-- Add this file before file number N. If not

set append the file to the end of the list.

|[-insert_after <integer>]-- Add this file after file number N. If not set
append the file to the end of the list.

57

|[-replace] -- Replace existing file in list with these new
settings

[-search_path <list>] -- Set the search path for included files.
[-compile_time <integer>]-- Set the compile timestamp.

A more general approach is to use the command line to specify a Tcl (Tool command language
file) which consists of various commands to be executed. These commands typically set con-
straints and compile and synthesize the design. The following command line is used to specify
which Tcl command file is to be used:

precision -shell -file do_file.tcl
In the above commandp_file.tcl is the name of a text file which contains the following:

This is a comment line

Ted Obuchowicz

Feb. 21, 2007

sample script file

Precision Synthesis interprets the backslash (\)

as a Tcl escape character

so \\ means the command is continued on the next line

new_project -name Test Script -folder \\
Infs/home/t/ted/SYNOPSYS 2000/FPGA_ADV \\
-createimpl_name Test_Script_impl

add_input_file ../Code/3_bit_counter.vhd

setup_design -frequency=100
setup_design -manufacturer Xilinx -family {VIRTEX-II Pro} \\
-part 2VP30ff896 -speed 7

compile
synthesize
save_impl
save_project
exit

The end result of executing th@ecision -shell -file do_file.tcl command

is the generation of the EDIF netlist in the directory specified by the -createimpl_name which in
this example is the directory called Test_Script_impl. If you wish to view the schematic of your
synthesized circuit, you may invoke the GUI version of precision and open the appropriate .psp
file. In this example, it is the Test_Script.psp file.

The next step is to run the Xilinx tools from the Solaris command line to generate the .bit and .ace
files.

58

Il. Running Xilinx ISE from the Command Line

Create a subdirectory in your Xilinx directory which will be used to hold files required as input to
the Xilinx tools and to save any generated output files. For this example, the chosen directory
name was callechy _scr . Copy the .edf file generated during the running of the precision -shell
command into this directory. It will also be necessary to create any .ucf file if you wish to map
input/output ports to specific pins of the FPGA device on the development board. Create a text
file in this directory containing the following lines (save it with an appropriate name such as
counter_3_bit_pretty.scr) :

#!/bin/csh
is the line continuation character

source /CMC/ENVIRONMENT/xilinx.env
ngdbuild -intstyle ise -dd "/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/my_scr/_ngo" \
-uc counter_3_bit.ucf -p xc2vp30-ff896-7 counter_3_bit.edf counter_3_bit.ngd

map -intstyle ise -p xc2vp30-ff896-7 -cm area -pr b -k 4 -c 100 -tx off \
-0 counter_3_bit_map.ncd counter_3_bit.ngd counter_3_bit.pcf

par -w -intstyle ise -ol std -t 1 counter_3_bit_map.ncd counter_3_bit.ncd counter_3_bit.pcf

trce -intstyle ise -e 3 -1 3 -s 7 -xml counter_3_bit.twx counter_3_bit.ncd \
-0 counter_3_bit.twr counter_3_bit.pcf

netgen -intstyle ise -s 7 -pcf counter_3_bit.pcf -rpw 100 -tpw 0\
-ar Structure -xon true -w -ofmt vhdl -sim counter_3_bit.ncd counter_3_bit_gate.vhd

bitgen -intstyle ise -f counter_3_bit.ut counter_3_bit.ncd

Note that in the line:
ngdbuild -intstyle ise -dd "/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/my_scr/_ngo"

you should change the specified path name to reflect your actual path to where you have created
your Xilinx/my_scr directory (instead of /nfs/home/t/ted/SYNOPSYS_2000/).

It is necessary to add execute permission to this file, since it will be run as a Unix shell script.
This is done with the chmod command:

chmod u+x counter_3_bit_pretty.scr

if you perform a UNIX listing of this file, you will now see x in the permission triplet:

59

ted@brownsugar my_scr 12:20pm >Is -al counter_3_hit_pretty.scr
-TWX------ 1 ted ted 833 May 2 11:46 counter_3_bit_pretty.scr

It is also necessary to have a file called counter_3_bit.ut in your directory with the following con-
tents:

-w
-g DebugBitstream:No
-g Binary:no

-g CRC:Enable

-g ConfigRate:4

-g CclkPin:PullUp

-g MOPin:PullUp

-g M1Pin:PullUp

-g M2Pin:PullUp

-g ProgPin:PullUp

-g DonePin:PullUp

-g TckPin:PullUp

-g TdiPin:PullUp

-g TdoPin:PullUp

-g TmsPin:PullUp

-g UnusedPin:PullDown
-g UserID:0OxFFFFFFFF
-g DClUpdateMode:AsRequired
-g StartUpClk:JtagClk
-g DONE_cycle:4

-g GTS_cycle:5

-g GWE_cycle:6

-g LCK_cycle:NoWait
-g Security:None

-g DonePipe:No

-g DriveDone:No

-g Encrypt:No

This file is needed by the bitgen command (its use is explained in a later section).

You may now run the shell script. The tee command is useful for logging the screen output to a
text file which may be reviewed once the script has finished its execution:

ted@brownsugar my_scr 12:21pm >counter_3_bit_pretty.scr | tee script.logfile

The script will start to run and produce messages as it proceeds. Let us know examine the various
commands contained in the script:

60

ngdbuild -intstyle ise -dd "/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/my_scr/_ngo" \
-uc counter_3_bit.ucf -p xc2vp30-ff896-7 counter_3_bit.edf counter_3_bit.ngd

The ngdbuild command translates and merges the various source files of a design into a single
"NGD" design database, this is a binary format used by the Xilinx tools. The various command
line options are:

-dd output_dir: Directory to place intermediate .ngo files

-intstyle ise|xflow|silent: Indicate contextual information when invoking Xilinx
applications

-uc ucf _file: Use specified "User Constraint File".

-p partname: Use specified part type to implement the design

The two input files to ngdbuild are theunter_3_bit.ucf and the

counter_3_bit.edf file produced by precision. The end result of executing ngdbuild is the

output file counter_3_bit.ngd.
The map command:

map -intstyle ise -p xc2vp30-ff896-7 -cm area -pr b -k 4 -c 100 -tx off \
-0 counter_3_bit_map.ncd counter_3_bit.ngd counter_3_bit.pcf

is used to “map the logic gates of the user’s design (previously written to an NGD

file by NGDBUILD) into the CLBs and I0Bs of the physical device, and writes out

this physical design to an NCD file”. The input to the map command is the counter_3_bit.ngd file
and the outputs produced are the counter_3_bit_map.ncd and counter_3_bit.pcf.

The par command:

par -w -intstyle ise -ol std -t 1 counter_3_bit_map.ncd counter_3_bit.ncd counter_3_bit.pcf

is used to “places and route a design’s logic components (mapped physical logic cells) contained
within a NCD file based on the layout and timing requirements specified within the Physical Con-
straints File (PCF)”. The input files are counter_3_bit.ncd and counter_3_bit.pcf, the output file
produced by map is the counter_3_bit_map.ncd. The command line options are:

-w = Overwrite. Allows overwrite of an existing file

-ol = Overall effort level. high is maximum effort, Default: std (standard)

-t = Placer cost table entry. Start at this entry., Default: 1.

61

The trce command is used to “Creates a Timing Report file (TWR) derived from static timing
analysis of the Physical Design file (NCD). The analysis is typically based on constraints included
in the optional Physical Constraints file (PCF):

trce -intstyle ise -e 3 -1 3 -s 7 -xml counter_3_bit.twx counter_3_bit.ncd \
-0 counter_3_bit.twr counter_3_bit.pcf

The two input files to trce are counter_3_bit.ncd and counter_3_bit.pcf. The outputs are specified
with the -xml and -o options:

-0 <report[.twr]> ... optional report output file (default design.twr)
-xml <xmlfile> ... optional XML report output file (can be any extension;
default is .twx)

The netgen command is used to create the gate-level VHDL simulation file:

netgen -intstyle ise -s 7 -pcf counter_3_bit.pcf -rpw 100 -tpw 0\
-ar Structure -xon true -w -ofmt vhdl -sim counter_3_bit.ncd counter_3_bit_gate.vhd

The command “extracts design data from NCD, NGA, NGC, NGD or NGO input file and gener-
ates a VHDL netlist compatible with supported simulation tool.” The use of gate-level simulation
is exlained in another section.

The last command bitgen is used to “create the configuration (BIT) file based on the contents of a
physical implementation file (NCD). The BIT file defines the behavior of the programmed
FPGA. :

bitgen -intstyle ise -f counter_3_bit.ut counter_3_bit.ncd

The -f option is used to specify a command file which is used by the bitgen command. This com-
mand file specifies the use of the JtagClk as the StartUp Clock. It is necessary that you have
a file called counter_3_bit.ut in your directory containing the following:

-wW
-g DebugBitstream:No
-g Binary:no

-g CRC:Enable

-g ConfigRate:4

-g CclkPin:PullUp

-g MOPin:PullUp

-g M1Pin:PullUp

-g M2Pin:PullUp

-g ProgPin:PullUp

62

-g DonePin:PullUp

-g TckPin:PullUp

-g TdiPin:PullUp

-g TdoPin:PullUp

-g TmsPin:PullUp

-g UnusedPin:PullDown
-g UserID:0OxFFFFFFFF
-g DClUpdateMode:AsRequired
-g StartUpClk:JtagCIlk
-g DONE_cycle:4

-g GTS cycle:5

-g GWE_cycle:6

-g LCK_cycle:NoWait
-g Security:None

-g DonePipe:No

-g DriveDone:No

-g Encrypt:No

[ll. Running the Xilinx Impact tool from the Command Line:
The command to run the Xilinx Impact tool to generate the SystemAce .ace file is:

impact -batch impact.batch_file

Make sure that you have source the xilinx.env file prior to entering this on the command line.
The impact.batch_file is a text file containing a list of commands to the impact program. This file
is exactly the same as thempact.cmd file created when running the Impact program in the
GUI mode. You may simply edit this file to change the relevant paths to the input .bit file and
other files. The contents of the impact.batch_file used in this example is:

setPreference -pref UserLevel:NOVICE
setPreference -pref MessagelLevel:DETAILED
setPreference -pref ConcurrentMode:FALSE
setPreference -pref UseHighz:FALSE
setPreference -pref ConfigOnFailure:STOP
setPreference -pref StartupCLock:AUTO_CORRECTION
setPreference -pref AutoSignature:FALSE
setPreference -pref KeepSVF:FALSE
setPreference -pref svfUseTime:FALSE
setPreference -pref UserLevel:NOVICE
setPreference -pref MessagelLevel:DETAILED
setPreference -pref ConcurrentMode:FALSE
setPreference -pref UseHighz:FALSE
setPreference -pref ConfigOnFailure:STOP

63

setPreference -pref StartupCLock:AUTO_CORRECTION
setPreference -pref AutoSignature:FALSE

setPreference -pref KeepSVF:FALSE

setPreference -pref svfUseTime:FALSE

setMode -cf

setMode -cf

setAttribute -configdevice -attr path -value "/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/
my_scr"

setMode -cf

setAttribute -configdevice -attr size -value "134217728"
setAttribute -configdevice -attr reseveSize -value "0"
setAttribute -configdevice -attr name -value "XCCACE128-1"
addCollection -name "imp_scri"

addDesign -version 0 -name "rev0"

addDeviceChain -index 0

setCurrentDesign -version O

addDevice -position 1 -file "/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/my_scr/
counter_3_bit.bit"

setAttribute -configdevice -attr path -value "/nfs/home/t/ted/SYNOPSYS_2000/Xilinx/
my_scr"

setMode -cf

generate -active imp_scri

setMode -pff

setMode -sm

setMode -cf

setMode -cf

setMode -pff

setMode -sm

setMode -cf

setMode -bs

setMode -ss

setMode -sm

setMode -bsfile

setMode -dtconfig

setMode -cf

setMode -mpm

setMode -pff

setMode -cf

setMode -cf

quit

File names which need to be modified are indicated in bold font. The .ace file is created and saved
in the imp_scr/rev0 directory (or whichever directory is specified by the addCollection -name "
command contained in the file).

REFERENCES
1. Modelsim SE Reference Manual, v6.6d, p. 306.
2. Precision RTL Synthesis User’'s Manual, Mentor Graphics, p. 1-1.

3. http://www.digilentinc.com

64

APPENDIX 1: SWITCH AND LED OPERATION

XUP VIRTEX-Il PRO BOARD DIP SWITHES AND LEDs

VGG 3.3V

DIP switeh in UP position
produces alogic-'0" value. 130 OHM

e
D/H J B DOWN
3&2 1 0

DIP switch in DOWN position
produces a logic-"1" value. 4 ACTIVE LOW LEDs

AR AN

LED3 LED2 LED1 LEDo

EXPANSION 10 BOARD SWITCHES AND LEDs (ZEPPELIN}

DIP switeh in UP position
produces alogic-'0" value. 8 ACTIVE-LOW LEDs.

o (P00 FENNENEE

J

DIP switch in DOWN position
produces alogic-"1".

65

	Table 1: User LEDs and Switch Connections
	Table 2: Expansion IO Connections

