
Template-Based Embedded
Reconfigurable Computing

Katarzyna Leijten-Nowak

The front cover: Artist impression of a schematic diagram of a logic tile
transforming into a layout of an embedded FPGA chip. The logic tile is part of
the embedded FPGA architecture template proposed in this thesis. The embedded
FPGA chip was designed in accordance with this template.
The back cover: Subsequent steps of the template-based design methodology: the
high-level specification of the embedded FPGA core, the schematic of the core,
the VLSI layout of the core, the fabricated embedded FPGA chip.

Template-Based Embedded
Reconfigurable Computing

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen
op vrijdag 9 juli 2004 om 16.00 uur

door

Katarzyna Leijten-Nowak

geboren te Wrocław, Polen

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J.L. van Meerbergen
en
prof.dr.ir. R.H.J.M. Otten

Copromotor:

prof.dr.ir. P.R. Groeneveld

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Leijten-Nowak, Katarzyna

Template-based embedded reconfigurable computing / by Katarzyna Leijten-
Nowak. - Eindhoven : Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-1583-3
NUR 959
Trefw.: programmeerbare logische schakelingen / logische schakelingen ;
ontwerp / ingebedde systemen / grote geintegreerde schakelingen ; CAD /
CMOS-schakelingen.
Subject headings: programmable logic arrays / logic design / system-on-chip /
reconfigurable architectures / CMOS logic circuits.

The work described in this thesis has been carried out at the Philips Research Laboratories
in Eindhoven, The Netherlands, as part of the Philips Research programme.

c© Philips Electronics N.V. 2004
All rights reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

in loving memory of my mother

We shall not cease from exploration
And at the end of all our exploring
Will be to arrive where we started

And know the place for the first time.
T.S. Elliot

PREFACE

This Ph.D. thesis completes the research I was conducting in the period February
1999–April 2003 in the Embedded Systems Architectures on Silicon Group at
Philips Research Laboratories in Eindhoven, The Netherlands. My research was
done as part of the ARCADE (Applications of ReConfigurable Computing Archi-
tectures in Dsp Environment) cluster project, I happened to be the only member of.

I am extremely happy for having received the opportunity to pursue a Ph.D., and
maybe even more happy for having it done in the industrial environment. Though,
as a Ph.D. student I was not exposed to all industrial problems, I always enjoyed
observing trends and the impact they have on our environment. This always puts
research objectives in perspective.

I owe thanks to many more people than the limited space on these pages allow me
to mention. Still, I would like to thank a few of them especially.

Foremost, I would like to direct my special thanks to Jef van Meerbergen for
helping me to understand what research really is about, for his involvement in my
work and for support every time I asked for it. I also would like to thank prof.
Ralph Otten for his valuable comments on my work and for helping me to shape
this thesis to what it has become today. Finally, I want to thank prof. Jochen Jess
for encouraging me to aim for a Ph.D. in his group and for his interest in my work.

There are two more people I am especially grateful to. First, I want to thank
Harry Veendrick for teaching me the secrets of correct-by-construction digital
design and for our cooperation which, to a large degree, impacted my research.
Second, I want to thank Bernardo Kastrup for making me believe in reconfigurable
computing.

I thank Atul Katoch for his help in designing the ARCADE eFPGA chip during
the long evenings of winter 2001, and Peter Poplavko, Alexander Danilin, Peter
van de Haar and Frank Linssen for helping to customise the eFPGA mapping flow.

IX

I thank my group leaders at Philips Research (in chronological order): Engel
Roza, Rob Woudsma, Albert van der Werf and Ad ten Berg for supporting my
research. Also, I thank the members of the research groups, I was and still am a
member of, at Philips and at the Eindhoven University of Technology.

Finally, I would like to thank my family for the understanding of my wish of
pursuing a scientific ‘career’ and for their great support and encouragement. I owe
special thanks to my mother for her belief that I would once reach this stage. I
wish she could know she was right. I dedicate this thesis to her.

I also thank my parents-in-law for meaning to me much more than I ever expected
and for making me feel in the Netherlands as in my home country.

Last, but definitely not least, I want to thank my husband, Jeroen, for his true love,
support, understanding...and for his patience through so many years. Yes, it is time
to pursue different types of challenges now...

Hulsel, May 2004 Kasia Leijten.

X

Contents

Preface IX

1 Introduction 1
1.1 Trends in IC technology and applications 2

1.1.1 Technology scaling . 2
1.1.2 System-on-a-chip . 3
1.1.3 Ambient computing . 3
1.1.4 Embedded systems on silicon 3

1.2 Design challenges . 4
1.2.1 Silicon economics . 4
1.2.2 Design productivity gap 5
1.2.3 Time-to-market versus time-in-market 6
1.2.4 Computational efficiency gap 6

1.3 SoC architecture . 8
1.3.1 Implementation trade-offs 8
1.3.2 Heterogenous SoC . 8
1.3.3 Platform-based design 9

1.4 Embedded reconfigurable computing 10
1.4.1 Reconfigurable computing up close 10
1.4.2 Focus and motivation . 14
1.4.3 State-of-the-art . 17
1.4.4 Key challenges . 18

1.5 Problem statement . 19
1.6 This thesis . 20

1.6.1 Towards a solution approach 20
1.6.2 Main contributions . 20
1.6.3 Organisation of the thesis 21

2 Application domain specialisation 23
2.1 Field Programmable Gate Arrays 23

2.1.1 An evolving FPGA . 23
2.1.2 Architectural trade-offs in FPGAs 28

XI

2.1.3 Quantifying the cost . 29
2.2 The concept of application domain specialisation 30
2.3 Application domain characterisation 34

2.3.1 Type of processing . 34
2.3.2 Word-size . 41
2.3.3 Rent exponent . 42

2.4 Design flow . 44
2.5 Classification of reconfigurable logic architectures 46

2.5.1 Data-path-oriented architectures 46
2.5.2 Random-logic-oriented architectures 46
2.5.3 Memory-oriented architectures 47

2.6 Conclusions . 48

3 Basic concepts 49
3.1 Generic properties . 49

3.1.1 Background . 49
3.1.2 Inversion-based folding type I 52
3.1.3 Inversion-based folding type II 54

3.2 Cost metrics . 58
3.2.1 Architectural concepts 58
3.2.2 Mapping cost . 59
3.2.3 Implementation-based cost metrics 60
3.2.4 Model-based cost metrics 61

3.3 Conclusions . 64

4 Data-path-oriented reconfigurable architecture 67
4.1 Introduction . 67

4.1.1 Characteristics of the application domain 67
4.1.2 State-of-the-art . 68

4.2 Applying the inversion-based folding type I 69
4.3 Logic element . 70
4.4 Logic block . 71

4.4.1 Basic concept . 72
4.4.2 Structure in detail . 72

4.5 Functional modes . 76
4.5.1 Data-path mode . 77
4.5.2 Random logic mode . 79

4.6 Interconnect . 79
4.6.1 Optimisation of the interconnect architecture 80
4.6.2 Complete interconnect architecture 82

4.7 Modified data-path-oriented reconfigurable architecture 84
4.7.1 Basic concept . 84
4.7.2 Logic block . 85
4.7.3 Functional modes . 87

XII

4.7.4 Interconnect . 87
4.8 Benchmarking . 88

4.8.1 Benchmarking using the implementation-based cost metrics 88
4.8.2 Benchmarking using the model-based cost metrics 93
4.8.3 Discussion . 95

4.9 Conclusions . 98

5 Random-logic-oriented reconfigurable architecture 99
5.1 Introduction . 99

5.1.1 Characteristics of the application domain 99
5.1.2 State-of-the-art . 99

5.2 Logic element . 100
5.3 Logic block . 101

5.3.1 Basic concept . 101
5.3.2 Structure in detail . 101

5.4 Functional modes . 104
5.4.1 Random logic mode . 104
5.4.2 Arithmetic mode . 105

5.5 Interconnect . 105
5.6 Benchmarking . 107

5.6.1 Benchmarking using the model-based cost metrics 107
5.6.2 Discussion . 107

5.7 Conclusions . 110

6 Memory-oriented reconfigurable architecture 111
6.1 Introduction . 111

6.1.1 Characteristics of the application domain 111
6.1.2 State-of-the-art . 112

6.2 Applying the inversion-based folding type II 114
6.3 Logic element . 116
6.4 Logic block . 119

6.4.1 Basic concept . 119
6.4.2 Structure in detail . 119

6.5 Functional modes . 123
6.5.1 Data-path mode . 123
6.5.2 Random logic mode . 130
6.5.3 Memory mode . 131

6.6 Configuration architecture . 137
6.7 Interconnect . 139
6.8 Benchmarking . 140

6.8.1 Benchmarking using the model-based cost metrics 140
6.8.2 Discussion . 144

6.9 Conclusions . 145

XIII

7 Template-based methodology for reconfigurable logic design 147
7.1 The concept . 147
7.2 The reconfigurable logic architecture template 149

7.2.1 Level I – Logic element 150
7.2.2 Level II – Processing element 151
7.2.3 Level III – Logic block 153
7.2.4 Level IV – Tiles . 157
7.2.5 Level V – Array . 166

7.3 Architecture modelling examples 167
7.3.1 Template instances . 168
7.3.2 Discussion . 171

7.4 Template-based design . 172
7.4.1 Architecture exploration 172
7.4.2 Physical design . 172
7.4.3 Application mapping . 173

7.5 Conclusions . 175

8 Case study: memory-oriented eFPGA core 177
8.1 VLSI implementation aspects . 177

8.1.1 Memory design . 177
8.1.2 Programmable interconnect design 181

8.2 Prototype chip . 183
8.3 Cost comparison . 187
8.4 Conclusions . 188

9 Conclusions 189

Bibliography 202

Personal contribution 203

Summary 207

Samenvatting 209

Curriculum Vitae 211

XIV

Chapter 1

INTRODUCTION

We are witnessing today the third phase of computing. To clearly differentiate
from the mainframe-oriented and PC-oriented computing of the first two phases,
the computing of the third phase is often defined as thepost-PCor ‘post.com’
computing[35]. The post-PC computing, featuring applications such as ubiqui-
tous communication and ambient intelligence, has been made possible thanks to
advances in integrated circuit (IC) technology within the last few decades. During
this time, a positive-feedback-like dependence between computing systems and
semiconductor technology has appeared [88]. The ever-continuing CMOS scaling
allows the number of transistors per unit area to be doubled every process gener-
ation [56]. At the same time, the increased transistor density enables designing
more complex yet more demanding systems which, in turn, challenge silicon tech-
nology.

The continuous demand for performance and bandwidth has been, and still is, the
main driving force behind such technological evolution [28]. However, while sil-
icon area has been the predominant cost function of computing up till now, today
power consumption is becoming the main limiting factor [28]. This is because
power dissipated in integrated circuits increases with the increase of the IC com-
plexity (the increase of the total switching capacitance), an operating frequency
[108] and a bit-rate [83]. Furthermore, a low cost and a small form factor are the
key requirements for ICs targeting ubiquitous terminals and ambient devices. Ac-
cording to today’s predictions, within a five year scale the price for a 2 mm2 IC for
this type of applications (excluding the battery and package costs) will be about
20 dollar cents [16]. To reach such a cost level, inexpensive chip packages and
miniature smart batteries as the main power source will have to be used. Unfortu-
nately, standard chip packages have strictly limited power dissipation capabilities
today and the battery life-time is measured in months rather than years.

As the complexity of modern IC increases, so do their design and manufacturing
costs. The non-recurring engineering costs (NRE) are the subject of a particularly
dramatic growth. For example, the cost of the mask set for a single chip exceeds
half a million dollars today [124]. This puts an additional constraint on the design
of cost-sensitive consumer electronics products. At the same time, the market-

2 Introduction

dependent economy enforces very short product design cycles and the frequent
change of the product features. In consequence, intrinsic flexibility as a means of
reducing design and production costs, but also as a way of extending the product
life-time, is of key importance today [39, 62, 88, 20]. We defineflexibility as a ca-
pability of an electronic device to change its function after the device is fabricated.
We also use the term ‘efficiency’ to describe the degree to which an electronic
device uses its resources to realise its function [59].

In the light of the above-presented facts, finding a balanced trade-off between flex-
ibility and efficiency in computing systems, and in particular in embedded sys-
tems on silicon, is crucial today. The mature semiconductor technology and rich
computing ‘know-how’ open new possibilities of successfully bridging the cost-
efficiency gap induced by traditional design approaches. In this thesis, we focus
on one of such promising paradigms, namelyreconfigurable computing, and apply
it to the design of embedded systems on silicon.

1.1 Trends in IC technology and applications

The technology, on the one hand, and applications, on the second hand, define the
context. In this section, we survey current trends that can be observed in the IC
technology and its applications.

1.1.1 Technology scaling

The idea ofscalinghas been the primary enabler of an exponential growth in semi-
conductor technology. The scaling principles [40, 10] describe the pace, expressed
in a scaling factorα, at which geometrical parameters of MOS devices, intercon-
nect wires and the supply voltage value scale when moving to smaller process
technologies. The actual scaling trend observed throughout the years follows Gor-
don Moore’s predictions from 1975 [74] (the so-calledMoore’s law). The scaling
factor α = 0.7 is assumed today to characterise this trend. Assuming the fixed
complexity of an IC, the scaling translates into the following effects [108] that
accompany each new process generation (about every 18 months [57]):

• the reduction in the silicon area by a factor of 2 (α2),

• the increase of the chip performance by roughly a factor of 1.5 (α−1),

• the reduction of power consumption by a factor of 2 (α2).

The key benefit of the scaling phenomenon is thus the reduction of cost and in-
crease in performance.

1.1 Trends in IC technology and applications 3

1.1.2 System-on-a-chip

The dramatically progressing silicon scaling has enabledultra-large scale integra-
tion. As a result, various system components, such as memories, logic, RF mod-
ules and sensors, which were traditionally integrated on a printed circuit board
(PCB), could be integrated on a single chip using silicon as an implementation
medium. To express this level of integration, the term‘system-on-a-chip’ (SoC)
has been introduced.

The SoC market has experienced a steady and consistent growth over the last few
years. One estimates that today 50% of all ASICs are produced based on the SoC
concept, and this percentage is expected to grow to 80% in 2005 [89]. This can be
explained by the advantages of SoCs, such as a greater integration of components,
an increased speed of the communication between the system components, lower
packaging and test costs, and improved reliability of a system.

1.1.3 Ambient computing

One of the major consequences of the ultra-large scale integration is a clear change
in the use of computing. Unlike the first twogeneral-purpose computingphases,
the third phase features computing which is seemingly hidden in the background
and thus almost invisible to a user (‘People to the foreground, technology to the
background’). This type of computing is referred to as‘ambient computing’. Its
main characteristics are: an embedded context, awareness of the environment,
personalisation, and an adaptive and anticipatory character [27].

The ambient computing devices are distributed in the human environment (e.g.
home and work) to maximise human efficiency and improve well being. The use
of ubiquitous communication networks to connect such devices will be essential
in the near future [84].

Ambient computing is considered as a possible future of consumer electronics that
can stimulate the market growth [16]. Already today, simple electronic devices
with an ambient-like character are being made. Moreover, many institutes all over
the world fund research projects aiming at the investigation of new technologies
for ambient computing. It has been declared that about four billion dollars will be
spent on such activities over the next several years [27].

1.1.4 Embedded systems on silicon

The emerging applications, and ambient computing applications in particular, are
realised in the form of embedded systems. Anembedded systemis a system de-
signed to perform a dedicated or a narrow range of functions as a part of a larger
system, usually with a minimal end-user interaction. Because of the tight cost
constraints (in terms of size, power, performance, unit price, time-to-market, etc.),

4 Introduction

today’s embedded systems heavily exploit the system-on-a-chip design concept al-
lowing all system components to be integrated on a single piece of silicon. There-
fore, in this thesis we will restrict ourselves to embedded systems implemented as
systems-on-a-chip.

Unlike other, general-purpose computing systems, embedded systems are
application-domain-specific. Furthermore, their behaviour is defined by the
interaction with the environment [46]. Due to real-time constrains imposed by
the environment, signal processing, which deals with a transformation of signals
from the environment (mostly in a digital way), plays an essential role. Therefore,
embedded applications impose very high requirements on the overall system
performance. For example, the computational load of an ambient intelligence
system ranges from 10 MOPS (Mega-Operations-Per-Second) for lightweight
audio processing to 1 TOPS (Tera-Operations-Per-Second) for synthetic video
generation [16].

1.2 Design challenges

A design is a result of the search for a satisfactory match between a target appli-
cation and an available technology. However, the design is, to a large extent, also
constrained by economic and other factors [20]. To explain this, we describe the
main challenges IC designers face today.

1.2.1 Silicon economics

The cost aspect has always been the main consideration in SoC design [56]. To-
day, the exploding complexity of process technology has reached the point where
design and chip fabrication costs impose stronger limitations on the performance
and function of produced systems-on-a-chip than physics itself [12, 45] (see Fig-
ure 1.1). The NRE (Non-Recurring Engineering) costs related to each design, and
mask set costs in particular, are of especially great concern [112]. The cost of a
complete photo-mask set in a state-of-the-art 0.13µm process is about 0.75 million
dollars today. Due to the continuously raising complexity of sub-length lithogra-
phy [20], which will be even more significant in nanometre process technologies,
this cost will reach a level of almost two million dollars in two process generations
from now (that is, for the 65 nm technology node) [124]. This trend is accompa-
nied by sky-rocketing chip fab costs. A basic plant for 0.18µm production costed
four billion dollars ($4 billion) and, according to what is known as Rock’s law, the
cost of equipment to produce ICs will be doubling every four years [58].

Already today such quickly rising costs have a strong impact on the chip produc-
tion, especially for low-volume markets. A much higher volume or a much higher
cost per unit are required to amortise the expenses. It is predicted that this trend

1.2 Design challenges 5

will lead eventually to a considerable decrease in the overall number of chip de-
signs (see Figure 1.2) since only a very few companies will be able to afford them.

(a) (b)

Figure 1.1. The increasing IC costs: (a) a mask set costs increase (Source: Zuchowski et
al., ICCAD 2002 [124]), (b) a fabs costs increase (Source: Kellog TechVen-
ture, 2001).

Finally, there is an increasing effect of logistic costs. Such costs are associated
with managing a large variety of different products or product families, marketing,
management, supply chains, etc.

Figure 1.2. The predicted decrease in the number of chip designs (Source: Gartner
Dataquest, November 2001).

1.2.2 Design productivity gap

The shift towards more and more advanced process technologies is accompanied
not only by the design cost increase but also by a dramatic increase of the design
complexity. Firstly, the complexity of components being designed, and conse-
quently the system complexity (in terms of the number of transistors and com-
plexity of embedded software) are growing exponentially [56]. Secondly, due to

6 Introduction

more devices available on the same die, but predominantly due to deep-submicron
effects [108], the technology in which it is being designed is becoming more com-
plex. Finally, the tools that are used to design today’s systems are becoming more
and more sophisticated in their usability and are characterised by increased run-
times. For example, the verification phase of a design process allocates today more
than 50% of the total human and computer resources [56].

Figure 1.3. The design productivity gap being a result of a disproportion between the com-
plexity of silicon and the design complexity which can be handle (Source:
ITRS 1999 [56]).

Figure 1.3 illustrates a big gap between design complexity and design productivity
which is a direct consequence of the above-mentioned trends. The complexity of
designs which can be realised in a state-of-the-art technology grows 58% per year,
while the designer’s productivity grows at a pace of only 21% per year.

1.2.3 Time-to-market versus time-in-market

The increasing complexity of integrated circuits has led to a considerable increase
of the design time that is needed before the release of a new generation of prod-
ucts. This time is often referred to as‘time-to-market’. At the same time, the
constant availability of more and more sophisticated devices on the market has
increased the customers’ expectations towards the functionality and the frequency
of appearance of new products. This caused a steady reduction of the product life-
time, which is often called‘time-in-market’, resulting eventually in a collision of
both, as illustrated in Figure 1.4.

It is not uncommon today that for certain classes of products the time-to-market ex-
ceeds the time-in-market. The unpredictable behaviour and the competitive char-
acter of the market imply that only economically-healthy companies, which offer
products with a clear advantage over the competitors, can survive.

1.2.4 Computational efficiency gap

Because of the key importance of the low-power capabilities, modern ICs are de-
signed for the largestcomputational efficiencyexpressed in MOPS per Watt, that

1.2 Design challenges 7

0

1

70s 80s 90s 00s

2

3

4

5

Y
ea

rs

Decades

Time−in−market

Time−to−market

Figure 1.4. The collision of the product life-time (time-in-market) and the product devel-
opment time (time-to-market) (Source: Lautzenheiser & Wersall, November
1999 [66]).

is Mega(million)-Operations-Per-Second-per Watt, rather than for a highest per-
formance only. In Figure 1.5, a comparison between intrinsic computational ef-
ficiency of silicon (ICE) and computational efficiency of programmable proces-
sors projected onto different technology nodes is shown [88]. The comparison is
based on the hypothetical assumption that a full match between the application and
the architecture, and thus the maximum performance in operations-per-second, is
achieved. A 32-bit addition is used as a basic benchmark function.

Figure 1.5. Computational efficiency of silicon and programmable processors versus tech-
nology (Source: Roza, December 2001 [88]).

It is apparent from the figure that there is a two-to-three order of magnitudegapbe-
tween the available (silicon) and achievable (processors) computational efficiency.
The gap represents a mismatch between pure-hardware and pure-software imple-
mentations that are typical for ASICs and programmable processors, respectively.

8 Introduction

1.3 SoC architecture

The realisation of a given computing task (application) involves various trade-offs.
The decisions that are made by a designer based on the essential design criteria
determine the effectiveness and cost-efficiency of the final IC [59]. In the system-
on-a-chip design, different, more complex, design metrics and design constraints
are used than in traditional hardware or software implementations. In this section
we focus on the trade-offs that are typical for the implementation phase of the
design process and we discuss their implications on the SoC architecture.

1.3.1 Implementation trade-offs

The large disproportion in the computational efficiency of ASICs and pro-
grammable processors, which has been shown in Figure 1.5, suggests that there
exists a spectrum of possible implementation scenarios that can be deployed to
meet the requiredflexibility versus cost trade-off. For example, computational ef-
ficency of programmable processors can be increased if processors are optimised
towards a target application domain. The potential implementation options, in the
order of their increasing cost-efficiency, include then (but are not limited to):

• CPUs (Central Processing Units)– general-purpose processing units which
are characterised by a sequential type of processing and a simple instruction
set. CPUs are used typically for control tasks or for handling events that
determine the mode or the configuration of the system.

• DSPs (Digital Signal Processors)- processors which are optimised for pro-
cessing digital signals. DSPs include dedicated hardware components and
exploit instruction level parallelism. They are typically used for the appli-
cations requiring a medium throughput and the sampling frequencies in the
range of kHz (e.g. audio, speech).

• ASIPs (Application-Specific Instruction-set Processors)– domain-specific
processors which are characterised by a well-defined intruction set that is
tuned to the execution of critical parts of the application code. ASIPs target
high-throughput processing with the sampling frequencies in the range of
MHz (e.g. video).

The above-described implementation approaches are compared in Figure 1.6 [81].
Each implementation type is characterised by its computational efficiency (in
MOPS/mW) and by its flexibility which is regarded here as the range of appli-
cations the implementation can cover.

1.3.2 Heterogenous SoC

Despite a large spectrum of possible implementation approaches, none of the pre-
sented scenarios fully meets requirements of today’s applications. This is because

1.3 SoC architecture 9

0.1

1.0

10

100

1000

Flexibility (Coverage)

ASICs

CPUs (embedded)

ASIPs
DSPs[M

O
PS

/m
W

]
C

om
pu

ta
tio

na
l e

ff
ic

ie
nc

y

Figure 1.6. Spectrum of implementation approaches with their cost-efficiency. The cost-
efficiency is determined by computational efficiency and flexibility.

a homogenous type of architecture is not suited to efficiently deal with numerous
computational models and various data and time granularity that such applications
require [81]. Therefore, a today’s system-on-a-chip is heterogeneous and contains
components such as: general-purpose processor cores, DSP cores, ASIP cores,
coprocessors, peripherals, buses and network protocols, as well as memories. The
size of a typical IC and the area of a single processor core, which in nanometre
process technologies usually does not exceed 1-2mm2, suggest that a complex
SoC may contain between 50 to 100 such cores.

1.3.3 Platform-based design

To guarantee the required level of computational efficiency while avoiding a dis-
proportionate design effort due to the growing complexity and diversity of designs,
the concept of system platform has been introduced [44, 62, 20]. Thesystem plat-
form is defined as a family of hardware and software modules, configured in a
prescribed communication structure, that can be shared across multiple applica-
tions from a target application domain, and to which a unified design process can
be applied. We refer to the hardware component of a system platform as asilicon
system platform[28, 88]. Typically, the architecture of a silicon system platform is
described by a means of a generic model calledtemplate. The template instantia-
tion means in this context a process of the creation of application-domain-specific
designs. The designs differ only in the number and kinds of modules integrated
together. By the integration of programmable cores, which are preferred from the
flexibility point of view (i.e. software mapping), and dedicated coprocessor cores
that implement specialised functions, a desired trade-off between flexibility and
cost can be achieved. A typical example of a silicon system platform is depicted
in Figure 1.7.

10 Introduction

I/O Off−chip
memories

cores memories
On−chip

PeripheralsProgram.
cores

Co−process.

Silicon System Platform

Buses and protocol networks

Figure 1.7. The architecture of a typical silicon system platform.

1.4 Embedded reconfigurable computing

Although the concept of the system platform represents a significant step towards
designing cost-efficient embedded systems-on-a-chip, it is not the ultimate so-
lution [48]. The system platforms reduce the complexity of the design process
through the extensivereuseof hardware and software components, providing thus
a faster time-to-market. The same reduction in the design complexity is obtained,
however, at the price of reduced flexibility (silicon platforms with dedicated hard-
wired co-processors can cover only a specific range of applications) and reduced
performance (the need for flexibility favours the use of computationally less ef-
ficient programmable cores). Finally, the realisation of a specific instance of a
silicon platform is always associated with the fabrication of a new chip. This takes
time and money.

These problems can be resolved if thereconfigurable computing (RC)paradigm
is applied to the design of embedded systems. To differentiate from reconfig-
urable computing in a traditional sense, that is, concerning stand-alone devices
(such as FPGAs; see below), we will refer to reconfigurable computing in the
embedded context asembedded reconfigurable computing (eRC). In this section,
we explain what reconfigurable computing is, we motivate its importance for em-
bedded systems-on-a-chip, and we survey state-of-the-art systems employing eRC
paradigm. Finally, we discuss the key challenges in the design of embedded RC
hardware.

1.4.1 Reconfigurable computing up close

Reconfigurable computingis a method of performing computations using reconfig-
urable computing devices [37]. Because programmable and reconfigurable com-
puting architectures can be viewed as two extremes in the unified design space
[37], a clear definition of a reconfigurable computing device is difficult. Neverthe-
less, throughout this thesis we assume that areconfigurable computing deviceis
characterised by aconfiguration, which defines the device functionality and can-

1.4 Embedded reconfigurable computing 11

not be changed from cycle to cycle, and byflexible interconnectthat determines
the data-flow between operations [37].

M
M
M

M
M
M
M

M

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

M

Logic block

Switch block
Switch

Programmable interconnect

Configuration memory bit

3−input Look−up Table (3−LUT)

Logic tile I/O block

�	
�

�
 ��

��
� �� �

Figure 1.8. An example FPGA architecture.

A typical reconfigurable computing device is aField Programmable Gate Array
(FPGA) (Xilinx, 1985 [24]). The general structure of a classical FPGA is shown
in Figure 1.8. An FPGA is built as an array of computing elements called logic
blocks. A look-up table (LUT) is commonly used as the basic computing element
of a logic block. The logic blocks are connected via a programmable intercon-
nect network and are surrounded by input-output (I/O) blocks. The programmable
interconnect network consists of horizontal and vertical routing channels. Each
routing channel includes segmented routing tracks of a different length. This al-
lows performance-efficient communication at different distances. The intercon-
nect segments are connected via programmable switches located in switch blocks.
In FPGAs, both the functionality of logic blocks and connections between them
are programmable. Programming is done by loading configuration data to a con-
figuration (control) memory. Such a memory controls LUT memory bits and mul-
tiplexers and switches of the interconnect network.

Reconfigurable devices versus ASICs and programmable processors

The key advantage of a reconfigurable computing device is the trade-off between
flexibility and cost such a device offers. The trade-off is reflected in the organisa-
tion of computations and in the functionality binding time [39].

Theorganisation of computations(or the way of implementing computations) re-
lates to the concepts ofcomputing-in-spaceandcomputing-in-timethat describe
ASIC and programmable processor implementations, respectively. Similarly to
ASICs, FPGAs implement computations usingspatially distributedbasic comput-
ing elements. When combined together, such elements realise complex operations.

12 Introduction

This is in contrast to programmable processors in which computing elements are
coarser and aredistributed in time. This means that the availability of such el-
ements is dependent on the supplied instruction on a cycle-by-cycle basis. The
important advantages of computing-in-space compared to computing-in-time are
lower power consumption and higher performance. This is achieved by matching
the word-size of computing elements to the word-size of arguments of operations
that are to be executed, and by exploiting lateral parallelism. The result is, how-
ever, a more restricted domain of computations that may be executed. Also, the
final design is characterised by a larger area, longer delays and higher power dis-
sipation than traditional ASIC designs.

The second aspect, thefunctionality binding time, relates to the technology. It
determines the moment of assigning functionality (defining the computations) to
the underlying hardware. In this respect, reconfigurable computing devices and
programmable processors fall into the same category. In both, the functionality
is defined after the fabrication of the device. Furthermore, they both use the no-
tion of software (in the form of a configuration context or an instruction) to de-
fine the functionality. But, while the time needed to change the configuration in
a traditional reconfigurable computing device is in the order of microseconds to
milliseconds, the change of instruction in a programmable processor takes usu-
ally only a single cycle. ASICs, unlike reconfigurable and programmable devices,
are characterised by the pre-fabrication functionality binding time. Dependent on
the type of ASIC, this time may be associated with the moment as early as cre-
ating the first mask of a design (custom and semi-custom ASICs) or as late as
creating the last (metal) mask(s) (gate arrays and structured ASICs [121, 41]).
Furthermore, hardware rather than software is used for the device customisation.
The non-permanent, post-fabrication customisation of reconfigurable devices and
programmable processors implies flexibility. Therefore, the same piece of silicon
may be reused to implement different applications. However, such flexibility is
obtained at the cost of larger area, lower performance and higher power consump-
tion compared to ASICs. In programmable processors, the high intrinsic cost is
due to the control overhead and the fixed width of the data-path. In reconfigurable
logic, the reason for the high intrinsic cost are a large configuration memory, a
large number of programmable switches and a rich interconnect structure.

Spectrum of reconfigurable computing architectures

Reconfigurable computing devices can be classified by two main parameters,
namely the granularity of computations and a reconfiguration model. Thegranu-
larity expresses the level of complexity of functional primitives (usually defined
by the word-size of their arguments) that can be executed in computing elements
of such devices. The granularity of reconfigurable devices is thus analogous to the
data-path width in programmable processors [39]. Reconfigurability at different
levels of granularity is exploited. For example:

1.4 Embedded reconfigurable computing 13

• bit-level granularitywhich is characteristic for devices that control and pro-
cess single-bit-wide or a-few-bit-wide data (e.g. traditional FPGAs),

• word-level granularitywhich is typical for devices with coarse computing
elements (e.g. ALUs, multipliers, adders) and reconfigurability at the level
of words,

• task-level granularitywhich is typical for architectures in which complete
tasks rather than simple operations are reconfigured and switched between.

Often, the bit-level reconfigurability is referred to asfine-grain reconfigurability,
and the word-level and task-level reconfigurability together ascoarse-grain re-
configurability. The lower the level of granularity, the larger is the configuration
memory and its overhead, and thus the higher is the intrinsic cost of a reconfig-
urable computing device. On the other hand, the higher the level of granularity,
the more complex operations can be directly executed at the expense of lower
flexibility. This trade-off is illustrated in Figure 1.9.

task−levelword−levelbit−level

Reconfigurability level

FLEXIBILITY

COMPUTATIONAL EFFICIENCY

Figure 1.9. The impact of granularity on the intrinsic cost and flexibility of reconfigurable
computing devices.

The reconfiguration modeldefines the frequency of the reconfiguration process
and the smallest amount of resources that can be reconfigured at once. Using
these parameters as basic characteristics, we can classify reconfigurable comput-
ing devices into the following categories:

• Statically-reconfigurabledevices, the configuration of which can be changed
only before the operation of a device, anddynamically reconfigurablede-
vices in which the change of the configuration during the device operation
is possible. Statically-reconfigurable devices have the single-context con-
figuration memory, while dynamically reconfigurable devices have typically
a multi-context configuration memory. The multi-context memory allows a
fast context switching. This feature is often utilised for the implementation
of the so-called run-time reconfiguration.Run-time reconfigurabledevices
execute computing tasks in phases, with each phase defined by a single con-
figuration context.

14 Introduction

• Fully reconfigurabledevices in which even a minor change in the configura-
tion requires the complete reloading of the entire configuration context, and
partially reconfigurabledevices in which only a portion of the configuration
context can be changed with no influence on the rest of the configuration.

The ever-progressing technology scaling has enabled the realisation of computing
architectures that offer different cost-efficiency trade-offs. Therefore today, the
spectrum of (reconfigurable) computing architectures is the continuum of differ-
ent computing approaches, and the choice of a particular approach is dictated by
design criteria.

1.4.2 Focus and motivation

In this thesis we restrict ourselves to fine-grain reconfigurable computing only.
Consequently, we use the term‘embedded reconfigurable logic’ (eRL)or simply
‘reconfigurable logic’to describe the technology that supports this type of com-
puting and allows the on-chip integration. Note, that reconfigurable logic can
be considered as a design (implementation) style that co-exists with other design
styles, such as standard cells and gate arrays, for example. In this respect, embed-
ded reconfigurable logic can be viewed as an alternative to the hard-wired logic
offered by the ASIC technology. This means that from the design point of view,
logic blocks of an embedded reconfigurable logic core (anembedded FPGA) play
a similar role as logic cells of a standard cell library. Also, both in the ASIC
and eFPGA technology connections between logic elements are customised based
on the requirements of the mapped function. The structure and functionality of
the logic elements (logic blocks) and the rules governing communication between
them define theimplementation architecture.

The key benefit of applying embedded reconfigurable computing to the design
of embedded systems-on-a-chip is the increase of flexibility and computational
efficiency of the final silicon product. Thus, in the context of the platform-based
design embedded reconfigurable logic may be seen as an extension or a sup-
plement of the spectrum of traditional implementation approaches which are
available in the form of hard-wired and programmable cores. Figure 1.10 illus-
trates two potential application scenarios and the consequence of their use. The
scenarios assume the use of embedded reconfigurable logic as a replacement for
hard-wired logic (theASIC context) and as the way of augmenting the efficiency
of programmable cores (theprogrammable processor context). In the first sce-
nario, the emphasis is on the increase of flexibility at the cost of slightly reduced
computational efficiency (and the area increase) compared to a reference ASIC
implementation. In the second scenario, the main motivation is the increase of
computational efficiency at the cost of some increase in silicon area (not shown in
the figure).

1.4 Embedded reconfigurable computing 15

Flexibility (Coverage)

Programmable cores

ASICs

[M
O

PS
/m

W
]

C
om

pu
ta

tio
na

l e
ff

ic
ie

nc
y

eRL or ASICs+eRL

Programmable cores + eRL

Figure 1.10. The motivation for using embedded reconfigurable logic for embedded SoC
designs. The bold and thin arrows represent real and ideal (no cost penalty)
cases, respectively.

The main benefits of embedded reconfigurable logic include thus:

• Cost reduction: the opportunity of reusing the same piece of silicon for
diverse types of functionality allows sharing the mask set costs between
different products, and thus the reduction of NRE costs. By augmenting
flexibility, logistic costs that are associated with the maintenance and sup-
port of large families of slightly different customised products can also be
decreased. Finally, by allowing the implementation of test, debug and repair
structures in reconfigurable logic, the number of erroneous products can be
decreased.

• Shorter time-to-market: a high degree of reuse and direct availability of
silicon enable a very fast response to the customer’s needs. The long design
cycles are avoided and the final, competitive, product is faster on the market
(even if it still has to be ’tuned’ in the later phase).

• Prolonged time-in-market: the ’built-in’ flexibility in the offered products
allows the functionality updates that are needed because of the changing
standards, for example. The risk associated with the market uncertainty can
also be decreased.

• Increase of efficiency (computational efficiency): lateral parallelism and
matching granularity of operations to the arguments’ size allow building
of cost-efficient hardware accelerators that augment software-based imple-
mentations. The code for the acceleration can be identified on the fly.

In Figure 1.11, a reconfigurable sytem-on-a-chip is shown. Typical methods of
integrating reconfigurable logic fabric with other system resources are illustrated.
The methods are: a reconfigurable functional unit, a reconfigurable data-path, a
reconfigurable coprocessor, a reconfigurable logic fabric. Note, that the first three
methods relate to the programmable processor context, while the latter method to
the ASIC context (see the discussion above).

16 Introduction

Reconfigurable
Functional Unit

Reconfigurable
data−path

logic fabric
Reconfigurable

Memory
ASIP

Reconfigurable
coprocessor

Peripherals

SoC

ALU

Reg. file

Memory

CPU or DSP

Figure 1.11. Applying reconfigurable logic in the SoC context.

The application examples of using embedded reconfigurable logic in the SoC con-
text include (but are not limited to):

• Hardware acceleration(the processor context). Fine-grain accelerators are
used for speeding-up an irregular or a critical type of application code. Such
a code may contain both logic and arithmetic operations which are ineffi-
ciently implemented using standard resources of programmable processors.
Typical examples are bit-level manipulations and arithmetic operations with
arguments, the width of which is smaller (or larger) than the width of the
processor data-path. The identified code can be replaced by custom instruc-
tions which are implemented in reconfigurable logic [36]. Also Application-
Specific Units (ASUs) are interesting candidates. Rather than implementing
such ASUs in hard-wired logic (as it is done in typical ASIPs), they can be
mapped onto reconfigurable logic. This broadens the application area and
extends the life-time of a final product.

• Product differentiation (the ASIC context). To meet requirements of dif-
ferent customers, companies providing hard programmable cores have to
manage and support a large spectrum of products that only slightly differ
in functionality. This is economically unjustified, even more that a new
chip has to be manufactured for each such a product. By integrating some
amount of reconfigurable logic with a standard core, it is possible to do
per-user-customisations in an already-fabricated chip. As a result, only one
version of such a chip rather than very many of them has to be supported.
An example are peripherals for microcontroller cores.

• Multi-standards realisation (the ASIC context). Today’s ICs (cores or
complete systems) are often designed to support different standards (e.g.

1.4 Embedded reconfigurable computing 17

for interfaces or communication protocols). The typical realisations of such
standards are independent dedicated hardware modules that are integrated
on the chip. This increases the chip area and causes an overhead since
only one or a very few such modules are active at the same time. On the
other hand, including all possible standards on a single chip is practically
impossible and economically unjustified. Due to insufficient performance,
programmable processors are also not an option. For these reasons, using
embedded reconfigurable logic for the implementation of various standards
is an interesting alternative. Eventually, the total silicon area of the final IC
may be even reduced.

1.4.3 State-of-the-art

The methods of using embedded reconfigurable logic in today’s SoC products can
be categorised in two dimensions. One dimension describes theuse methodof
eRL, that is, whether eRL is applied to a complete hardware platform or to a
component (core) of such a platform. The second dimension specifies thescope
of eRL within that application area, that is, whether eRL constitutes the whole
element or is only a part of it. Such a taxonomy is shown in Table 1.1 together
with examples of state-of-the-art products belonging to each category.

Use method⇒ Complete Component
Scope⇓ platform of a platform

Xilinx Virtex-II Pro Actel VariCore
Altera Excalibur Leopard Logic HyperBlox

Full Atmel FPSLIC Elixent RAP
PACT XPP

(platform-based FPGAs) Systolix PulseDSP
Triscend A7 Tensilica Xtensa

Partial Chameleon RCP
(reconfigurable SoC platforms) Triscend E5

Table 1.1. Taxonomy of eRL-based SoC products.

The group of products designed as complete hardware platforms features the so-
calledplatform-based FPGAs, which are offered by FPGA vendors, andreconfig-
urable SoC platforms. In the platform-based FPGAs, a traditional FPGA fabric,
consisting of logic blocks and programmable interconnect, plays a central role.
Such a fabric is, however, enhanced with large chunks of embedded memories
(of the total capacity in the range of Mbits), dedicated functional blocks (such as
hard-wired multipliers), programmable input/output blocks supporting different
interface standards, peripherals, and a sophisticated clock management circuitry.
Last but not least, the newest platform-based FPGAs include also single or multi-
ple embedded CPU cores (e.g. four embedded IBM Power PCs cores in the largest
Xilinx Virtex-II Pro device) that complete the whole system. Examples of the

18 Introduction

platform-based FPGAs are: Xilinx Virtex-II Pro [119], Altera Excalibur [7], and
Atmel FPSLIC [9]. While embedded reconfigurable logic comprises a dominant
part of the platform-based FPGAs, reconfigurable SoC platforms contain only a
small amount of eRL supplementing the rest of the platform resources. Further-
more, in this case eRL is used almost exclusively for the implementation of com-
putations. Unlike the platform-based FPGAs, which rely on the FPGA-specific
technology (e.g. an increased number of metal layers, relaxed design rules [124],
etc.), reconfigurable SoC platforms are typically realised in a standard CMOS pro-
cess. An example is Triscend A7 platform [102].

In the group of the platform components, two types of products can be distin-
guished. The first type concerns cores implemented entirely in reconfigurable
logic. Such cores may differ in the granularity, which typically ranges from the
bit-level, through the nibble-level1 to the word-level granularity. The bit-level re-
configurable cores are used for mapping ‘glue-logic’, control logic and sometimes
also arithmetic, whereas the nibble-level and especially word-level reconfigurable
cores are used predominantly as hardware accelerators. The cores from this group
are offered in different shapes and with different aspect ratios. They are avail-
able as hard cores (typically bit-level and nibble-level reconfigurable cores), or
soft IP cores (typically word-level reconfigurable cores). Examples are: Actel
VariCore [1], Leopard Logic’s HyperBlox [67], Elixent’s Reconfigurable Array
Processor [43], PACT XPP processor [76], and Systolix PulseDSP [98]. The sec-
ond type of cores in the components of a platform group features programmable
cores augmented with reconfigurable logic. In this case, eRL comprises only a part
of the complete core and is used mainly for the acceleration purposes. Examples
are: Tensilica Xtensa [101], Chameleon Systems’ Reconfigurable Communication
Processor [25], and Triscend E5 [103].

1.4.4 Key challenges

Embedding reconfigurable logic onto a system-on-a-chip poses various hardware-
related and software-related challenges. One of the main hardware-related chal-
lenges is thereduction of intrinsic costof reconfigurable logic. A reconfigurable-
logic-based implementation is costly because the high degree of flexibility it offers
is obtained by the introduction of a huge number of configuration switches, mul-
tiplexers and large configuration memories. This leads to the one-to-three orders
of magnitude cost penalty in area, performance and power compared to an ASIC
implementation [37, 124]. The finer the reconfigurability grain, the higher is this
cost (compare Figure 1.9).

Due to the high intrinsic cost, and particularly the area overhead, only a limited
amount of embedded reconfigurable logic can be integrated on a system-on-a-
chip. The question about the exact amount of reconfigurable logic that should be
embedded is a fundamental design issue [124], and has to be resolved before a

1The term ’nibble’ is often used to describe groups of four bits.

1.5 Problem statement 19

system-on-a-chip is fabricated. The challenge lies in finding theoptimal size of an
eRL fabricsuch that it accounts for the potential (future) growth of the complexity
of mapped circuits, and in a correct estimation of the eRL utilisation.

During a physical design process, a SoC designer is also confronted with the eRL
challenges. For example, the metal-intensive nature of reconfigurable logic cores
requires a careful chipfloorplanning. During the floorplanning procedure, the
locations of consecutive cores have to be found such that global interconnect re-
quirements are met and there is no wiring congestion. Furthermore, proper pin
positions for each core that guarantee the required timing have to be found. There
is also atestingchallenge. The specific nature of eRL asks for a robust and com-
plex testing approach that differs from standard testing procedures.

Finally, from the software point of view,partitioningandsynthesisof the applica-
tion code that take into account the presence of reconfigurable logic in a system
is a challenge. Even more so because usually different design flows are used for
ASICs, FPGAs and programmable processors.

1.5 Problem statement

We have shown that the today’s chip production depends on economic factors
and the market behaviour. As a result, programmable (customisable) products of-
fering a fast time-to-market are a preferable solution. At the same time, however,
emerging applications enabled by the progress in IC technology impose higher and
higher requirements on the computational efficiency of target designs. Such re-
quirements cannot be met using traditional programmable products (e.g. general-
purpose processors or DSPs).

In such a conflicting environment, there is a clear need for a new implementation
paradigm which could help to bridge a cost-efficiency gap induced by traditional
implementation approaches, that is, ASICs and programmable processors. The
new paradigm should allow a cost-efficient design of embedded systems-on-a-chip
for consumer electronics market.

Embedded reconfigurable logic appears as an interesting alternative. Nevertheless,
because a low-cost production is critical for competitive consumer electronics mar-
ket, the high intrinsic cost of embedded reconfigurable logic (compared to the cost
of hard-wired implementations) has to be reduced to allow a full acceptance of
eRL-based products.

The objective of this work is to investigate possibilities of the reduction of intrin-
sic cost of embedded reconfigurable logic and to develop a methodology that fa-
cilitates the design and implementation of cost-efficient embedded reconfigurable
logic cores for consumer electronics applications. The cost-efficiency refers to
all design levels, and covers thus architecture, implementation, and technology-
related aspects.

20 Introduction

1.6 This thesis

1.6.1 Towards a solution approach

As indicated in Section 1.4.2, in this thesis we are concerned with fine-grain em-
bedded reconfigurable logic architectures, that is, architectures with sub-word re-
configurability. The fine-grain architectures are chosen because of their multi-
purpose role in a system-on-a-chip that goes beyond the acceleration-related func-
tionality typical for coarse-grain architectures.

In Section 1.4.4, we mentioned that application partitioning and finding the re-
quired amount of embedded reconfigurable logic are two of the key challenges of
the reconfigurable SoC design. We partially resolve these problems by focusing
on some typical ways of deploying embedded reconfigurable logic in the SoC con-
text, for example such as discussed in Section 1.4.2. The consequence thereof is
the assumption that only relatively small parts of the application code, and with
the (to a certain extent) predictable and manageable growth of their complexity,
can be mapped onto reconfigurable logic. This implies that only a relatively small
amount of reconfigurable logic is required in a system-on-a-chip. Therfore, the
impact the embedded reconfigurable logic has on the total cost of an embedded
system can be reduced.

Finally, we propose a further reduction of the intrinsic cost of reconfigurable logic
by tuning reconfigurable architectures towards requirements of target application
domains. In this way, embedded reconfigurable logic is no longer general-purpose
but rather application-domain-specific.

1.6.2 Main contributions

In this thesis, a template-based methodology for the design of embedded recon-
figurable logic is proposed. The template describes a generic model of a reconfig-
urable logic architecture. The template enables a fast architecture exploration, and
facilitates the VLSI implementation (netlist and layout generation) and the map-
ping process (architecture modelling in the CAD tools) of reconfigurable logic.

Application-domain specialisation is proposed as a means for the reduction of the
intrinsic cost of reconfigurable logic. The method of characterising processing
kernels from different application domains and the process of finding a suitable
implementation architecture for them based on the application domain character-
istics are given.

Three basic classes of domain-oriented reconfigurable logic architectures are de-
rived. Each class is illustrated by an example of a reconfigurable logic core, which
logic and interconnect architectures are described in detail. Various novel tech-
niques at the architecture level and the application mapping level are introduced to
increase cost-efficiency of such cores.

1.6 This thesis 21

Finally, a silicon prototype of one of the cores that has been implemented accord-
ing to the proposed template concept is presented.

1.6.3 Organisation of the thesis

This thesis is organised as follows. In Chapter 2, we analyse state-of-the-art FP-
GAs and identify the reasons for their high intrinsic cost. We also propose the
concept of application domain specialisation of reconfigurable logic that aims at
the reduction of such cost. The process of the application domain characterisation
based on three application parameters, which capture the logic and interconnect re-
quirements, is described. In Chapter 3, generic properties of logic and arithmetic
functions are given. Two new properties of binary addition are described that re-
duce its implementation cost in reconfigurable logic. Cost metrics for the quantifi-
cation of such cost are also described. Three domain-oriented reconfigurable logic
architectures, examples of mapping basic primitives onto such architectures, and
the architecture benchmarking are discussed in Chapter 4, Chapter 5 and Chapter
6. In Chapter 7, the template-based methodology that plays a central role in the de-
sign process of domain-oriented reconfigurable logic is proposed. The case study,
that is the silicon prototype of a reconfigurable logic core is described in Chapter
8. The architecture of the core is based on one of the proposed domain-oriented
reconfigurable logic architectures and its implementation is realised according to
the template concept. Finally, the main results of the thesis are summarised in
Chapter 9.

22 Introduction

Chapter 2

APPLICATION DOMAIN SPECIALISATION

Although attractive from the design time, manufacturing costs and time-to-market
perspective, the inherent flexibility of reconfigurable logic is paid in a considerable
cost overhead compared to ASICs. This is the main factor that limits the use of
reconfigurable logic in cost-sensitive embedded system-on-a-chip products.

To analyse this cost, a good understanding of modern reconfigurable logic devices,
such as FPGAs, and their applications is needed. In this chapter, we describe suc-
cessive generations of FPGA devices and discuss architectural trade-offs they ex-
ploit. We also compare the intrinsic cost of the FPGA and ASIC technologies.
Finally, we propose a method for the reduction of the intrinsic cost of reconfig-
urable logic through application domain specialisation. To illustrate this concept,
we analyse a set of kernels from different application domains and we charac-
terise and classify them using the selected criteria. We also present architectural
implications of such a classification.

2.1 Field Programmable Gate Arrays

2.1.1 An evolving FPGA

The primary applications of the first FPGAs were hardware prototyping, low-
volume production series, a ‘glue-logic’ type of functionality (e.g. interfaces),
and somewhat later networking. In all cases, FPGAs were used as system com-
ponents integrated on a printed circuit board. However, the continuing technol-
ogy scaling has made FPGA devices attractive for a much broader range of tasks
than they were originally meant for. This has resulted in the expansion of the
FPGA application area from the ‘glue-logic’ niche, through hardware acceleration
in general-purpose and DSP computing [82, 50, 53], to the system-central position
today [89, 100]. Recently, next to traditional stand-alone devices, an alternative
way of using FPGAs, that is as embedded intellectual property (IP) cores, has been
proposed [1, 68].

One of the consequences of such a shift was a graduate change of FPGA architec-
tures. This can be observed following the evolution of any commercial FPGA. For

24 Application domain specialisation

our analysis we chose the family of Xilinx FPGA devices.

Figure 2.1 shows the logic block structures of five subsequent generations of Xil-
inx high-end FPGA devices. Despite many similarities (e.g. the use of a look-up
table as a basic logic element and the presence of a flip-flop at each logic output),
the presented structures also differ. The differences reflect various architectural
modifications that FPGAs have gone through. Considering both the logic and in-
terconnect parts of an FPGA architecture, such modifications include:

• Increase in granularity: the logic blocks of successive generations of FPGAs
are made coarser and coarser (e.g. the change from a single 4-LUT in the
first generation to eight 4-LUTs in the fifth generation); coarse logic blocks
facilitate an implementation of large logic functions (more efficient mapping
of combinational logic) and data-paths (support for multi-bit processing).

• Improvement of the arithmetic mapping capabilities:from the second gener-
ation onwards, FPGAs include dedicated arithmetic resources such as carry
logic, carry chains and specialised arithmetic modules (e.g. hard-wired mul-
tipliers in Virtex devices). This type of modifications considerably improve
the efficiency of mapping arithmetic (i.e. the number of logic blocks re-
quired per a given function) and are driven by the increasing importance of
signal processing applications.

• Introduction of the memory mapping capabilities:embedding large memory
blocks into the traditional FPGA fabric is a consequence of the increasing
role of signal and image processing applications and the increasing size of
FPGAs themselves. Because of the latter, larger designs can be mapped
onto FPGAs. Consequently, large off-chip memories that are required for
the data storage are replaced with on-chip (embedded) FPGA memories.

• Introduction of other architectural enhancements:further mapping effi-
ciency improvement is achieved by providing shift-register mapping capa-
bilities (the third generation) and a means for implementing large sum-of-
product structures (the fifth generation). Also, multi-clock domains and pro-
grammable high-speed interface logic are introduced to FPGA devices.

• Embedding of CPU cores:FPGAs take a full advantage of technology scal-
ing by the on-chip integration of CPU cores (the fifth generation). In this
way, FPGAs are becoming independent implementation platforms that en-
able a realisation of complete systems.

• Enhancement of interconnect:the changes in the FPGA logic are accompa-
nied by the changes in the interconnect structure. The reasons are: the per-
formance improvement, dealing with deep-submicron effects and enabling
the mapping of larger complex designs. Consequently, carry chains and
direct connections, segmented and hierarchical interconnect, and active in-
terconnect technology (fully-buffered interconnect) are introduced.

2.1 Field Programmable Gate Arrays 25

(a)

(b) (c)

(d) (e)

Figure 2.1. The logic blocks of five successive generations of Xilinx FPGA devices: (a)
first generation XC2000, (b) second generation XC3000, (c) third generation
XC4000, (d) fourth generation Virtex (the Virtex logic block includes two
logic slices; the structure of a single logic slice is shown), (e) fifth generation
Virtex-II (the Virtex-II logic block includes four logic slices; only a half of
the logic slice is shown). The LUTs in each logic block are marked with bold
rectangles.

Essential characteristics of five successive generations of Xilinx FPGAs are sum-
marised in Table 2.1.

The above-described evolution indicates that FPGA architectures evolved from
homogeneous ‘sea-of-programmable-gates’ structures almost two decades ago to
general-purposeheterogeneous structures today. Though such an evolution has
been driven by FPGAs ‘riding the wave of Moore’s law’ [17], it has a strictly

26 Application domain specialisation

F
eature

X
C

2000
X

C
3000

X
C

4000
V

irtex
V

irtex-II

G
eneral

Introduction
year

1985
1987

1991
1998

2001
1997

(X
C

4000X
L)

1999
(V

irtex-E
)

P
rocess

2
µ

m
,5

V
1.2

µ
m

,5
V

0.8/0.65/0.6µ
m

,5/3.3
V,

0.22
µ

m
,2.5

V,
0.15/0.12µ

m
,1.5

V,
technology

2-layer
m

etal
2-layer

m
etal

2-layer
m

etal
5-layer

m
etal;

8-layer
copper,

0.8/0.65/0.6µ
m

,3.6/3.3
V

0.5/0.35µ
m

,3.3/2.5
V,

0.18
µ

m
,1.8

V,
low

-k
3-layer

m
etal

5-layer
m

etal
6-layer

m
etal

0.25
µ

m
,2.5

V,
5-layer

m
etal

S
ystem

perform
ance

?
50–70

M
H

z
60–80

M
H

z
200–240

M
H

z
300

M
H

z
Logic

resources

#in,#out/C
LB

4
in,2

out
5

in,2
out

14
in,6

out
22

in,14
out

C
LB

structure
2×

3-LU
T,1

F
F

2×
4-LU

T,2F
F

s
2×

4-LU
T

+
3-LU

T,2
F

F
s

4×
4-LU

T,4
F

F
s

8×
4-LU

T,4
F

F
s

D
istributed

R
A

M
no

no
32

bits
64

bits
128

bits
E

m
bedded

R
A

M
no

no
no

4K
bit–32K

bit
72K

bit–3.375M
bit

16K
bit–208K

bit
D

edicated
carry

logic
no

no
yes

yes
yes

M
ux

chaining
no

no
no

yes
yes

C
ascade

chain
no

no
no

no
yes

Interconnect

Local
?

direct
(direct)

internal,feedback,
internal,feedback,

direct(alldirect.)
direct(alldirect.)

G
eneral-purpose

singles
singles

singles,doubles,(quads)
singles,hexs

doubles,hexs
G

lobal
longlines

longlines
longlines

longlines
longlines

S
pecial

no
no

carry
chain

2
carry

chains,
2

carry
chains,3-state

3-state
buses

buses,cascade
chain,

shiftchain
M

apping
capabilities

M
ax

logic
funct.

4-input
5-input

5-input
6-input

8-input
M

ax
arithm

etic
funct.

1-bit
1-bit

2-bit
4-bit

8-bit

Table
2.1.

C
haracterisation

ofsuccessive
generations

ofhigh-end
X

ilinx
F

P
G

A
devices.

2.1 Field Programmable Gate Arrays 27

economical justification. Firstly, a high degree of flexibility of FPGAs allows an
implementation of potentially any type of application (as long as it fits the FPGA
size, and other parametric requirements, such as performance and power dissipa-
tion, are satisfied). This makes modern FPGAs competitive to traditional ASICs,
especially if the production volume is low. Secondly, making FPGAs general-
purpose is beneficial from the FPGA vendors’ perspective. It limits namely their
efforts to the support and maintenance of only a few crucial device families.

Figure 2.2. The gradual increase in the intrinsic cost of successive generations of Xilinx
FPGA devices: XC2000 [24, 11], XC3000 [116], XC4000 [117], Virtex [118],
Virtex-II [119]. The cost metric is the number of configuration bits per a logic
cell (LC). The cost figures are calculated for the smallest and largest devices
in a given family, and assuming a device of the similar capacity (i.e.∼384
CLBs).

The clear drawback of the continuous process of augmenting flexibility of FPGA
devices is the increasing cost overhead. Figure 2.2 shows the number of configura-
tion bits per logic cell calculated for five subsequent generations of Xilinx FPGAs.
We chose the number of configuration bits as the primary cost metric since it is
easily available from the FPGA data sheets. We normalised this cost per logic
cell. The ’logic cell’ (LC) expresses a fixed amount of functionality that is equiva-
lent to the functionality of a 4-LUT with a flip-flop1. The following factors (in the
LC equivalents) are used to characterise configurable logic block (CLB) capacities
of five generations of Xilinx FPGAs: XC2000 - 1, XC3000A - 1.625, XC4000X
- 2.375, Virtex-E - 4.5, and Virtex-II - 9 [115]. (Embedded memories that are
present in some of the analysed devices are excluded.)

It is clear from the figure that the cost of the similar amount of functionality in
each new generation of FPGA devices is gradually increasing.

1The LC metric has been proposed by Xilinx to allow the comparison of different FPGAs [115].

28 Application domain specialisation

2.1.2 Architectural trade-offs in FPGAs

In its broadest sense, the general-purpose nature means the ability of implement-
ing random logic, data-path and memory functions in a single device. The cost-
efficient realisation of such functionality in a homogeneous (i.e. with an unified
type of resources) LUT-based FPGA device is fundamentally difficult. This is due
to different, often conflicting, requirements that are imposed by logic, arithmetic
and memory functions. For example, random logic functions, though being collec-
tions of fine-grain elements (logic gates), usually benefit from the mapping onto
coarse look-up tables (see Figure 2.3(a)). The coarse look-up tables allow a sub-
stantial reduction of the logic depth, and thus reduce delays. Because there is a
direct correlation between the granularity of a logic block, a logic delay and the
complexity of the FPGA routing resources [87], there is an upper limit on the size
of a look-up table2 that should be used in practice. Based on the study described
in [87], 3-input and 4-input look-up tables (3-LUTs and 4-LUTs) have been found
to be the best in terms of area. The results of the complementary study published
in [94] have shown that 5-input and 6-input look-up tables (5-LUTs and 6-LUTs)
are the best in terms of delay. Finally, a similar analysis presented in [3], in which
much more accurate area and delay models have been applied and the clustered
type of a logic block has been considered, has shown that look-up tables with four
to six inputs (4-LUTs to 6-LUTs) and logic block clusters consisting of four to ten
look-up tables guarantee the best area-delay product.

When mapped onto FPGAs, the data-path functions, and in particular arithmetic,
reveal an opposite nature to random logic. The arithmetic functions are usually
coarse-grain, this is, they have multi-bit input and output arguments. To account
for the dependence of the bits of the arithmetic output on the carry signal propaga-
tion, a straightforward FPGA realisation of an arithmetic function would require
very large, multi-bit-output look-up tables [47]. Because such look-up tables are
cost-inefficient, serially connected small look-up tables, which allow the bit-slice
structure of data-paths to be exploited, are used in practice (see Figure 2.3(b)). Of-
ten, a dedicated carry logic circuitry is also added to improve area-efficiency and
performance of the arithmetic-dominated designs.

Since the complexity of designs that can be mapped onto FPGAs is constantly
increasing, on-chip memories are needed. The initial assumption on the homoge-
neous structure of an FPGA device implies that such memories are implemented
as distributed memories. Typically, distributed memories in an FPGA are realised
using look-up tables (see Figure 2.3(c)). Because in a general-purpose FPGA the
look-up table size is a compromise between the requirements of random logic,
data-path and memory functions, the FPGA LUT-based memories are relatively
small (typically, with the total capacity between 32 and 128 bits per logic block).
If the mapped design requires larger memories, they can be assembled from small
LUT memories of the logic blocks. To allow the memory functionality, an FPGA

2The size of a look-up table is regarded as the number of its inputs (see details in Section 3.1).

2.1 Field Programmable Gate Arrays 29

(a) Random logic

Structure FPGA implementation

FPGA implementation

n−bit ADDER

B

A

S

n

n

n

Structure FPGA implementation

(b) Arithmetic

no dedicated carry logic with dedicated carry logic

Out
n2 n−bit

Memory

m

1
WE

. .
 .

3−LUT

3−LUT

An−1
3−LUT

3−LUT

n

B
C

D

E
F

A

G

1

1

A

B

C

D

E

F

G6−LUT

C in

Cout

A0
B 0
C in

S1

S2

S3

S0

A1
B 1

B 2

B 3

Cout0

Cout1

Cout2
C

ar
ry

C
ar

ry
C

ar
ry

C
ar

ry

C in

Cout3

Data

3−LUT

3−LUT

3−LUT

Structure

3−LUT

(c) Memory

A2

A3

. .
 .

m
Addr

S0

Cout0

Sn−1

CoutB n−1
Cout(n−2)

An−1
B n−1Cout(n−2)

A0
B 0
C in

A0
B 0
C in

Outn−1

Addr0

Addrm−1

Out0

Addr0

Addrm−1

m−LUT

Out1

Addr0

Addrm−1

m−LUT

m−LUT

. .
 .

WEData

Figure 2.3. Typical functions: (a) random logic, (b) arithmetic, (c) memory, and their
LUT-based FPGA implementations.

logic block structure has to be enhanced with extra logic (e.g. write decoders,
control circuitry).

2.1.3 Quantifying the cost

Figure 2.4 shows the cost comparison of the ASIC and FPGA technologies as
presented in [124]. The comparison focuses on the characteristics of a basic com-
putational element in each technology, that is alogic gatein ASICs and alook-up
table in FPGAs. In Figure 2.4(a), thelogic densityof basic computational ele-
ments, which is calculated as the number of equivalent logic gates per unit area (in

30 Application domain specialisation

Kgates/mm2), is shown. In Figures 2.4(b) and 2.4(c),delay(in ps) andenergy(in
µW/MHz) of basic computational elements are compared. All characteristics are
shown for different technology nodes.

It is clear from the figures that the intrinsic cost of FPGAs is much higher than
the intrinsic cost of ASICs. First of all, to implement a similar functionality an
FPGA needs on average50 times more silicon areathan an ASIC. Furthermore,
an FPGA look-up table is about15 times slowerand consumes about600 times
more energythan a basic ASIC gate. Though the complexity of a look-up table
(and thus its logic capacity) is higher than the complexity of an ASIC gate, the
delay and energy results given here are representative for FPGA products as the
cost overhead of FPGA interconnect has been omitted in the comparison. Another
important conclusion from Figure 2.4 is that the factor of difference in area, per-
formance and energy between FPGAs and ASICs remains constant regardless the
technology scaling. We may assume therefore that this trend will continue.

According to DeHon [37], the primary reason for the high area overhead of FP-
GAs compared to ASICs is theconfigurable interconnect. He estimates that such
an interconnect consumes about 80–90% of the total FPGA device area. However,
in DeHon’s model the configurable interconnect comprises not only interconnect
wires (i.e. metal tracks), but also programmable switches and multiplexers (i.e.
transistors) in the connection and switch blocks. In advanced process technologies
the presence of several metal layers (e.g. eight in a typical 0.13µm FPGA pro-
cess) facilitate the implementation of complex interconnect structures. Therefore,
in modern FPGAs the ratio of the transistor area to the area occupied by the inter-
connect metal tracks is about 1:1. For that reason, the reduction of the transistor
area occupied by the logic and interconnect elements in a logic tile rather than
the reduction of the metal track number only is essential for the reduction of the
intrinsic cost of reconfigurable logic. This is even more that the reduction of the
dimensions of a logic tile results in shorter connections between logic blocks, and
consequently in shorter delays and lower power consumption of the entire FPGA.

2.2 The concept of application domain specialisation

Despite the general-purpose nature and thus a large potential application area, the
vast majority of FPGAs target the same group of applications [61]. Today, the
typical applications are: digital communication, networking, signal and image
processing, automotive and security. Furthermore, the type of computations and
the accuracy required in such applications favour the word-level processing rather
than the bit-level processing that FPGAs were originally designed for. The higher
degree of flexibility than required [95] represents thus optimisation opportunities
which can be exploited to reduce the intrinsic cost of general-purpose FPGAs.

Our solution that addresses the above-mentioned aspects is the concept ofappli-

2.2 The concept of application domain specialisation 31

(a)

(b)

(c)

Figure 2.4. The comparison of the intrinsic cost of the ASIC and FPGA technologies. (a)
Equivalent logic density (in Kgates/mm2), (b) delay (in ps), and (c) energy (in
µW/MHz) of a basic computational element are shown. The computational
element is a logic gate for an ASIC and a look-up table for an FPGA. (Source:
Xilinx & IBM, November 2002 [124]).

32 Application domain specialisation

cation domain specialisationof reconfigurable logic. The key idea behind this
concept is to trade flexibility of a reconfigurable logic fabric for the reduction of
its intrinsic cost. The reduction of flexibility is possible because the reconfigurable
logic fabric is meant to map processing kernels (tasks) from a specific application
domain rather then arbitrary kernels of any application. The kernels of the applica-
tion domain are assumed to share similar characteristics, which, to a large extent,
are known a priori. The domain-specific optimisation of the reconfigurable logic
fabric means matching its architectural solutions and their parameters with the
characteristics of the target application domain. In consequence, the fabric is no
longer general-purpose butdomain-specific, and is characterised by a lower intrin-
sic cost. This is analogous to the concept of Application-Specific Instruction-set
Processors (ASIPs) which play a crucial role in designing cost-efficient systems-
on-a-chip [109].

The selection of processing kernels of a similar type and finding a suitable im-
plementation architecture for them are essential elements of the proposed con-
cept. One the one hand, an application domain may be characterised by more then
one type of processing kernels. For example, in an MPEG4 application, which
comes from the video application domain, typical kernels are Discrete Cosinus
Transform (DCT), Variable Length Decoding (VLD) and Motion Compensation
(MC). Such kernels are characterised by a word-level signal processing, a bit-
level control processing, and a storage-dominated processing, respectively. Be-
cause the kernels have different characteristics, a design of a single cost-efficient
application-domain-oriented reconfigurable logic architecture for them is difficult.
On the other hand, the idea of applying application domain specialisation to recon-
figurable logic may be economically unjustified if its result is a large number of
different reconfigurable logic architectures that have to be supported. Therefore,
it is essential that relatively broad yet well-definedsets of kernelsacross differ-
ent application domains are found that share the same characteristics and imply a
limited number (ideally one per set) of hardware implementations (implementa-
tion architectures). For the application domains with unified characteristics of all
processing kernels, the set of kernels will be equivalent to the entire application
domain. The essence of this concept is illustrated in Figure 2.5. The comparison
with the implementations using general-purpose FPGAs and ASICs is also shown.

The idea of tuning reconfigurable logic to an application domain is not new. The
benefit of making reconfigurable logic less general-purpose has been recognised in
the past and various domain-specific reconfigurable logic architectures have been
proposed in academia. Though a vast majority of such architectures target mainly
DSP type of applications (e.g. [60, 2, 73]), requirements of other domains, such
as cryptography, are also addressed (e.g. [49]). In parallel, the introduction of
coarse-grain reconfigurable architectures has also been driven by the idea of the
cost reduction in certain application areas. Examples of such architectures include:
RAA architecture of Hewlett-Packard [69] and XPP processor from PAC [76].

An interesting concept of application-domain-specific reconfigurable computing

2.2 The concept of application domain specialisation 33

application−domain−specific
reconfigurable logic

� �� � � �� ���� �� � �	

� �� �

��

� ��
��

�����
�

� � �

��
� �� �

FLEXIBILITY

EFFICIENCY

general−purpose FPGA application−specific IC

implementation
architecture

application universe

processing kernel

application domain set of kernels

Figure 2.5. The concept of application domain specialisation of reconfigurable logic. The
implementation architecture of a reconfigurable logic core is optimised to-
wards processing kernels of a similar type. Such kernels may characterise
an entire application domain or parts of different application domains. The
comparison of application-domain-specific reconfigurable logic with general-
purpose FPGAs and application-specific integrated circuits (ASICs) is also
shown. Dependent on the chosen implementation approach, and consequently
on the size of the target application space, a different trade-off between flexi-
bility and efficiency can be obtained.

has been proposed as a part of the Totem project at the University of Washington
[29]. The software package enabling an automatic creation of coarse-grain custom
reconfigurable architectures using a predefined architecture template [42] and a
set of a priori known algorithms have been developed [31]. By a considerable
reduction in flexibility, the Totem configurable ASIC (cASIC) architectures [30]
are able to achieve the cost level which is closer to the cost of traditional ASICs
rather than to the cost of FPGAs.

There are several aspects that differentiate the concept of application domain
specialisation as proposed in this thesis from the previous work. Firstly, un-
like application-oriented architectures from academia that have been optimised
towards a single application domain only, we suggest a more complete approach
by taking into account requirements of a number of different application domains.
Secondly, we assume that a single implementation architecture may be shared be-
tween similar processing kernels from different application domains. Thirdly, we
aim at much higher level of flexibility than the flexibility offered by the Totem
cASIC architectures [29, 30], which are optimised towards a limited set of well-
defined kernels only. On the one hand, this increases the cost penalty, on the sec-
ond hand, it lowers the risk as the mapped kernels can still be updated or replaced
with new ones after a reconfigurable architecture is implemented in silicon.

34 Application domain specialisation

2.3 Application domain characterisation

The purpose of the application domain characterisation is to describe the nature
of processing kernels that have been identified as a part of a target application
domain. The characterisation of the kernels is done using anapplication domain
modelthat is defined by a number of parameters. As shown in Figure 2.6, such a
model plays a role of an interface between an application domain and the imple-
mentation architecture of a reconfigurable logic core. As we will explain in detail
in Section 2.4 and Chapter 7, the implementation architecture of a reconfigurable
logic core is described by a means of a template. During the process of appli-
cation domain specialisation the parameters of the application domain model are
translated onto the parameters of the architecture template. In this way, a domain-
specific architecture (a template instance) of a reconfigurable logic core is derived.

. . .

. . .

. . .

Application domain Implementation architecture

Application domain model

parameters

architecture template

processing kernels

Figure 2.6. The process of application domain specialisation. The characterisation of the
processing kernels from a target application domain using the parameters of
the application domain model plays a central role.

The parameters (characteristics) of the application domain model capture the in-
formation about the processing kernels of a target application domain. Because the
parameters should enable an unambiguous characterisation of an application do-
main yet be general enough to justify the use of reconfigurable logic, they have to
be carefully selected. We propose three application domain parameters that meet
the above-mentioned criteria. The first two parameters, that istype of processing
andword-size, describe the computations of the processing kernels, while the third
parameter,Rent exponent[64], describes the communication within the kernels.

2.3.1 Type of processing

The type of processing characterises the functionality of the processing kernels.
The type of processing of a kernel is determined by itsdominant type of logic,
such as data-path logic, random logic and memory logic.

Framework

The application domain characterisation using the type of processing as the pri-
mary criterion relies on the information on the implementation of a kernel. The

2.3 Application domain characterisation 35

dominant type logic, which determines the type of processing of a kernel, is estab-
lished by calculating the area contribution of different implementation components
(basic building blocks) to the total implementation area of the kernel. We dis-
tinguish three basic types of implementation components, namely random logic
(e.g. simple logic gates, random-logic multiplexers), data-path (e.g. arithmetic
modules, data-path multiplexers, modules generating multi-bit Boolean functions)
and storage components (e.g. flip-flops, shift registers). Consequently, process-
ing kernels can be characterised as random-logic-oriented, data-path-oriented or
storage-oriented.

C
ad

en
ce

 B
ui

ld
G

at
es

gate−level netlist

technology−independent
Logic synthesis with

mapping using
AmbitWare library

Technology mapping
onto standard cells and

area−driven optimisations

area and resource reports

VHDL or Verilog netlist

Figure 2.7. The experiment flow.

Figure 2.7 shows the procedure according to which the application domain char-
acterisation of the benchmark kernels has been realised. Each experiment con-
sisted of two steps, that is, a technology-independent mapping and a technology-
dependent mapping which were performed in the Cadence BuildGates synthesis
framework. During the first step, the high-level netlist of a benchmark kernel (in
a VHDL or Verilog format) was synthesised using the generic Cadence Ambit-
Ware library [22]. The use of the AmbitWare library allowed the macro-functions
(e.g. adders, multipliers, etc.), which were identified during the synthesis, to be
instantiated in the form of macro-components and to be preserved during the en-
tire mapping process. To guarantee the proper treatment of macro-components,
the synthesis parameters had to be set accordingly. We found that the most crucial
parameters were:awaredissolvewidth (the number of bits of a data-path compo-
nent below which its structure is dissolved into random logic),awaremuxwidth
(the number of data inputs of a multiplexer below which its structure is dissolved),
andawareadderarchitecture(the adder type). We used default values of these
parameters as they guarantee the optimal design [22]. Consequently, four bits

36 Application domain specialisation

were chosen as the minium granularity of data-path components, eight as the min-
imal number of inputs of a preserved multiplexer, and the ripple-carry structure as
a default adder architecture. In the second step of the experiment, the gate-level
netlist of a benchmark kernel that has been generated in the first step was mapped
onto standard cells of the TSMC 0.13µm CMOS process [79, 99].

Forty representative kernels from several different application domains have been
selected as the benchmark set. The set included: signal processing kernels pri-
marily in the area of mobile communication (e.g. audio processing, GSM, channel
decoding), bit-level processing and pixel processing kernels from digital video and
still image processing, various interface standards, peripheral blocks of microcon-
trollers, data encryption kernels from security applications, and acceleration ker-
nels from cryptography applications. Each benchmark kernel was characterised
using the information from the area and resource reports that were generated after
the technology-dependent mapping step. In this way, the percentage contributions
of random logic, data-path logic and storage components to the total benchmark
area were established. The macro-components that were identified by AmbitWare
(except multiplexers) were classified as data-path logic. The multiplexers were
divided into groups and classified as data-path or random logic components de-
pendent on the number of bits of their inputs (see Fig. 2.8). Flip-flops and el-
ements implementing constant values were regarded as the storage components.
All remaining components were treated as random logic.

Results and analysis

The benchmark set that has been used in our experiments is described in Table 2.2.
For each benchmark kernel, the table lists the application domain the kernel orig-
inates from and the complexity of the kernel found through the mapping process.
The information about the complexity of a kernel is given both in the silicon area

in 0

in 1

in 2

in 3

sel0 sel1

(a) 1−bit 4:1 multiplexer

out

1

1

1

1

1 8

8

in 0

in 1

in 2

in 3

sel0 sel1

(b) 8−bit 4:1 multiplexer

out

8

8

8

Figure 2.8. The classification of multiplexer structures as (a) random logic components
and (b) data-path components dependent on the number of bits of their in-
puts (outputs). The multiplexers with 1-bit inputs (outputs) are random logic
multiplexers.

2.3 Application domain characterisation 37

of its standard-cell implementation (inµm2) and in the number of 2-input NAND
gate area equivalents. The typical word-size of data in each kernel is also listed.

Figure 2.9 shows the results of the application domain characterisation that has
been performed on our benchmark set using the type of processing as the main
characterisation criterion. The numbers on the horizontal axis correspond to the
processing kernel numbers from Table 2.2, while the vertical axis represents the
percentage of the silicon area occupied by random logic, data-path logic, and stor-
age components. The detailed characterisation of data-path logic (i.e. the contri-
bution of arithmetic elements, multi-bit Boolean logic elements, data-path multi-
plexers) and storage components (i.e. the contribution of flip-flops and elements
implementing constant values) are shown in Figures 2.10 and 2.11, respectively.

As we indicated earlier, the results of our application domain characterisation pro-
cedure are sensitive to the synthesis parameters. To investigate this aspect we
focused on theawaremuxwidthparameter as potentially having the strongest im-
pact on the obtained results. For this purpose we setawaremuxwidth=2. This
implies that all multiplexers that are identified in a processing kernel are preserved
as macro-components instead of being dissolved and optimised with surrounding
logic. Figure 2.12 shows the considerable number of multiplexers that have been
identified in this way (compare to the results in Figures 2.9 and 2.10). The aver-
age increase of 12% in the silicon area compared to the default case (i.e. when
awaremuxwidth=4) has been noted.

We draw the following conclusions:

1. The type of processing is a relevant characteristic of an application domain.
Similar trends in the type of components used for the implementation of
benchmark kernels (Figure 2.9) relate to the origin of the kernels (Table
2.2). Consequently, the type of processing (established via the dominant
type of implementation components) characterises an application domain
(e.g. kernels 1–7, 36–40) or similar sets of kernels of different application
domains (e.g. kernels 18–21, 30–31, 32–34).

2. Three basic classes of processing kernels can be identified, that is random-
logic-oriented, data-path-oriented and memory-oriented.
Using the type of processing as the main criterion allows the classification
of kernels. The three identified classes of kernels correspond to the sets
of kernels 35–40 (random logic), 1–17 (data-path) and 18–34 (memory) in
Figure 2.9.

3. Processing kernels require also other kinds of implementation components
than those indicated by the type of processing of a kernel.
Despite a strong dominance of data-path (arithmetic) components in the
benchmark kernels 1–17, their implementations need also random logic.
Furthermore, the implementations of the memory-oriented benchmark ker-
nel 18–34 reveal the presence of data-path and random logic. Finally, the

38 Application domain specialisation

No. Benchmark Application Complexity Word-size
kernel domain [µm2] gate count [#bits]

1 shift down15asu audio 8896 1103 16
2 f addasu audio 1339 166 16
3 f subasu audio 1517 188 16
4 f mult r asu audio 10647 1320 16
5 shift up15asu audio 9065 1124 16
6 fbb multm asu audio 45752 5670 32/48
7 fbb addcasu audio 18135 2248 32/48
8 deci asu GSM (speech coding) 182 23 6
9 adderasu GSM (speech coding) 3161 392 14
10 macasu GSM (speech coding) 4206 521 12/14
11 viterbi alpha channel decoding (backend) 8117 1006 8
12 viterbi betha channel decoding (backend) 8103 1004 8
13 viterbi lambda channel decoding (backend) 17693 2193 8
14 nyquist filter channel decoding (frontend) 174318 21604 2 x 10
15 radix4 butterfly channel decoding (frontend) 99317 12309 2 x 16
16 cordic channel decoding (frontend) 35224 4366 14
17 ppone image (intermediate processing) 5606 696 10
18 bit packer video (image coding) 13374 1658 32
19 encasu video (image coding) 105631 13091 12/32
20 decasu video (image coding) 113847 14110 32/12
21 rle asu video (image coding) 9913 1229 12/27
22 rnd asu video (auxiliary unit) 5192 644 7
23 memprtasu video (auxiliary unit) 35362 4383 16,32/32
24 reconasu video (motion compensation) 12420 1539 8
25 clip asu video (motion estimation) 44635 5532 12,16/16
26 computeselect video (pixel processing) 17154 2126 2 x 8
27 interpolator video (pixel processing) 1176 146 8/16
28 erosion video (pixel processing) 17935 2223 10/16
29 mix select video (pixel processing) 8866 1099 8
30 timer peripherals 5168 641 8
31 uart51 peripherals 8656 1073 8
32 ahb trafic ctrl interfaces 22163 2747 32
33 ip 1804 interfaces 32733 4057 32
34 i2c interfaces 18669 2314 32
35 ulaw to linear security 194 24 16
36 a5rfua cryptography 276 34 32
37 desrfua cryptography 216 27 32
38 loki2rfua cryptography 200 25 32
39 magenta cryptography 682 84 32
40 md5rfua cryptography 149 18 32

Table 2.2. Benchmark kernels used in the application domain characterisation procedure
and their basic characteristics derived from the implementation in a 0.13µm
CMOS process.

2.3 Application domain characterisation 39

Figure 2.9. Application domain characterisation based on the type of processing as the
main characteristic. The dominant type of implementation components that
determines the type of processing suggests the classification of the benchmark
kernels onto data-path-oriented (kernels 1–17), memory-oriented (kernels 18-
–34) and random-logic-oriented (kernels 35–40).

Figure 2.10. The detailed characterisation of the data-path components and their contri-
bution to the implementation area of different benchmark kernels.

40 Application domain specialisation

Figure 2.11. The detailed characterisation of the storage components and their contribu-
tion to the implementation area of different benchmark kernels.

Figure 2.12. The contribution of the data-path and random logic multiplexers to the im-
plementation area of different benchmark kernels. The multiplexers were
derived forawaremuxwidth=2 (by defaultawaremuxwidth=4).

2.3 Application domain characterisation 41

purely combinational character of the benchmark kernels 35–40, for which
the above observation seems to fail, has been determined by the specific
implementation of the compiler that is used to identify the kernels. (Such
a compiler analyses the application code and extracts only a combinational
portion of the critical kernels. For the details see [36].)

4. Multiplexers are common implementation components.
The considerable amount of random logic and data-path multiplexers that
have been identified in the analysed benchmark kernels suggest that multi-
plexers can be regarded as basic implementation components.

2.3.2 Word-size

The word-size characterises thegranularity of computationsin processing ker-
nels. Consequently, it also characterises the granularity of data (i.e. the number
of bits of data signals) on which such computations are performed. Unlike the
type of processing, which may be different for different sets of kernels of a given
application domain (see the discussion in Section 2.2), the word-size is a unique
characteristic of an application domain. The typical value of the data word-size in
common application domains is generally known.

Framework

The data word-sizes of processing kernels from our benchmark set (see Table 2.2)
were derived based on the typical granularity of macro-components identified dur-
ing the above-described application domain characterisation procedure. Despite
small divergences (e.g. due to the extended bit representation of internal signals),
we found that the word-size values identified for the analysed application domains
match well the generally known values. Therefore, the analysed application do-
mains can be characterised by the following data word-sizes.

• telecommunication: 12–16 bits,

• audio: 16–24 bits,

• image/video: 8–12 bits,

• peripherals: 8 bits,

• interfaces: 32 bits,

• cryptography: 32 bits,

• coding: 1–8 bits.

42 Application domain specialisation

2.3.3 Rent exponent

Until now we considered only the computation aspects of processing kernels. Intu-
itively, there should be, however, a relation between the type of computations and
their internal communication (interconnect structure). For instance, data-path ker-
nels feature intra-macro communication (i.e. short, point-to-point regular connec-
tions between bit-slices of macro-components) and inter-macro communication
(i.e. multi-bit buses between macro-components). In contrast, the communication
in the random logic type of kernels lacks a clear structure (e.g. irregular connec-
tions of different lengths, independent interconnect wires rather then buses, high
fan-out rather than low fan-out signals).

There is no single property by means of which the communication structure within
processing kernels can be fully characterised. Nevertheless, Rent’s rule [64] and
the associated Rent exponent play an important role in the modelling of intercon-
nect structures. Rent’s rule is an empirical formula given by Equation 2.1 that
describes the relation between the average number of terminalsT of a given logic
module (circuit) and the complexityB of the logic module expressed in the num-
ber of its logic components (gates).t is a proportionality constant calledRent
coefficientwhich is equal to the average number of terminals per logic compo-
nent; the parameterp is theRent exponentsuch that 0< p< 1. The Rent exponent
is calculated as the slope of the line representing Rent’s relationship on the log-log
scale.

T = tBp (2.1)

Because the Rent exponent depends on the interconnect topology3 of a circuit,
this parameter is of particular importance for us. As shown by DeHon [38], the
Rent exponent reflects the interconnect growth or the locality in the interconnect
requirements. A small value of the Rent exponent (p≤ 0.5) is typical for short
and regular connections, while a large value (p > 0.5) is typical for rich and irreg-
ular connections (like in random logic, for example). The Rent exponent can be
therefore considered as a measure of the complexity of the interconnection topol-
ogy of a circuit [75], and consequently as a means for characterising circuits [96].
For these reasons we propose the Rent exponent (and the associated Rent coeffi-
cient) as the third parameter of our application domain model. In this sense, the
Rent parameters reflecting the type of communication within processing kernels
are complementary in nature to the type of processing and word-size parameters
that capture the information about the computations of the kernels.

Framework

Though we have not exploited the possibility of characterising processing kernels
based on their connectivity, we outline briefly a possible implementation strategy

3In this thesis we assume the use of the so-calledintrinsic Rent exponent [51] which is the
lower bound ofp.

2.3 Application domain characterisation 43

for such a characterisation procedure. Instead of using directly the information
about the net length distribution (e.g. according to the relation proposed by Van
Marck in [106]), we assume after [122] that the interconnect requirements of a
design netlist are captured by thefan-out distribution(i.e. the number of nets
versus fan-out). We rely on the fan-out distribution because the formula proposed
by Zarkesh-Ha in [122] (see Equation 2.4) takes into account the complexity of the
design. The fan-out distribution is derived using the equivalent Rent parametersteq

andpeq of a design (see Equations 2.2 and 2.3, respectively), which are geometric
average of the Rent parameters of all logic modules in the netlist.

The value of the Rent exponent is sensitive to the modifications of the netlist that
are the result of different CAD algorithms (e.g. partitioning). Therefore, we as-
sume that in the connectivity-driven application domain characterisation procedure
the netlists of the processing kernels must be first technology mapped onto a proper
type of a logic element and afterwards clustered into logic blocks of a proper size
(see the discussion in Section 2.4). This is in contrast to the computations-driven
characterisation of the kernels (i.e. using the type of processing and word-size
parameters) in which the gate-level format of the netlist is sufficient. To assume
a uniform complexity of the clusters into which the technology-mapped netlist is
partitioned, the Rent exponent-driven clustering method (e.g. such as described in
[92]) is suggested. During such a clustering it must be guaranteed that the Rent
exponent of each cluster is not greater than the Rent exponent of the (logic block)
architecture. The Rent exponent of the architecture is calculated using Rent’s rule
based on the information about the physical number of terminals of the logic block
and the physical number of logic elements in the logic block. The Rent coefficient
is the number of terminals of the logic element. Similarly, the Rent exponentpi

of the i-th cluster is calculated based on the number of the occupied terminals
of the logic block and the numberNi of the occupied logic elements in the logic
block. The Rent coefficientti of thei-th cluster is calculated as the average number
of the occupied terminals of the logic element. The difference between the Rent
parameters of the architecture and the design cluster is explained in Figure 2.13.

The equivalent Rent parametersteq and peq of a benchmark netlist that has been
partitioned intoN clusters are given by Equations 2.2 and 2.3, respectively. The
fanout distribution of such a netlist is described by Equation 2.4, wherenet(m)
denotes the number ofm-terminal nets.

teq = N

√
(

N

∏
i=1

tiN
pi
i) (2.2)

peq = ∑N
i=1 piNi

N
(2.3)

net(m) =
teqN((m−1)peq−1−mpeq−1)

m
(2.4)

44 Application domain specialisation

LE

LE

LE

B = 4
t = 5
T = 14

(a) Rent parameters of architecture (b) Rent parameters of design (cluster)

LE

LB LB

LE

LE

LE

LE

occupied terminals

occupied LE

p = 0.74
B = 3
t = 4.67
T = 10

p = 0.69

Figure 2.13. The example of the derivation of the Rent parameters for (a) an architec-
ture and (b) a design. LE and LB denote logic elements and logic blocks,
respectively.

2.4 Design flow

Figure 2.14 shows the design flow for the generation of domain-specific reconfig-
urable logic cores. The flow relies heavily on the concept of application domain
characterisation that has been described in Section 2.3. The key elements of the
flow are summarised below.

• Identification of the candidate processing kernels:The target application do-
main is represented by a group of applications. The applications are charac-
terised by processing kernels. In this step, the candidate processing kernels
that are to be implemented in reconfigurable logic are identified.

• Characterisation of the kernels:The selected candidate kernels are charac-
terised by the parameters of the application domain model, that is, the type
of processing, word-size, and Rent exponent, according to the procedures
described in Section 2.3.

• Classification of the kernels:The characteristics of the processing kernels
that have been established during the previous step are used as the classi-
fication criteria. In consequence, the kernels sharing identical or similar
characteristics are grouped into sets. Additional constraints (such as design
effort, a soft or hard type of the generated reconfigurable core) determine
the final partitioning of the kernels between the sets.

• Template parameters matching:The parameters of the application domain
model that characterise the identified processing kernels are translated onto
the parameters of the architecture template (see details in Chapter 7). The
following relations between the parameters are assumed.

2.4 Design flow 45

– Type of processing determines the type of a basic logic element of a
reconfigurable logic block. Consequently, it also establishes the ele-
mentary functionality of the logic block.

– Word-size determines the total number of logic elements in the logic
block. This is equivalent to defining the granularity of computations
that can be performed in the logic block.

– Rent parameters via the fan-out distribution are used as guidelines for
defining the interconnect length segmentation in a reconfigurable logic
core. Similarly to [93], we make an assumption that the fan-out distri-
bution of a circuit netlist is proportional to the distribution of the length
of interconnect segments in a reconfigurable logic architecture.

• Template instantiation:The domain-specific architecture of a reconfigurable
logic core is generated as an instance of the generic architecture template.
The template parameters are instantiated based on the parameters of the ap-
plication domain model and an additional input from a user. Iterative feed-
back is assumed for the final tuning of the architecture (e.g. the interconnect
part).

Architecture
template

User

Application domain parameters

Processing kernels
Applications

Constraints

Application domain
characterisation

Kernel classification

Domain−specific RL core

Application domain

model
Application domain

Sets of kernels

and template instantiation
Parameter matching

Figure 2.14. Design flow for the generation of domain-specific reconfigurable logic cores.

46 Application domain specialisation

2.5 Classification of reconfigurable logic architectures

The type of processing can be regarded as a fundamental characteristic of process-
ing kernels since it influences other characteristics of the kernels (e.g. interconnect
requirements; see Section 2.3.3). Consequently, we choose the type of processing
as the primary optimisation criterion of reconfigurable architectures. The other
proposed parameters of the application domain, that is word-size and Rent expo-
nent, are used for more specific optimisations, if such are economically justified.

Following this reasoning, we propose a general classification of reconfigurable
logic architectures based on the type of processing as the main criterion. Conse-
quently, using the results of the experiment described in Section 2.3.1, we derive
three basic types of domain-specific reconfigurable logic architectures, that is:

• data-path-oriented architectures,

• random-logic-oriented architectures,

• memory-oriented architectures.

2.5.1 Data-path-oriented architectures

Thedata-path-oriented architecturestarget kernels dominated by data-path logic,
and arithmetic in particular (see Figures 2.9 and 2.10). In such kernels, coarse-
grain operations (i.e. of the nibble-level granularity and higher) and the operations
with the carry signal propagation are typical. This type of processing is character-
istic for digital signal processing (DSP).

The data-path-oriented architectures should thus guarantee an efficient implemen-
tation of data-path logic. However, they should also allow an implementation of
random logic, probably less efficiently. This is important since in the implementa-
tion of some data-path functions random logic is also needed (e.g. an implementa-
tion of a binary divider, which is an arithmetic function, requires a small controller
and thus random logic).

According to Figure 2.9, the data-path-oriented reconfigurable logic architecture
would be the most suitable for the mapping of the benchmark kernels 1–17. We
conclude thus that this type of architecture is well-suited for the implementation
of hardware accelerators in the audio and telecommunication applications, for ex-
ample (see Table 2.2).

2.5.2 Random-logic-oriented architectures

Therandom-logic-oriented architecturesare meant primarily for the efficient map-
ping of big chunks of combinational and sequential logic. Since in typical applica-
tions random logic is mixed with data-paths, and since random logic elements are
sometimes implemented using arithmetic elements (e.g. a binary counter can be

2.5 Classification of reconfigurable logic architectures 47

implemented using a binary adder), the random-logic-oriented architecture should
enable the mapping of arithmetic functions, that is with a propagating carry signal.

The random-logic-dominated type of functionality characterises the benchmarks
kernels 36–40 from Figure 2.9. Because such benchmarks have been deliberately
deprived of arithmetic (see conclusion 3 in Section 2.3.1), in practice some sup-
port for the implementation of arithmetic would also be needed. According to
our analysis, the random-logic-oriented type of a reconfigurable logic architecture
suits well the implementation of hardware accelerators in cryptography applica-
tions, for example.

2.5.3 Memory-oriented architectures

Thememory-oriented architecturestarget processing kernels requiring storage re-
sources. The storage (memory) resources are needed because of:

• the algorithm requirements: the memory components implement algorith-
mic delays by means of a local storage (e.g. small data memories, register
files, look-up tables in distributed arithmetic [113, 111]) or various delay
elements (e.g. FIFOs, buffers, feedback loops etc.),

• the implementation requirements: the memory components are inferred by
a specific implementation method (e.g. balancing delays of different paths,
circuit retiming).

Typically, the implementation of the memory-oriented kernels will also require
data-path and random logic components, which relative amounts may differ per ap-
plication. Therefore, to enable an efficient mapping of such kernels, the memory-
oriented architectures will have to be multi-functional (general-purpose).

In Figures 2.9 and 2.11, the memory functionality has been identified in the bench-
mark kernels 13–14 (telecommunication applications) and kernels 18–35 (video,
interface, peripherals, and security application domains). As expected, the mem-
ory components in the implementation of these kernels play different roles. For
example, they implement delays (kernel 13), a storage for constant coefficients of
a digital filter (kernel 14), feedback loops in control structures (kernels 18–35),
complex storage resources such as FIFOs and register files (kernels 32–34). We
propose to use the memory-oriented type of a reconfigurable logic architecture
for the implementation of kernels from the video, interface, and peripheral do-
mains. However, the choice of a suitable implementation architecture for a given
processing kernel may be determined in practice also by other factors (e.g. the
importance of the kernel, the type and total complexity of the required storage re-
sources). For example, though benchmark kernels 13–14 include memory compo-
nents, they have been classified as data-path-oriented, and the data-path-oriented
reconfigurable architecture has been selected for their implementation. This is cor-
rect since the benchmark kernels 13–14, similarly to the kernels 11–13 and 16–17

48 Application domain specialisation

from the same application domain, are characterised by the data-path-dominated
type of processing. At the same time, it is assumed that the data-path-oriented ar-
chitecture contains flips-flops that enable an implementation of memory elements
(see Chapter 4). However, if more sophisticated memory structures (e.g. FIFOs)
or a considerable amount of storage resources were required, the memory-oriented
reconfigurable logic architecture might be a better implementation choice. A sim-
ilar reasoning can be applied to the benchmark kernels 18–34.

2.6 Conclusions

In this chapter we showed that modern reconfigurable logic devices, such as FP-
GAs, are general-purpose in nature. Although the general-purpose nature allows
the use of FPGAs for a wide range of applications, it also leads to a high intrinsic
cost. For example, the area, delay and energy of FPGA devices are about one to
three orders of magnitude higher than the same parameters of ASICs.

Because low-cost is critical for reconfigurable-logic-based SoCs targeting con-
sumer applications, we proposed a method of the reduction of the intrinsic cost
of reconfigurable logic based on the concept of application domain specialisation.
The key of the concept is the characterisation of processing kernels that are a part
of a target application domain and using this information during the design pro-
cess. Unlike general-purpose FPGAs, domain-specific reconfigurable logic cores
that are a result of such a design process are optimised for a specific type of kernels.
In this way a much better balance between flexibility and cost can be achieved.

We proposed three parameters that can be used to characterise an application do-
main. The first two parameters, that is the type of processing and word-size, de-
scribe the computations of processing kernels. The third parameter, that is the Rent
exponent, captures the information about the communication structure within the
kernels. Using the set of benchmark kernels selected from the application domains
that would benefit from using reconfigurable computing we showed how such ker-
nels can be characterised with the mentioned parameters. We also described the
complete design flow for the generation of domain-specific reconfigurable logic
cores. Finally, based on the application domain analysis we derived three classes
of reconfigurable logic architectures that should be supported, namely data-path-
oriented architectures, random-logic-oriented architectures, and memory-oriented
architectures. Though optimised towards a specific type of functionality, all three
classes of architectures are assumed to allow mapping of other types of functions
as well (but at a higher cost).

Chapter 3

BASIC CONCEPTS

The purpose of this chapter is to acquaint the reader with some basic concepts
which will be exploited in the remaining part of this thesis. We start with elemen-
tary definitions and properties of Boolean and binary arithmetic functions that are
relevant in the context of this work. Further, we propose two properties of a binary
addition that enable the optimisation of the LUT-based arithmetic. Finally, we dis-
cuss the architectural concepts on which our domain-oriented reconfigurable logic
architectures are based (see details in Chapters 4–6). We also present cost metrics
that will be used for the benchmarking of such architectures.

3.1 Generic properties

3.1.1 Background

Boolean algebra forms a mathematical foundation of the analysis and design of
logic circuits. Since binary logic circuits can be thought of as constructed of
switches with two possible states only (i.e. ’on’ and ’off’) [104], the two-valued
Boolean algebraB = (B,+, ·,0,1), where the setB = {0,1}, is of practical use.

The behaviour of a logic circuit can be unambiguously described by means of
Boolean functions. An n-variable (single-output) Boolean function is a mapping
of the form

f : Bn → B. (3.1)

Often, the term’switching function’is used to describe a Boolean function defined
in the two-valued algebra with the carrierB = {0,1} [18]. In this thesis, we will
use the term ’Boolean function’ to mean a ’switching function’.

Let f (x1,x2, . . . ,xi , . . . ,xn) be a Boolean function ofn variables. The cofactor
of f (x1,x2, . . . ,xi , . . . ,xn) with respect to variablexi , also called apositive cofac-
tor, is f |xi=1 = f (x1,x2, . . . ,1, . . . ,xn). The cofactor of f (x1,x2, . . . ,xi , . . . ,xn)
with respect to variable ¯xi , also called anegative cofactor, is f |xi=0 =
f (x1,x2, . . . ,0, . . . ,xn) [72].

50 Basic concepts

Any Boolean functionf (x1,x2, . . . ,xi , . . . ,xn) of n variables can be expanded into
the sum of products ofn literals1, calledminterms. At each level of the recursive
expansion associated with an arbitrary logic variablexi , the function f can be
represented as the sum of two products: the product of variablexi and its positive
cofactor f |xi=1, and the product of the complement of variablexi , that isx̄i , and its
negative cofactorf |xi=0. Such an expansion of a Boolean function is calledBoole’s
expansionor oftenShannon’s expansion[18], and is formulated as follows.

f (x1,x2, . . . ,xi , . . . ,xn) = xi · f |xi=1 + x̄i · f |xi=0 (3.2)

Thedual of a Boolean functionf (x1,x2, . . . ,xi , . . . ,xn), denotedf d, is defined as
f d(x1,x2, . . . ,xi , . . . ,xn) = f̄ (x̄1, x̄2, . . . , x̄i , . . . , x̄n) [15]. A Boolean function is said
to beself-dualif f d = f [15].

A combinational logic circuit havingn inputs andm outputs can be described
by m n-variable Boolean functionsfi(x1,x2, . . . ,xn), i = 1. . .m. An alternative
specification of the circuit behaviour is possible using atruth table. The truth
table of such a circuit has 2n rows andn+m columns. Then-element row vectors
of the input part of the truth table define all possible states of the circuit inputs,
while them-element row vectors of the output part of the truth table define the
corresponding states of the circuit outputs. An example of a truth table is shown
in Figure 3.4.

An n-variable Boolean functionf (x1,x2, . . . ,xi , . . . ,xn) can be implemented using
an n-input look-up table(n-LUT), wheren denotes thesizeof the look-up table.
A typical n-LUT consists of 2n memory cells and a 2n : 1 multiplexer in a con-
figuration as shown in Figure 3.1 [80]. The memory cells store the values of the
Boolean function as defined by its truth table, while the multiplexer works as a
data selector.

3−LUT

8:1 M
U

X

out

in1

in2

in3

in1
in2

in3

out

Figure 3.1. An example of a 3-input look-up table and its implementation. The 3-LUT
suffices to implement a Boolean function of 3-variables.

1Literal is a logic variable or its complement.

3.1 Generic properties 51

Because the number of the required LUT memory cells increases exponentially
with the increase of the look-up table size, in practice look-up tables map rela-
tively small Boolean functions (i.e. of few logic variables only). The mapping of
larger Boolean functions can be enabled by Shannon’s expansion (see Equation
3.2), for example. The expansion is applied recursively until the number of logic
variables in cofactors of the Boolean function reaches the size of a target look-up
table. The values of such cofactors are stored then in the look-up tables, and the
signals related to the logic variables with respect to which the Boolean function
is expanded control 2:1 multiplexers at the LUT outputs. An implementation of a
4-input Boolean function according to this principle is illustrated in Figure 3.2.

x4

x1
x2
x3

x1
x2
x3

f(x , ..,x ,1)31

f(x , ..,x ,0)31

LUT

LUT

0

1

31f(x , ..,x ,x)4

1

0

Figure 3.2. An implementation of a 4-input Boolean functionf (x1,x2,x3,x4) using two
3-input look-up tablesLUT0 andLUT1.

A binary additionis a fundamental arithmetic operation. Afull addercircuit that
implements a 1-bit addition (see Figure 3.3) has two 1-bit data inputsa andb, and
a carry inputci; it also has a sum outputs and a carry outputco. The outputss
andco of a full adder are described by Boolean functionsfs and fco as given by
Equations 3.3 and 3.4, respectively. Figure 3.4 shows the truth table of a full adder.

fs(a,b,ci) = a⊕b⊕ci (3.3)

fco(a,b,ci) = ab+(a⊕b) ·ci (3.4)

An n-bit adder can be built ofn full adders connected in a chain as shown in
Figure 3.5. In such a ripple-carry adder structure [80], the carry output signal of
the i-th adder is connected to the carry input signal of the(i +1)-th adder, that is
cii+1 = coi .

The adder inverting property[80] states that the inversion of all inputs of a full
adder results in the inversion of all its outputs, that is

fs(ā, b̄,ci) = f̄s(a,b,ci), fco(ā, b̄,ci) = f̄co(a,b,ci). (3.5)

52 Basic concepts

a b

cico

s

FA

Figure 3.3. A full adder (FA).

coci

 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

 0 0 0 0 0

0
1

1
1

0

1

0

a b s

Figure 3.4. Truth table of a full adder.

b

s

FA

b

s

FA

b

s

FA

a

co ci

b

s

FA

a

n−1

ci ci co ci

0

co.

A B

S

n

n n

n−1

n−1 a

2

22

2 1

1

1 1

1

0

0

0

an−1

Figure 3.5. The implementation of ann-bit binary adder usingn full adders.

3.1.2 Inversion-based folding type I

We propose an inversion-based folding method of the function describing a sum
output of a 1-bit binary adder. The notation is assumed as in Section 3.1.1.

Theory

THEOREM 3.1
(Partial inverting property of a full adder.)
The inversion of one of the inputs of a full adder results in the inversion of its sum
output.

From this statement (assuming the carry inputci as thereference input) follows

fs(a,b,ci) = f̄s(a,b,ci), (3.6)

or equivalently:

fs(a,b,0) = f̄s(a,b,1). (3.7)

3.1 Generic properties 53

a b

cico

s

FA

s

ci

a b

co FA

Figure 3.6. The interpretation of the partial inverting property of a full adder.

Note that fs(a,b,0) and fs(a,b,1) represent the negative and positive cofactors
of the function fs with respect toci. The graphical interpretation of the partial
inverting property of a full adder is shown in Figure 3.6.

The proof of Equation 3.6 is trivial as it can be derived directly from the adder truth
table shown in Figure 3.7 using basic theorems of Boolean algebra [18]. The truth
table from Figure 3.7 is obtained from the original adder truth table (see Figure
3.4) by reordering the row vectors of its input and output parts2 with respect to
the value of the input variableci. For the sake of clarity, the corresponding row
vectors of the new truth table are marked with the same colour. Such vectors are
characterised by the opposite values of the carry inputci and the opposite values
of the sum outputs. We shall refer to this relation asanti-symmetry type I.

ci

 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

 0 0 0 0
ab

anti−symmetry

s

(type I)

Figure 3.7. A part of the adder truth table with row vectors organised with respect to the
carry input variableci. The anti-symmetry (type I) between corresponding
row vectors is indicated by the their identical background colours.

Applying Shannon’s expansion (see Equation 3.2) to the adder sum functionfs
yields:

fs(a,b,ci) = ci · fs(a,b,1)+ci · fs(a,b,0). (3.8)

By substitutingfs(a,b,1) in Equation 3.8 according to Equation 3.7, we derive the
following theorem which we shall call theinversion-based folding type I.

2In the new truth table, the values of the variablecohave been deliberately omitted.

54 Basic concepts

THEOREM 3.2
(Inversion-based folding type I.)
If fs(a,b,ci) is a Boolean function describing the sum output of a full adder, then:

fs(a,b,ci) = ci · f̄s(a,b,0)+ci · fs(a,b,0) (3.9)

Theorem 3.2 indicates that an inversion operation and a cofactor of the function
fs with respect to the selected polarisation of the input variable (e.g. here variable
ci = 0) suffice to generate the sum function. Since we utilise a single expression
only to generate the information captured in both cofactors (i.e.fs(a,b,0) and
fs(a,b,1)), we refer to this implementation method as achieved byfolding.

Implications for the LUT-based implementation

The values of the negative cofactorfs(a,b,0) in Equation 3.9 represent half of
all possible values of the full adder sum functionfs (see Figure 3.7). A 2-input
look-up table (2-LUT) suffices thus to implementfs(a,b,0). The positive cofactor
fs(a,b,1) is generated by the inversion of the LUT output. The implementation of
the sum functionfs of a full adder according to this principle is shown in Figure
3.8(b). In Figure 3.8(a), the size of the output part of the original and compacted
(i.e. after folding) truth tables of a full adder are compared. It is clear that the
implementation of the full adder sum function according to the inversion-based
folding type I allows the size of the required LUT to be halved.

23

22

b

a
s

ci

controlled inversion
block

Compacted full adder truth table(a)
(the output part)

Original full adder truth table (b) LUT−based implementation
(the output part)

s s

2−LUT

Figure 3.8. The LUT-based implementation of the full adder sum functionfs using the
inversion-based folding type I. (a) The comparison of the output parts of the
original and compacted truth tables of a full adder, (b) the implementation: the
values of cofactorfs(a,b,0) from the compacted truth table are stored in the
2-LUT, the controlled inversion block implements folding.

3.1.3 Inversion-based folding type II

We propose an inversion-based folding method of the functions describing the
sum and carry outputs of an n-bit binary adder. We assume the notation as in
Section 3.1.1.

3.1 Generic properties 55

Theory

Figure 3.9 shows a truth table of a full adder in which row vectors have been
ordered with respect to the value of the input variableci3. The same background
colour identifies the pairs of row vectors that are related via the adder inverting
property as defined by Equation 3.5 in Section 3.1.1. The related row vectors are
characterised by the opposite values of the input variablesci, a, b and the opposite
values of the outputssandco. Such a relation represents yet another form of anti-
symmetry that can be identified in the adder truth table. We shall refer to it as
anti-symmetry type II(compare with the anti-symmetry type I in Figure 3.7).

ci co

 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

ab
 0 0 0 0 0

0
1

1
1

anti−symmetry

0

1

0

s

(type II)

Figure 3.9. The truth table of a full adder with the indicated anti-symmetry type II. In this
case, the anti-symmetry represents the relation described by the (full) adder
inverting property (see Equation 3.5).

In the ripple-carry implementation of ann-bit binary adder that has been shown in
Figure 3.5, the carry input and carry output signals of successive adder stages are
inter-dependent. Therefore, the adder inverting property defined by Equation 3.5
will also hold for an arbitraryn-bit adder.

THEOREM 3.3
(Inverting property of an n-bit adder.)
The inversion of the inputs of an n-bit binary adder results in the inversion of its
outputs.

Let A = {a0,a1, . . . ,an−1} andB = {b0,b1, . . . ,bn−1} be the sets of bits defining
the first and second inputs (arguments) of ann-bit adder. Also, letsi be thei-th bit
of the sum output of such an adder, such thati = 0. . .n−1. Then, the inverting
property of ann-bit adder can be formulated as follows:

fsi(Ā, B̄,ci) = f̄si(A,B,ci) i = 0. . .n−1 (3.10)

3Note, that such a truth table has the same form as the truth table from Figure 3.7, but is
completed with the values of the output variableco.

56 Basic concepts

fco(Ā, B̄,ci) = f̄co(A,B,ci), (3.11)

or equivalently:

fsi(Ā, B̄,0) = f̄si(A,B,1) i = 0. . .n−1 (3.12)

fco(Ā, B̄,0) = f̄co(A,B,1). (3.13)

Note, that the alternative formulation of the inverting property of ann-bit adder
is that the functionsfsi and fco are self-dual (see Section 3.1). The graphical
interpretation of the inverting property of an n-bit adder is shown in Figure 3.10.

A
n

B
n

cico

n

S

co n−bit adder ci

BA
n n

n

S

n−bit adder

Figure 3.10. The interpretation of the inverting property of an n-bit adder.

Note also, that then-bit version of the adder inverting property isdifferent than
the partial inverting property of a full adder described in Section 3.1.2. Firstly, the
n-bit adder inverting property holds for an adder with an arbitrary number of bits
of its arguments and not for a full adder only. Secondly, the n-bit adder inverting
property assumes the inversion of all inputs of an adder instead of only one of its
inputs. Finally, it concerns all outputs of an adder rather than the sum output only.

Applying Shannon’s expansion with respect to the carry input variableci (see
Equation 3.2) to the sum and carry output functions describing the outputs of an
n-bit adder yields:

fsi(A,B,ci) = ci · fsi(A,B,1)+ci · fsi(A,B,0) i = 0. . .n−1 (3.14)

fco(A,B,ci) = ci · fco(A,B,1)+ci · fco(A,B,0) (3.15)

By substitutingfsi(A,B,1) and fco(A,B,1) in Equations 3.14 and 3.15 according
to Equations 3.12 and 3.13, we derive theinversion-based folding type II.

3.1 Generic properties 57

THEOREM 3.4
(Inversion-based folding type II.)
If fsi(A,B,ci) and fco(A,B,ci) are Boolean functions describing an i-th bit of the

sum output and the carry output of an n-bit adder, respectively, then:

fsi(A,B,ci) = ci · f̄si(Ā, B̄,0)+ci · fsi(A,B,0) i = 0. . .n−1 (3.16)

fco(A,B,ci) = ci · f̄co(Ā, B̄,0)+ci · fco(A,B,0) (3.17)

Theorem 3.4 shows that the values of the sum functionfsi and carry output func-
tion fco of ann-bit adder can be generated using only the inversion operation and
one of the cofactors of these functions (in Equations 3.16 and 3.17, the negative
cofactors with respect to variableci are chosen). Analogous to Section 3.1.3, we
say about this type of implementation as achieved byfolding. If the reference vari-
able has the polarisation opposite to the selected (i.e. here whenci = 1), the values
of the reference cofactors have to be modified. In this case, modification of the
cofactors is done by the inversion ofall their inputs.

Implications for the LUT-based implementation

(b) LUT−based implementation

22n

22n
+1

n+1 n+1

Original adder truth table Compacted adder truth table(a)
(the output part) (the output part)

. .
 .

. .

.

controlled inversion blocks

. .
 .

. .

ci
S, co

A
, B

S co S co

k/m−LUT

Figure 3.11. The LUT-based implementation of then-bit addition using the inversion-
based folding type II. (a) The comparison of the output parts of the original
and compacted truth tables of an-bit adder, (b) the implementation: the val-
ues of the cofactorsfsi (A,B,0) and fco(A,B,0) from the compacted truth
table are stored in thek/m-LUT, the controlled inversion blocks implement
folding.

The negative cofactorsfsi(A,B,0) and fco(A,B,0) in Equations 3.16 and 3.17 rep-
resent half of all possible values of the sum functionsfsi and carry output function
fco of an n-bit adder, respectively. The output part of the truth table of ann-bit
adder has 22n+1 rows andn+1 columns, which corresponds to 2n+1 1-bit inputs

58 Basic concepts

(i.e. two n-bit argumentsA andB and a carry inputci) andn+ 1 1-bit outputs
(i.e. n-bit sum outputSand a carry outputco) of ann-bit adder. By applying the
inversion-based folding type II, such a truth table can be compacted to the table
with 22n rows only (see Figure 3.11(a)). Consequently, the generation ofn nega-
tive cofactorsfsi(A,B,0) and the negative cofactorfco(A,B,0) of ann-bit adder is
possible using a look-up table withk = n inputs andm= n+1 outputs. We shall
refer to such amulti-output LUTask/m-LUT. The implementation of the n-bit ad-
dition in the k/m-LUT according to the inversion-based folding type II is shown in
Figure 3.11(b). The controlled inversion blocks that are placed at the inputs and
outputs of the look-up table enable the generation of the expressionsfsi(Ā, B̄,1)
and fco(Ā, B̄,1) . It is clear that the implementation of then-bit adder according
to the inversion-based folding type II allows the size of the required multi-output
LUT to be halved.

3.2 Cost metrics

This section deals with basic concepts behind the domain-oriented reconfigurable
logic architectures that will be presented in detail in the next chapters. It also
proposes a set of metrics enabling a comparison of such architectures with state-of-
the-art FPGAs, and in this way, a verification of the concept of application domain
specialisation proposed in Chapter 2. Two primary cost metrics are introduced:
the metric based on theimplementation areaof a reconfigurable architecture and
the metric based on thearea modelof a reconfigurable architecture.

3.2.1 Architectural concepts

In Chapter 2 we derived three basic classes of domain-oriented reconfigurable
logic architectures that should be supported. We assume that such architectures
are madehomogeneous. The homogeneity means in this case that the entire array
(see Section 1.4.1) of a domain-oriented reconfigurable logic core is built of the
identical type of modules. We shall refer to such modules aslogic tiles. A logic
tile consists of a logic block and a portion of routing resources (e.g. the bottom
and right parts of routing channels that cross over in a switch block, as shown in
Figure 1.8). A homogeneous architecture is essential for several reasons, namely:

• It reduces the complexity of mapping tools (placement and routing tools in
particular) since such tools do not have to account for functional differences
between tiles.

• It reduces the design effort since the same type of basic building blocks can
be used to assemble the complete array of a reconfigurable logic core.

3.2 Cost metrics 59

• It matches the type and complexity of functions that are to be mapped onto
a reconfigurable logic core (see the discussion in Section 1.6.1). (For exam-
ple, since a reconfigurable logic core is meant to map only relatively small
processing kernels, large embedded memories can be omitted.)

We also assume that logic blocks of a reconfigurable logic core are LUT-based.
The look-up tables offer a high level of flexibility, which is essential if the mapping
of different types of functions is expected (see Section 2.3.1, conclusion 3.). The
logic block has a hierarchical structure. It consists of (in a bottom-up order): a
logic element, a logic blockand alogic tile.

3.2.2 Mapping cost

To compare different reconfigurable architectures we introduce a unified cost met-
ric, which we shall callmapping cost MC. The mapping cost (inµm2) is a cost of
implementing a function (processing kernel) in a reconfigurable logic architecture,
and is calculated as

MC = NLB×ALT . (3.18)

NLB is the number of logic blocks4 that are needed to implement a given function,
and is established via a mapping experiment (manual or automatic).ALT is the
area of a logic tile in a (target) reconfigurable architecture, and is derived based
on the VLSI implementation of the tile. We choose the logic tile area as a pri-
mary cost measure of a reconfigurable logic device since it has a strong impact
on its other implementation parameters, such as power consumption and delay.
The reason for that is that both power consumption and delay in FPGA devices
are interconnect-dominated [47], and that a logic tile comprises the interconnect.
Power consumption is determined by the capacitance (load) of interconnect wire
segments, while the delay by the capacitance and resistance. Since the capacitance
and resistance are functions of the wire segment length, they depend on the hori-
zontal and vertical dimensions of the logic tile5, and thus on the logic tile area (as
the product of the logic tile dimensions).

Though accurate (for area), the comparison of reconfigurable architectures based
on the above-discussed cost metric is not always possible. Firstly, the logic tile
area of many state-of-the-art commercial FPGAs is not known. Secondly, an im-
plementation of all proposed domain-oriented reconfigurable architectures is, due
to a considerable design effort, not realistic. Finally, the tools that enable map-
ping of complex functions onto all reconfigurable architectures of interest are not

4We use the number of logic blocks rather the number of logic tiles since the former parameter
is directly reported by mapping tools. Essentially, as far as the amount of logic resources only is
concerned,NLB = NLT .

5Because of the programmable nature of the FPGA interconnect, this is true even if interconnect
wires are laid out using multiple metal layers on top of the logic.

60 Basic concepts

available. Therefore, we suggest an alternative method of comparison. In the first
method, we calculate the mapping cost MC using theVLSI implementation areaof
a logic tile as a cost measure. Only those devices for which implementation data
are available are compared in this way. Furthermore, dependent on the availabil-
ity of mapping tools, mapping cost of simple or complex benchmark functions is
considered. In the second method, we also calculate the mapping cost MC, but the
area of a logic tile is estimated based on thearea model. Below, both comparison
methods are discussed in detail.

3.2.3 Implementation-based cost metrics

As indicated above, the implementation-based method of comparison of recon-
figurable architectures relies on the VLSI implementation area of a logic tile. If
dedicated mapping tools are available, the cost of mappingcomplexfunctions onto
a reconfigurable logic architecture is calculated according to Equation 3.18. If the
area of a logic tile in a reconfigurable architecture is known but mapping tools are
not available, two additional cost metrics are used to compare the cost of map-
ping relativelysimplefunctions. The first metric, that isdata-path mapping cost
MCDP, is defined as the cost of implementing 1-bit of data-path in a reconfigurable
architecture.MCDP is calculated as

MCDP =
ALT

n
, (3.19)

wheren expresses the maximum number of bits of a basic data-path function (here:
a binary addition) that can be implemented in a logic block of the architecture. The
unit of MCDP is µm2/bit. The second metric, that israndom logic mapping cost
MCRL, is defined as the cost of implementing a 4-input Boolean function in a
reconfigurable architecture.MCRL is calculated as

MCRL =
ALT

m
, (3.20)

wherem is the number of 4-LUTs in a logic block of the architecture. The unit of
MCRL is µm2/4−LUT.

Note, thatMCDP andMCRL reflect themaximal (ideal) mapping efficiencyof the
compared architectures. This is because both metrics are not influenced by the
quality of mapping tools (the values of the parametersn andm are derived from
the architecture of a single logic tile only). In practice, logic tiles are sometimes
used for routing or may be blocked. Therefore, the usage of logic resources is
usually lower than 100%.

We have selected two state-of-the-art commercial (general-purpose) FPGAs, that
is Xilinx Virtex-E [118] and Altera APEX 20K400E [4], for our comparison. The
VLSI implementation area of the logic tiles in both devices is known [77]. The

3.2 Cost metrics 61

availability of dedicated mapping tools for these FPGAs (i.e. Alliance package
for the Xilinx device and Quartus II for the Altera device) allows the compari-
son of the mapping cost using complex benchmark functions. For our compari-
son we also selected three data-path-optimised FPGAs from academia. They are:
Low Power Programmable Gate Array (LP-PGA II) from University of Berkeley
[47], Computational Field Programmable Architecture (CFPA) from University of
Toronto [61] and Reconfigurable Computing Array (RCA) from Hewlett-Packard
Laboratories (now Elixent Ltd.) [69]. Due to lack of dedicated mapping tools, the
latter FPGAs are used in a comparison based onMCDP andMCRL cost metrics.
The implementation data of the selected state-of-the-art FPGAs are summarised
in Table 3.1.

FPGA Technology Implementation ALT

device style [µm2]

Xilinx Virtex E 0.18µm CMOS full-custom 35462
Altera APEX 20KE 0.18µm CMOS full-custom 63161

LP-PGA II 0.25µm CMOS semi-custom 52779
CFPA 0.5µm CMOS full-custom 63240

CHESS 0.35µm CMOS full-custom (?) 45000

Table 3.1. The implementation data of logic tiles of the commercial and academia FPGAs.

3.2.4 Model-based cost metrics

Several different models for estimating an area of a FPGA logic tile have been
proposed in academia. Their common characteristic is an assumption that the
logic tile area is the sum of the logic block areaAL and the routing areaAR, that is,
ALT = AL +AR.

For example, Roseet al. (1990) [87] calculate the logic block area as the sum of
all LUT memory bit areas and a fixed area that is needed for a LUT selection cir-
cuitry, a flip-flop, and an extra control logic. Rose estimates the routing area based
on the number of tracks in a routing channel of a given reconfigurable architec-
ture. The tracks are separated by a fixed routing pitch, which depends on the area
of a configuration (control) memory cell. The tracks are assumed to be laid out
on the same metal layer. The problem of Rose’s model is that it requires precise
information about the total number of routing tracks. Due to a heterogeneous type
of routing resources in modern FPGA devices, establishing the exact number of
tracks per routing channel in such devices is often difficult. Brownet al. (1992)
[19] use the same logic block area model as Rose. However, they assume that
the routing area is a linear function of the logic block pin count, as suggested by
Hill [54]. The limitation of Brown’s model is that it uses the area cost per pin
(expressed in the memory cell areas) which has been established for a specific set
of architectures, and is thus inappropriate in a generic case. The alternative area
model that has been proposed by Betzet al. (1999) [14] is much more accurate

62 Basic concepts

than the models described above. The Betz model, applied to the placement and
routing tool called VPR [14], is based on the area count of minimum-width transis-
tors. All basic building blocks of an FPGA architecture are characterised a priori
with this parameter. Though accurate, the use of Betz’s model is restricted to only
those FPGA architectures which can be modelled in VPR.

To overcome the limitations of the existing models, for our comparison we have
chosen a simple yet reliable area estimation technique adopted from He & Rose
(1993) [52]. According to this technique, the area contribution of logicAL depends
on the number of LUT memory bitsNlmb, whereas the area contribution of routing
AR on the number of logic block pinsP. The latter is based on the assumption of
Hill [54] that each logic block pin has a fixed area contribution to the total area
of a logic tile. The direct correlation between the logic block pin count and the
routing cost of a logic block has been confirmed by others [37, 26]. Note, that this
logic tile area estimation technique isimplementation-independent. Furthermore,
it is alsointerconnect architecture-independentsince the routing cost is estimated
based on the logic block pin count rather than on the precise information about
the interconnect structure. In this way, a fair comparison of different FPGAs, even
without knowing their architectural and implementation details, is possible.

He’s & Rose’s model has been originally applied to relatively simple FPGA struc-
tures, in which all pins of the logic block are equally important. To account for the
functional diversity of the logic block pins, which is common in modern FPGAs,
and thus for the difference in the cost, we introduce a pinweighting factor wi .
Consequently, we also replace the pin numberP in our model with theweighted
pin number Pw, such thatPw = ∑P

i=1wi · pi . The weighting factorwi reflects the
difference in the routing resource cost induced by a logic block pinpi (where
i = 1, . . . ,P) in comparison to the cost induced by a random logic pin in a logic
block of a traditional (general-purpose) LUT-based FPGA. We identify five types
of pins in the FPGA architectures of interest. They are:

• random logic pin,

• word-level data-path pin,

• bit-level data-path pin,

• carry pin,

• auxiliary pin.

Each pin is characterised by the unique value of the weighting factorwi . We
assume the weighting factor values as listed in Table 3.2, which are similar to the
values suggested by Lewis in [26].

The random logic pinis a pin of the logic block in a traditional general-purpose
FPGA architecture. Such a pin is connected typically to an input or output of

3.2 Cost metrics 63

Pin type Weighting factorwi

Random-logic 1.0
Word-level data-path 0.5
Bit-level data-path 0.7

Carry 0.5
Auxiliary 0.6

Table 3.2. Weighting factors of logic block pins in different FPGA architectures.

a look-up table. Because the random logic pin serves as a reference, it is char-
acterised by the weighting factorwi = 1. Further, we distinguish two types of
data-path pins, that is the word-level data-path pin and the bit-level data-path pin.
The word-level data-path pinmodels the input and output data pins of a recon-
figurable architecture in which the interconnect structure has the form of buses.
The bus-like implementation implies that the word-level control is applied to the
switches in switch blocks and output connection blocks and to the multiplexers in
input connection blocks of such an interconnect structure. The word-level control
of routing resources and the reduced flexibility of the connection blocks (due to
the regularity of data-paths) decrease the cost of the reconfigurable interconnect.
For that reason, the word-level data-path pins are assumed to have half of the cost
of the random logic pins [26], that iswi=0.5. This is rather a conservative estimate
[26]. Because of the dedicated, scarce routing resources that are associated with
the input and outputcarry pins, such pins are also characterised by the weighting
factor wi=0.5. Thebit-level data-path pinis similar to the word-level data-path
pin except for the fact that it is associated with the routing resources that are bit-
level rather than word-level controlled (i.e. each switch and each multiplexer have
independent control bits). To reflect the difference in the interconnect cost, such
pins are characterised by the weighting factorwi=0.7. This is also a conservative
estimate. Finally, theauxiliary pinmodels the secondary ports of a reconfigurable
architecture (e.g. a shift input/output port in the Xilinx Virtex II logic block archi-
tecture [119]). The auxiliary pins are usually connected to the dedicated routing
resources. The weighting factorwi=0.6 is assigned to this type of pin.

Equations 3.21 and 3.22 show the way of estimating the logic block areaAL and
the routing areaAR of a logic tile according to the proposed model.α andβ are
proportionality coefficients.

AL = α ·Nlmb (3.21)

AR = β ·Pw (3.22)

Because the exact ratio between the logic areaAL and the routing areaAR is dif-
ficult to establish, the value of the coefficientsα andβ is unknown. Therefore,
instead of using one cost metric we use two independent cost metricsmapping

64 Basic concepts

cost with respect to logic MCL and mapping cost with respect to routing MCR,
which are calculated as follows.

MCL = NLB×Nlmb (3.23)

MCR = NLB×Pw (3.24)

The parameterNLB in Equations 3.23 and 3.24 is the number of logic blocks that
are needed to implement a benchmark function. Simple macro-functions are se-
lected as a benchmark set. The parameterNLB for such functions is derived us-
ing dedicated macro-generators (commercial FPGAs) or is found by performing a
manual mapping (the proposed domain-oriented FPGAs).

Note, that the reduction of the LUT memory bitsNlmb in the implementation of
a given function has a double advantage. First, it reduces the area contribution
of logic (see Equation 3.23). Second, it also reduces the configuration time of
a device since a smaller amount of data must be up-loaded to the configuration
(control) memory.

We have selected three state-of-the-art commercial FPGAs as the reference in the
model-based comparison. The FPGAs are: Xilinx Virtex II [119], Altera Stratix
[6], and Atmel AT40K [8]. The FPGAs are characterised with the parametersNlmb

andPw that are listed in Table 3.3.

Number of pins
FPGA architecture Inputs Outputs Carry Carry Auxiliary Nlmb Pw

input output

Xilinx Virtex II 40 16 2 2 6 128 62
Altera Stratix 40 20 1 1 1 160 62
Atmel AT40K 4 2 0 0 0 16 6

Table 3.3. Characterisation of the logic cost (Nlmb) and the routing resource cost (Pw) in
the selected state-of-the-art commercial FPGAs.

3.3 Conclusions

In this chapter we surveyed basic definitions and properties of Boolean and arith-
metic functions that are of importance for the work presented in this thesis. We
also discussed two novel properties of a binary addition that simplify its LUT-
based implementation. The properties describe the method of folding the sum
function of a full adder (the inverting-based folding type I) and the method of fold-
ing the sum functions and carry output function of ann-bit adder (the inverting-
based folding type I). The result of such folding is a factor of two reduction in

3.3 Conclusions 65

the number of LUT memory bits. Some implementation aspects of the proposed
properties were also considered.

To enable a comparison of the domain-oriented reconfigurable logic architectures
with the selected state-of-the-art FPGAs, we proposed a cost metric called the
mapping cost. The mapping cost of a given function is calculated based on the
number of logic blocks that are needed to implement the function and on the area
of a logic tile. Dependent on the available data, the logic tile area is the VLSI
implementation area of the tile or the estimate of that area derived based on the
model.

66 Basic concepts

Chapter 4

DATA-PATH-ORIENTED
RECONFIGURABLE ARCHITECTURE

In this chapter we present the first of the domain-oriented reconfigurable logic
architectures, namely thedata-path-oriented architecture. The architecture is op-
timised towards the mapping of processing kernels that are data-path dominated.
Themodified data-path-oriented architecture, which is characterised by the word-
level control applied to its logic and routing resources, is also presented.

4.1 Introduction

4.1.1 Characteristics of the application domain

The implementation of kernels dominated by the data-path type of processing re-
veals aregular natureof data-paths. The regularity is expressed both in a similar
type of logic components as well as in the structured interconnect between them.
The data-path implementation is alsomodular, that is, it consists of a number of
word-level units with clearly distinguishable boundaries. We will refer to such
units asmacro-blocksor macro-components. The macro-blocks are usually im-
plemented in abit-slicedway. This means thatn identical basic blocks (slices)
are used to implement the functionality of ann-bit macro-block. The 1-bit slices
are abutted together in one direction. This type of implementation implies specific
directions for the data and control flows, typically being orthogonal to each other.
The connections between bit-slices, that is connections within macro-blocks, are
usually short (local), while the connections between macro-blocks may be of any
length. We will refer to the communication featuring such types of connections
asintra-macroandinter-macrocommunication, respectively. This is illustrated in
Figure 4.1, where an example of a 16-bit data-path structure is given.

In the data-path-dominated processing kernels, multi-bit (i.e. word-level) arith-
metic functions and multi-bit logic functions are the most common; simple control
functions, which sometimes are also present in such kernels, are implemented as
random logic.

68 Data-path-oriented reconfigurable architecture

16

1

16

macro−component

data flow

control flow

bit slice inter−macro communicationintra−macro communication

.

.

bit slice 0
bit slice 1
bit slice 2

Figure 4.1. An example of a 16-bit data-path.

4.1.2 State-of-the-art

Though data-paths feature multi-bit processing, most LUT-based FPGAs support
an implementation of only single-bit operations in their basic functional elements.
For example, a 1-bit arithmetic addition is typically implemented with two small
LUTs (e.g. 3-LUTs) or one bigger LUT (e.g. 4-LUT). If two 3-LUTs are used,
they implement the sums and carry outputco signals of a 1-bit adder. The LUTs
may have independent inputs (e.g. as in Altera FLEX [5]) or shared (connected)
inputs (e.g. as in Atmel AT40K [8]). If a single 4-LUT is used for the adder
implementation, such a LUT implements the adder sum signals. The carry output
signalco is generated in a dedicated carry circuitry (e.g. as in Xilinx Virtex-E
[118]). The first and second implementation method are shown in Figures 4.2(a)
and (b), respectively.

3−LUT
a
b

(a)(a)

3−LUT

(b)

a
b

4−LUT

s

s

carry circuitry

ci

ci

co

co

Figure 4.2. Typical methods of implementing a 1-bit addition operation in state-of-the-art
FPGAs: (a) an implementation using small LUTs with shared inputs, (b) an
implementation with a bigger LUT and a dedicated carry circuitry.

The problem of the above-mentioned implementations is their high cost. Note,
that in both cases in total 16 configuration bits are needed for the implementation

4.2 Applying the inversion-based folding type I 69

of a 1-bit addition only. Also, if coarse LUTs are used, a larger delay of the selec-
tion multiplexer (see Figure 3.1) reduces the overall performance of the mapped
function. Applying the carry-select addition method (e.g. as in Altera Stratix [6])
diminishes this problem slightly.

The multi-bit arithmetic functions and multi-bit Boolean functions are imple-
mented using several look-up tables. Complex Boolean functions, having many
inputs and typically a single binary output, are implemented according to Shan-
non’s expansion (see Figure 3.2).

4.2 Applying the inversion-based folding type I

The problems of the full adder implementation in the described state-of-the-art
LUT-based FPGAs can be avoided if the inversion-based folding type I (proposed
in Section 3.1.2) is applied. In Figure 4.3, the suggested implementation of a 1-bit
adder according to the folding property is shown.

0
1

a

b

controlled inversion
block

o
o

dedicated carry logic

2−LUT

o

10

a

o

ci

co

ci
ci

ci

co

s

s

s

Figure 4.3. The implementation of a 1-bit addition based on the proposed inversion-based
folding type I.

The 2-LUT generates the values of the sum signals of the full adder. Dependent
on the polarisation of the carry input signalci, the sum signal is generated directly
(ci = 0) or by the inversion of the LUT output (ci = 1). The inversion is performed
in the controlled inversion block which two alternative implementations have been
illustrated. The dedicated carry logic [123] takes care for the generation of the
carry output signalcoof the full adder.

The key benefit of the proposed implementation of the LUT-based addition is a
considerable reduction in cost. First of all, the total number of LUT memory

70 Data-path-oriented reconfigurable architecture

bits that is required for such an implementation is afactor of 4 lowerthan the
number of bits needed in the state-of-the-art implementation approaches discussed
in Section 4.1.2. Furthermore, the critical path delay, which depends on the delay
of the carry signalcout, is relatively short because the dedicated carry logic is used.
The delay of the sum signals is also short since it is determined by the delay of
a 4:1 multiplexer in the 2-LUT (rather than the delay of a 8:1 multiplexer or a
16:1 multiplexer in the LUT implementations shown in Figures 4.2(a) and (b),
respectively).

4.3 Logic element

The logic element is a basic component of the data-path-oriented reconfigurable
logic architecture. The logic block structure is similar to the structure described
in Section 4.2. The choice of such a structure is justified by its cost-efficiency in
implementing arithmetic functions (via the inversion-based folding type I) and by
its capability of implementing random logic functions (via a 2-LUT).

To allow an implementation of arithmetic functions other than a 1-bit addition
only, the original 2-LUT structure from Figure 4.3 is augmented with some extra
elements as shown in Figure 4.4. The AND gate at the LUT input enables the
mapping of a basic cell of an array multiplier. It implements the logical AND-
operation on the data input signalai and the multiplicand bit carried by the signal
y. The XOR gate at the second LUT input is used to implement addition or subtrac-
tion operations, which can be chosen dynamically by assigning the proper value
to the signalz (i.e. z = 1 for a subtraction operation andz = 0 for an addition
operation). The signalz and the data signalbi are inputs of the XOR gate.

As it has been indicated by the results of the application-domain characterisation in
Section 2.3.1 (conclusion 4), a considerable number of multiplexers can be iden-
tified in the mapped designs. The importance of having support for an efficient
implementation of multiplexers in FPGA structures has also been confirmed by
Agarwala [2] and Cherepacha [26]. For these reasons, we assume that the logic
element of the data-path-oriented architecture must allow mapping of a 2:1 mul-
tiplexer. However, the multiplexer function (i.e.fmux= a · x̄+ b · x, wherea and
b are multiplexer inputs, andx is a selection input) cannot be folded using the
inversion-based folding type I. Therefore, the 2:1 multiplexer function cannot be
directly implemented using a 2-LUT. To overcome this limitation, a dedicated 2:1
multiplexer LMUX is placed in parallel to the 2-LUT (see Figure 4.4). The mul-
tiplexer has its first primary input connected to the 2-LUT output, and the second
primary input connected to thebi input of the 2-LUT; the selection input of the
multiplexer is connected to the signalx.

The complete structure of the logic element is shown in Figure 4.4. The logic
element has two primary inputsai andbi , the carry inputcii , and three secondary

4.4 Logic block 71

coi

ici

ia

ib

M

M

M

M

M

2−LUT

10

Controlled inversion
block

dp

rl
y

z

i

i

Carry logic

LMUX

MUXA

0

1

x

Figure 4.4. Logic element of the data-path-oriented reconfigurable logic architecture. The
logic element implements a bit-slice of a data-path. (M is a configuration
memory bit.)

inputsx, y andz. It also has two primary outputs, that is, a data-path outputdpi

and a random logic outputrl i , and a carry outputcoi . The data-path outputdpi

is used when the logic element is configured as a bit-slice of a data-path. In such
a case, at the higher level of hierarchy (i.e. in a logic block), amulti-bit result is
produced. The outputrl i is used when a random logic function is mapped. This
yields asingle-bitresult at the higher level of hierarchy.

The outputs of the multiplexer LMUX and the gate XOR in the controlled in-
version block are multiplexed in the multiplexer MUXA. The multiplexer plays
a twofold role: it allows the output signal of the 2-LUT to bypass the controlled
inversion block (if a Boolean function is mapped andx = 0), and it allows imple-
mentations of multi-bit functions other than arithmetic functions (e.g. multi-bit
Boolean functions and data-path multiplexers). Note also, that the implementation
of the controlled inversion block with the XOR gate is chosen. The carry circuitry
has the structure identical to that shown in Figure 4.3.

4.4 Logic block

The logic block constitutes the next level of hierarchy of the data-path-oriented
reconfigurable logic architecture. At this level, the implementation of multi-bit
arithmetic functions and Boolean functions with more than two inputs is enabled.

72 Data-path-oriented reconfigurable architecture

4.4.1 Basic concept

In Section 2.1.2 we showed that different natures of data-path and random logic
functions impose conflicting requirements on the FPGA architecture. This causes
that the design of a cost-efficient reconfigurable logic device that supports both
types of functionality is not trivial.

The essence of the proposed solution is the observation that the different nature of
the mapped functions can be preserved without sacrificing the mapping efficiency
of the final architecture. This is achieved by exploiting characteristic properties of
the mapped functions. For example, data-paths have a regular bit-sliced structure
and random logic does not (see Section 4.1.1). Furthermore, data-path functions
produce a multi-bit output signal using relatively simple (fine-grain) logic ele-
ments, whereas typical random logic functions produce a single-bit output signal
and benefit from more complex (coarser) logic elements (see the detailed discus-
sion in Section 2.1.2). Therefore, assuming that the complexity of a LUT-based
logic element is a function of its look-up table size (see Section 3.2.4), and thus the
number of LUT configuration bits (see Section 3.1.1), the problem of designing a
cost-efficient data-path-oriented reconfigurable logic architecture is the problem
of an efficient utilisation of the available LUT configuration bits.

The architectural concept that follows such reasoning is illustrated in Figure 4.5.
Assuming that a 4-LUT is a good candidate for random logic mapping [86], and
exploiting the fact that a 2-LUT suffices to implement basic arithmetic functions
(see Section 3.1.2), we determine the optimal complexity of our logic block as
being 16 configuration bits. The key observation is that these 16 configuration
bits can be treated as either one group (an equivalent of a 4-LUT) if random logic
functions are to be mapped, or they can be decomposed into four groups of four
configuration bits (an equivalent of four 2-LUTs) if data-path functions are to be
mapped. To realise that, for the random logic mapping use is made of Shannon’s
expansion (see Equation 3.2), while for the data-path mapping the inversion-based
folding type I (see Theorem 3.2) is exploited.

The reconfigurable logic block designed according to this concept allows the im-
plementation of 4-bit data-path functions (i.e. operating on 4-bit arguments and
producing a 4-bit result), and random logic functions with up to four logic vari-
ables (i.e. having four 1-bit inputs and producing a 1-bit output signal). In that
sense, the proposed structure of the logic block can be viewed as offering amixed-
level granularity(in contrast to the fine-level and course-level granularity of clas-
sical reconfigurable architectures).

4.4.2 Structure in detail

The detailed structure of the data-path-oriented logic block is shown in Figure 4.6.
The logic block consists of four logic elements (bit-slices) which structure has
been discussed in Section 4.3 (the ‘Selection’ block, which is shown as a black

4.4 Logic block 73

16
 c

on
fi

gu
ra

tio
n

bi
ts

Implementation of datapath functions

Implementation of random logic functions

1 x 4−LUT

4 x 2−LUT

Figure 4.5. The architectural concept behind the logic block targeting data-path-oriented
applications. Dependent on the functional mode, the configuration bits can be
organised to implement a 4-LUT (random logic) or four 2-LUTs (data-paths).

box in each logic element, contains a multiplexer MUXA depicted in Figure 4.4).
The 4-bit granularity is chosen for the logic block as such granularity has been
found to be the best for the data-path mapping [26][95].

The logic block has eight primary inputsin1 . . . in8 and three secondary inputst1,
t2, t3. The secondary inputt1 also plays a role of a carry inputci. The logic block
has four primary outputsout1 . . .out4 and a carry outputco. The primary inputs of
the logic block are connected to the primary inputs of all logic elements via the
input selection block. The data-path outputsdpi of successive logic elements are
fed directly to the output selection block. In contrast, the random logic outputs
rl i of the logic elements are merged together in the global multiplexers MUX1,
MUX2 and MUX3. The output of the multiplexer MUX3 is also directed to the
output selection block. Finally, the flip-flop block allows the outputs of the logic
block to be registered if necessary.

The secondary inputst1, t2, t3 of the logic block provide three signals which are
multiplexed with the static signals ‘0’ and ‘1’ established by local configuration
bits. As a result, three global signalsx, y, andz (see Figure 4.6) are generated. The
signalsx, y, zplay the role of global control signals and are distributed to all logic
elements. This type of connectivity is typical for data-paths [26]. The signalx is
also connected to theci1 input of the first logic element. The first logic element

74 Data-path-oriented reconfigurable architecture

M M

MUX3

dp 1

in 1

in 2

in 3

in 4

in 5

in 6

in 7

in 8

a1

a2

a3

a4

b4

b3

b2

b1

b4

b2

rl 1

dp 2

dp 3

dp 4

out2

out3

out4

out1

t 2t 3

M

M

co

1ci

co1

2ci

co2

3ci

co3
4ci

co4

a1

t 1 ci/

b1

carry
logic

carry
logic

carry
logic

In
pu

t s
el

ec
tio

n
bl

oc
k

LMUX

LMUX

LMUX

y

MUX1

MUX2

z

d

e

f

Logic element

rl 2

rl 3

rl 4

LMUX

4
out

1

x

b3

2−LUT

2−LUT

2−LUT

carry
logic

2−LUT

Se
le

ct
io

n
Se

le
ct

io
n

Se
le

ct
io

n
Se

le
ct

io
n

FF

Fl
ip

−F
lo

ps

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

Figure 4.6. The architecture of the data-path-oriented logic block.

4.4 Logic block 75

produces a carry output signal on itsco1 output, which is connected to theci2 input
of the second logic element, and so on. In this way the carry chain in formed.

The meaning of the signalsx, y, z depends on the functional mode of the logic
block. This is reflected in Table 4.1, where possible settings of these signals are
given. The sharing of the same set of inputs (i.e.t1, t2, t3) for receiving several dif-
ferent signals allows the reduction of the logic block pin number, and consequently
the reduction of the routing resource complexity (see Section 3.2.4).

Operation x y z
Boolean (single-bit and multi-bit) – 1 0

Addition with carry ci 1 0
Addition without carry 0 1 0
Subtraction with carry ci 1 1

Subtraction without carry 1 1 1
Addition/Subtraction with carry ci 1 t3

Addition/Subtraction without carry 0/1 1 t3
Multiplication with carry ci t2 0

Multiplication without carry 0 t2 0
Multiplexing t1 t2 t3

Table 4.1. The setting of the global signalsx, y, z dependent on the type of operation
implemented in the logic block. For the detailed description of the functional
modes of the logic block see Section 4.5.

The function of theinput selection blockis to define the connections between the
primary inputs and outputs of the logic block, the primary inputs of logic elements,
and the control inputs of the global multiplexers in the logic block dependent on
the functional mode of the logic block. This is implemented by the structure shown
in Figure 4.7(a). The structure comprises two sets of multiplexers. The first set of
multiplexers defines the connections between the primary inputsin1 . . . in8 and out-
putsout1 . . .out4 (feedback signals) of the logic block, and the pairs of the primary
inputsa1, b1 . . .a4, b4 of successive logic elements. The first layer of multiplexers
in the first multiplexer set increases the routing flexibility of the architecture (see
details Section 4.6.1). The second layer of multiplexers in this set takes care for the
proper distribution of the input signals of the logic block to the primary inputs of
the logic elements. The way of distributing the signals depends on the functional
mode (i.e. the data-path or random logic mode) of the logic block (see details in
Section 4.5). The second set of multiplexers of the input selection block imple-
ments the connections between the inputsin3, in′

7, in′
8 and the control inputsd, e, f

of the global multiplexers MUX1, MUX2 and MUX3 of the logic block (see Fig-
ure 4.6). This type of connectivity is essential when multiplexers or single-output
Boolean functions are mapped.

By analogy, theoutput selection blockdefines the connections between the outputs

76 Data-path-oriented reconfigurable architecture

in 1

in 2

in 3

in 4

in 5

in 6

in 7

in 8

1b

2a

3a

3b

2b

4a

4b

1a
out 1

out 2

out 3

out 4

in’6

in’5

in’4

in’3

in’1

in’2

in’7

in’ 8

out 1

out 2

out 3

out 4

dp 1

dp 2

dp 3

dp 4

1a
1

1

1

1

0

0

0

0

Flip−flops

MUX3

Output selection block

4
out

in’ 8in’7in’3

(b)(a)

y y z

fed
M

FF

FF

FF

FF

M
M

M

Figure 4.7. The selection blocks for: (a) inputs, (b) outputs (for the sake of clarity, the
flip-flop block is also shown). The primary inputs and outputs of the logic
block are marked with bold dots.

of the logic elements and the outputs of the logic block. As shown in Figure 4.7(b),
a set of 2:1 multiplexers is used for this purpose. The multiplexers select either
data-path outputsdp1 . . .dp4 or a random logic output available at the output of
the global multiplexer MUX3. Similarly to the first stage of multiplexers of the
input selection block, the output selection block is also used to increase the routing
flexibility. This aspect is discussed in detail in Section 4.6.1.

4.5 Functional modes

The proposed logic block has two primary functional modes, that is:

• Data-path modein which a 4-bit result is produced using the data-path out-
putsdpi of the logic elements; the 2-LUTs of all logic elements in the logic
block are configured to implement the same function.

• Random logic modein which a 1-bit result is produced using random logic
outputsrl i of the logic elements and the global multiplexers MUX1, MUX2,
and MUX3 of the logic block; typically, the 2-LUTs of the logic elements
in the logic block implement different logic functions.

We assume that the logic block can be configured to operate only in one of the
above-mentioned modes at the same time. Therefore, if the number of logic ele-
ments required to implement a given function is smaller than four logic elements
that are available in the logic block, the unused logic block resources will be

4.5 Functional modes 77

waisted. Though this might have an impact on the utilisation of the reconfig-
urable logic array (slightly more logic blocks might be required), it reduces the
complexity of the control structure in each logic block, and thus the logic block
cost. Below, different configurations of the logic block in each of the functional
modes are discussed in detail. The examples of such configurations are shown in
Figure 4.8.

4.5.1 Data-path mode

Addition/Subtraction. The logic block can be configured to implement up to 4-
bit addition or subtraction operations. The type of operation can be determined
statically (by assigning ‘0’ for an addition and ‘1’ for an subtraction to the global
control signalz) or dynamically (by connecting the global signalz to an external
control signal available on the inputt2 of the logic block). A 2-LUT in each logic
element stores half of the bits from the full adder truth table (see Section 3.1.2). If
a binary addition is implemented, the AND and XOR gates in the logic elements
are unused (i.e.y = 1 andz= 0). If a binary subtraction is to be implemented,
the XOR gate in each logic element inverts one of the adder arguments, that is
z= 1. The dedicated carry logic with the carry input signal assigned to the input
t1 implements the carry path. For the arithmetic operations with the word-size of
arguments smaller than 4-bits, proper programming of the 2-LUTs guarantees that
the resultant carry output signal can be directed to the carry outputco of the logic
block. An alternative implementation is the change of the application code (an
addition on multiples of 4-bits). The output signals of the addition or subtraction
operations are available on the data-path outputsdpi of each logic element.

Multiplication. The logic block supports the implementation of an unsigned array
multiplier with the ripple-carry addition [80]. A 4-bit section of such a multiplier
(i.e. four cells) can be implemented in one logic block. For this purpose, each logic
element is configured as a binary adder (z = 0) with an AND gate on one of its
inputs. The global signaly, which is one of the inputs of the AND gate, provides
the value of the multiplicand bit. In this mode, four partial product signals are
generated on the data-path outputsdpi , and the carry output signal is available on
thecooutput of the logic block.

Data-path multiplexers. The data-path multiplexers are characterised by multi-
bit inputs and outputs. Such multiplexers are implemented using LMUX-es and
data-path outputsdpi of the logic elements. The selection signals of the multiplex-
ers are provided by the global signalsx, y, z of the logic block (i.e.t1, t2, andt3
secondary inputs of the logic block) via the input selection block. For example, a
4-bit 2:1 multiplexer can be implemented in a single logic block.

Multi-bit Boolean functions. The logic block allows an implementation of
Boolean functions with up to two 4-bit arguments (e.g. a 4-bit 2-input AND).
The functions are implemented by programming 2-LUTs according to the truth
table of the mapped Boolean function. As a result, all LUTs have the same con-

78 Data-path-oriented reconfigurable architecture

c

c

c

c

c

c

c

c

c

c

c

c

Random logic mode

Random logic multiplexers4−in Boolean logic (4−LUT)

1−bit 8:1 MUX4−input AND

x y z x y z

Arithmetic Arithmetic Arithmetic Multi−bit Boolean logic Data−path multiplexers

Datapath mode

4−bit multiplication4−bit addition 4−bit OR 4−bit 2:1 MUX

x y zx y zx y zx y zx y z

4−bit counter

XOR

XOR

XOR

XOR

AND

AND

AND

AND

Figure 4.8. Examples of the configuration of the logic block in the data-path and random
logic modes.

figuration. In each logic element, the selection multiplexers MUXA and MUXB
select the signal generated in the 2-LUT and direct this signal to the data-path
outputdpi .

Binary counters. The logic block allows the implementation of binary up- and
down-counters of up to 4-bits. To enable that, the multiplexers of the first stage of
the input selection block that are associated with the odd-numbered inputs of the
logic block (i.e. i1, i3) are configured to select the registered feedback signals of

4.6 Interconnect 79

the logic block; the multiplexers associated with the even-numbered inputs of the
logic block (i.e. i2, i4) select the inputs signals, which are assumed to carry the
static values. The binary representation of the static signal determines the counting
step. Dependent on the type of binary counter, the logic elements of the logic block
are configured as adders (counters up) or subtractors (counters down).

4.5.2 Random logic mode

Boolean functions. Boolean functions with up to four binary inputs (e.g. a 4-
input OR) can be implemented in the logic block. A 4-input Boolean function is
implemented according to Shannon expansion (see Section 3.1), and is mapped
onto the set of four 2-LUTs and the set of global multiplexers MUX1, MUX2 and
MUX3. The random logic outputsrl i of the logic elements are used, and the final
output is available on the output of the multiplexer MUX3.

Random logic multiplexers. In this mode, multiplexers with multiple binary in-
puts and a single binary output (e.g. an 8:1 multiplexer) can be mapped. Similarly
to the implementation of the data-path multiplexers, the LMUX-es of the logic
elements are used and the global signalsx, y, z play the role of the selection sig-
nals of the mapped multiplexer. However, instead of the data-path outputsdpi ,
the random logic outputsrl i of the logic elements and global multiplexers MUX1,
MUX2, MUX3 combining these outputs are used.

Shift registers. By chaining the flip-flops in the logic block, shift registers of dif-
ferent lengths (maximally four) can be implemented. The input of the mapped shift
register is connected to a limited set of inputs of the logic block, while the output
signal of the shift register (dependent on the shift register length) is available on
one of the outputs of the logic block.

4.6 Interconnect

As we already mentioned, the key advantage of the proposed logic block is its
ability to implement both coarse-grain data-paths functions and fine-grain ran-
dom logic functions. The increased functional capacity of the architecture in the
data-path mode (compared to traditional FPGAs) might have, however, a negative
impact on the routing resource complexity. This is because a coarse logic block
requires more inputs and outputs, and thus more interconnect wires to distribute
signals. This translates into more configuration bits and larger control structures
that are needed to select and distribute these signals [52]. In this section we show
that by a careful design of the interconnect architecture the increase in the routing
resource complexity, and thus the implementation cost of the proposed architec-
ture, can be avoided.

80 Data-path-oriented reconfigurable architecture

4.6.1 Optimisation of the interconnect architecture

To optimise the interconnect structure we exploit the characteristics of data-path
and random logic functions. In the implementation of the data-path functions,
which operate on multi-bit arguments, relativelymany routing tracksare needed
(e.g. minimum 12 tracks for a 4-bit arithmetic function). However, only alim-
ited flexibility is required to connect the input and output pins of the data-path
elements to such tracks. This is because the regularity and bit-sliced structure of
the data-path elements cause that the signals are distributed in a bus-like fashion
(i.e. with a predefined order). Therefore, there is a strict correspondence between
the consecutive pins of the data-path elements and the tracks they connect to. At
the same time, in the implementation of the random logic functions relativelyfew
routing tracksare needed (e.g. at least five tracks for a 4-input Boolean function).
However, an irregular character of random logic functions enforceshigh flexibility
between the input and output pins of the logic elements and their routing tracks.

We notice that the high flexibility of the input and output connection blocks1 that
is required by the random logic functions can be compensated by extra routing
tracks. Such tracks are available if the implementation of the data-path functions
must be supported at the same time. This is possible in our logic block because
it has a different functional capacity (granularity), and thus a different number of
active inputs and outputs, dependent on the functional mode.

The implementation of this concept is illustrated in Figure 4.9. Essentially, the
input connection block together with the first stage of the input selection block
(the input section) and the last stage of the output selection block together with the
output connection block (the output section) are involved. The position of these
blocks with respect to other components of the logic tile is shown in Figure 4.9(a),
while in Figure 4.9(b) the implementation details are given. In Figure 4.9(c), the
change in the connectivity between the input and output pins of the logic block
and the routing tracks is explained. For the sake of simplicity, a narrower routing
channel than the one required in practice is shown in the figures. The implemen-
tation of the input and output sections for the actual channel width is analogous.

In Figure 4.9(b), the routing channel consisting of three 4-bit busesA, B andC
is shown. The input pinsin1 . . . in8 and output pinsout1 . . .out4 of the logic block
connect to these buses via theinput and output connection blocks, respectively.
The connection blocks determine to how many and to which routing tracks the
pins connect to. In the figure, each input pin connects to three out of 12 routing
tracks, which yields the input connection block flexibilityFci=0.25; each output
pin also connects to three out of 12 routing tracks, which yields the output connec-
tion block flexibility Fco=0.25. This corresponds to the situation in the data-path

1Theflexibility of the input (output) connection block(Fci or Fco, respectively) is the ratio be-
tween the number of tracks an input (output) pin connects to and the total number of tracks in the
routing channel [14].

4.6 Interconnect 81

In
pu

t s
el

ec
tio

n
bl

oc
k

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

. . .

.

Switch box

LE 1

LE 2

LE 3

LE 4

Input section Output section

=

in’1

0
1
2
3
0
1
2
3
0
1
2
3

C

in’4 in’5 in’6 in’7 in’8in’3in’2

in 2 in 3 in 5 in 7in 4 in 6 in 8in 1 1out 2out 3out 4out

1a 2a 3a 4a1b 2b 3b 4b

1out’ 2out’ 3out’ 4out’

(a)

(b)
Input section Output section

(c)

’folding’

Data−path modeData−path mode Random logic mode

’folding’

Input section Output section

Random logic mode

=

Output connection blockInput connection block

In
pu

t s
el

ec
tio

n
bl

oc
k

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

A

B

Logic element

Inputs: Outputs:

In
pu

t c
on

ne
ct

io
n

bl
oc

k

FF
s

O
ut

pu
t c

on
ne

ct
io

n
bl

oc
k

10 10 10 10 10 10 1010
0 1 0 1 0 1 0 1

FFs

Figure 4.9. The modifiable connection block flexibility in the routing architecture of the
proposed data-path-oriented reconfigurable logic device: (a) a logic tile (an
abstract view), (b) the implementation of the input and output connection
blocks with the exposed first and last stages of the input and output selec-
tion blocks, respectively, (c) the input and output connectivity to the routing
tracks dependent on the functional mode (the bold markers show examples of
the track assignment); the ‘folding’ mechanism of the data-path connection
blocks is explained.

82 Data-path-oriented reconfigurable architecture

mode. In the random logic mode, the input and output connection block flexi-
bilities can be modified because of the presence of the input and output selection
blocks, respectively. The first stage of the input selection block, consisting of a
set of 2:1 multiplexers controlled by independent configuration bits, allows a pre-
liminary selection of four pairs of signals. The signals of each pair are identical
(e.g. in′

1–in′
5, wherein′

1 = in1 and in′
5 = in1). Because in this mode the number

of relevant inputs decreases from eight to four, the input connection block flexibil-
ity per each relevant pin doubles (theinput connection block folding) yielding the
value of the input connection block flexibilityFci=0.5. By analogy, the last stage
of the output selection block, consisting of a set of 2:1 multiplexers controlled by
a single configuration bit, allows the distribution of the output signal of a random
logic function to any of the four outputs of the logic block. Because in this case
the number of relevant outputs is reduced from four to one, the output connec-
tion block flexibility quadruples (theoutput connection block folding) yielding the
value of the output connection block flexibilityFco=1. The flexibility of the input
and output connection blocks obtained in the data-path and random logic modes
and the associated folding procedure are explained in detail in Figure 4.9(c).

The described implementation of the connection blocks allows the reduction of
the total capacitive load of the routing tracks. This is because smaller multiplex-
ers and less switches are needed to implement the input and output connectivity,
respectively. As a result, the delay and power consumption of the complete device
can be reduced.

4.6.2 Complete interconnect architecture

In this section, we present an example of the interconnect structure for the logic
block of the data-path-oriented reconfigurable device. The interconnect structure
has been found through the analysis of the requirements of data-path and random
logic functions. The data-path requirements were established via manual mapping
experiments of a selected set of DSP kernels, whereas the requirements of random
logic functions were obtained by the automated mapping of the MCNC logic syn-
thesis benchmark set [120]. In the automated mapping flow, the following tools
were used: SIS [90] for logic synthesis, FlowMap [32] for the LUT-based technol-
ogy mapping, and a modified version of VPR [105] for placement and routing.

We found that the interconnect architecture with a channel widthW=46 tracks
suffices to map the aforementioned benchmarks. The architecture includes the
following types of routing resources:

• general-purpose,

• special,

• direct.

4.6 Interconnect 83

L1
L1
L4
L4
L4
L4

4
4

4

4
4

4

4

4
4

4

L4
L4
L4
L4

in
1

in
2

in
3

in
4

in
5

in
6

in
7

in
8

ou
t1

ou
t2

ou
t3

ou
t4

.

. .
 .

. .
 .

L1

L1

L4

44 4 44 44 4

Logic block

4 4

6

direct connections

special routing

general−purpose routing

switch block

4 4 6

Figure 4.10. Routing resources of the proposed data-path-oriented reconfigurable logic
architecture. A fragment of the input and output connection blocks is also
shown.

The general-purpose routing resourcesinclude ten 4-bit buses: two buses of the
length-one (L1)2 and two sets of four buses of the length-four (L4). Thespecial
routing resourcesconsist of six routing tracks that are used to route the secondary
signals (connected to the pinst1, t2 andt3 of the logic block) and the carry output
signal (connected to the pinco of the logic block). In addition, thedirect rout-
ing resourcesprovide a set of fast local connections between neighbouring logic
blocks. Each logic block produces a 4-bit direct output signal and receives 4-bit di-

2The length of a programmable wire segment (or a bus) is the number of logic blocks such a
segment spans (before entering a next switch block) [14].

84 Data-path-oriented reconfigurable architecture

rect input signals. Such signals are distributed via direct connections in horizontal,
vertical, and diagonal directions. The direct routing supports the implementation
of functions which heavily rely on the local connectivity between their logic ele-
ments (e.g. intra-communication of data-path macro-blocks).

To increase the cost advantage of the proposed logic block, its connection blocks
were implemented as described in the previous section, that is, having different
input and output connection flexibilities dependent on the operating mode. Con-
sequently, connection block flexibilitiesFci=0.25 andFci=0.5 were established for
the connectivity of inputs in the data-path and random logic modes, respectively,
and connection block flexibilitiesFco=0.25 andFco=1 for the connectivity of out-
puts in the data-path and random logic modes, respectively. In addition, the char-
acteristics of data and control signal flows were exploited to determine a relative
position of the connection blocks. As a result, the connection blocks were placed
only at two rather than four sides of the logic block, similarly to the implementa-
tion of the connection blocks in the Atmel AT40K FPGA devices [8]. Also, the
switch block implementation similar to that used in the Atmel devices was cho-
sen. In such a switch block, a switching point between the crossing horizontal
and vertical routing tracks is implemented with only three instead of six switches.
Although this limits the flexibility of the general-purpose routing, it is sufficient
for the mapping of data-path-oriented processing kernels that the presented archi-
tecture aims at.

The schematic diagram representing the routing resources of the proposed data-
path-oriented reconfigurable logic architecture is shown in Figure 4.10.

4.7 Modified data-path-oriented reconfigurable architecture

The main advantage of the above-described data-path-oriented reconfigurable
logic architecture is the ability of the efficient mapping of the data-path functions
without sacrificing the random logic mapping capabilities. Though such function-
ality matches well the requirements of typical data-path-oriented applications (see
Section 4.1.1), it can be optimised further if a target application domain is nar-
rowed to the data-path-like functionality only. This happens, for example, if a
reconfigurable logic fabric is used for the implementation of processing kernels
with hardly or no random logic (e.g. small accelerators for multimedia applica-
tions as reported in [69]). We exploit this fact and propose several modifications
to the original data-path-oriented reconfigurable logic architecture aiming at a fur-
ther reduction of its intrinsic cost.

4.7.1 Basic concept

In Figure 4.11, a 4-bit data-path element and its bit-slice implementation are
shown. By default, each bit slice implements the same function. If bit-slices are

4.7 Modified data-path-oriented reconfigurable architecture 85

implemented using look-up tables (see Section 4.4), configuration bits of all look-
up table are identical. This is obviously redundant. The way to overcome this is to
replace independent sets of configuration bits with a single set only. This concept
is illustrated in Figure 4.12, where four 2-LUTs share the same four configuration
bits. The described here idea is similar to the concept of configuration bit-sharing
that has been described in [26].

D
at

a−
pa

th
el

em
en

t

4

4
4

1

2

3

identical bit−slices

4

. .
 .

. .

1

1

1

1

1

1

1

1

Figure 4.11. A 4-bit data-path element and its bit-slice implementation. Each bit-slice
realises the same function.

2−LUT2−LUT 2−LUT 2−LUT

Bit−slice 2Bit−slice 3 Bit−slice 1Bit−slice 4

M
M
M
M

Figure 4.12. The concept of configuration bit sharing applied to the LUT-based data-path
bit slices.

4.7.2 Logic block

We apply the above-described idea to the architecture of the data-path-oriented
logic block from Figure 4.6. The configuration bits of each 2-LUT are removed,
leaving 4:1 multiplexers only. Instead of having independent sets of configuration
bits, all 4:1 multiplexers of the look-up tables use the same set of four config-
uration bits (see Figure 4.12), and thus implement the same function. Such an
implementation of the look-up tables allows the reduction of the total number of
LUT memory bits in the logic block by a factor of four (i.e. from 16 bits to 4 bits)
compared to the original data-path-oriented logic block architecture.

Because the modified data-path-oriented logic block does not support mapping of
4-input Boolean functions (no 4-LUT functionality), the input selection block of
the original logic block is removed and replaced by four 2:1 multiplexers. The
multiplexers allow the selection of feedback signals (e.g. a binary counter map-
ping). Thus, four primary inputs of the logic block (i.e.in1, in3, in5 and in7)

86 Data-path-oriented reconfigurable architecture

M M

dp 1

in 1

in 2

in 3

in 4

in 5

in 6

in 7

in 8

b4

b3

b2

b1

t 2t 3

M

M

co

1ci

co1

2ci

3ci

4ci

co4

dp 4

dp 2

dp 3

M

b1

a1

a2

b2

a3

b3

a4

b4

out2

out3

out4

out1

a1

out1

out2

out3

out4

co2

co3

t 1 ci/

carry
logic

carry
logic

carry
logic

LMUX

LMUX

LMUX

yz

Logic element

LMUX

4
out

1

Input selection block

x

2−LUT

2−LUT

2−LUT

carry
logic

2−LUT

Se
le

ct
io

n
Se

le
ct

io
n

Se
le

ct
io

n
Se

le
ct

io
n

FF

Fl
ip

−F
lo

ps

Figure 4.13. The architecture of the modified data-path-oriented logic block.

4.7 Modified data-path-oriented reconfigurable architecture 87

are connected to the inputs of the logic elements via the 2:1 multiplexers, while
the other four primary inputs (i.e.in2, in4, in6 and in8) are connected directly.
Since the mapping of random logic multiplexers does not make sense anymore,
the global multiplexers MUX1, MUX2, MUX3 are also removed. As a result,
the control signalsd, e, f and random logic output signalsrl1 . . . rl4 dissappear.
Furthermore, the output selection block, which selects between random logic and
data-path output signals, is also removed. The other elements of the logic block
remain unchanged and comprise the structure as shown in Figure 4.13.

4.7.3 Functional modes

As indicated above, applying the configuration bit sharing to the data-path-
oriented logic block removes its random logic functionality. In consequence,
the modified data-path-oriented logic block supports the implementation of 4-bit
arithmetic functions, 2-input 4-bit Boolean functions, 4-bit data-path multiplexers,
and 4-bit binary counters in the same way as was explained in Section 4.5. Note,
that the functionality of the modified logic block resembles the functionality of an
ALU operating on nibble-level arguments. However, compared to traditional ALU
structures (e.g. such as described by Mead and Conway in [71]), the proposed
here structure has a lower implementation cost.

4.7.4 Interconnect

The modified data-path-oriented logic block has the same type of routing resources
as the original data-path-oriented architecture. The key difference between them
is, however, the granularity of the control word which configures such resources.
In the modified architecture configuration bits of the routing resources are shared
among 4-bit routing elements (i.e. multiplexers, switches, etc.) rather than used
to control them independently (see example in Figure 4.14). This is the so-called
nibble-level control. This type of implementation allows a considerable reduction
of the routing cost.

M

M M

switch

4−bit bus

switch block

Figure 4.14. Example of the nibble-level control applied to the interconnect resources.
Only three configuration bits rather than twelve are needed to control a 4-bit
bus in the switch block (one configuration bit controls all switches of a given
direction).

88 Data-path-oriented reconfigurable architecture

4.8 Benchmarking

In this section, the results of benchmarking the data-path-oriented reconfigurable
architectures are discussed. To compare the proposed architectures with state-of-
the-art FPGAs, two benchmarking methods were used. In the first method the
implementation-based cost metrics (see Section 3.2.3) were applied, while in the
second method the model-based cost metrics (see Section 3.2.4) were used.

4.8.1 Benchmarking using the implementation-based cost metrics

The data-path-oriented architecture was compared assuming the mapping costMC
as the primary cost metric. Therefore, the complete mapping procedure with com-
plex functions (kernels) chosen as a benchmark set was applied to assess this ar-
chitecture. The modified data-path-oriented architecture was compared using the
data-path mapping costMCDP and random logic mapping costMCRL.

Framework

Given the logic tile areas of commercial FPGAs as in Table 3.1, and scaling them
to the target technology (0.13µm CMOS), the mapping costMC (see Equation
3.18) of a given benchmark function was calculated based on the value of the
parameterNLB established after a mapping experiment. For the mapping onto
commercial FPGAs, the Alliance package (for the Xilinx device) and Quartus II
package (for the Altera device) were used.

To limit design effort, the logic tile of the data-path-oriented architecture was im-
plemented in standard-cells of a 0.13µmCMOS process. The netlist of the logic
tile was prepared using a schematic entry of the Cadence design environment.
The interconnect architecture of the tile was verified for routability using a cus-
tom (Philips internal) placement and routing tool called Pythagor [34]. The logic
tile netlist was also verified functionally using Philips transistor-level simulator
called Pstar [91]. The gate-level netlist in the Verilog format, which was writ-
ten out from the schematic of the tile, was synthesised using Cadence BuildGates
Synthesis [23], and placed and routed using Cadence Silicon Ensemble [21]. The
synthesis tool was also used to derive timing characteristics of the tile. Due to
lack of a dedicated technology mapping tool, the synthesis and mapping for the
data-path-oriented architecture were performed using Synplify Pro mapping tool
[97]. The tool was modified to account for some specific features of the proposed
architecture3. The parameterNLB was derived after this step.

3Because of a generic architecture of the logic block in the Atmel AT40K FPGA device (a func-
tional equivalent of a 4-LUT), such a device was chosen to model the functionality of our data-path-
oriented FPGA in Synplify Pro. The use of the Atmel-specific mapper enabled the preservation of
some of the design components as macro-blocks (e.g. adders), and mapping them efficiently onto
the logic blocks of our architecture. Such a mapping was performed during an optimisation step
realised in the custom optimiser. The task of the optimiser was to optimise an Atmel-specific LUT-

4.8 Benchmarking 89

Figure 4.15 shows the profile of 15 processing kernels from industrial designs that
were selected as a benchmark set. The profile characterises the dominant type of
processing of the kernels (see Section 2.3.1).

Figure 4.15. The ‘type of processing’ profile of the benchmark set. (The numbers in the
figure correspond to the benchmark numbers in Table 4.2 and Table 4.3.)

Assuming the benchmark set as described above, the results of benchmarking our
data-path-oriented FPGA with two commercial FPGAs, that is Xilinx Virtex-E and
Altera APEX 20KE, are shown in Table 4.2. For each benchmark function, the
table lists the number of required logic blocksNLB and the mapping costMC. The
mapping cost ratios (MC ratio) that are also listed in Table 4.2 were calculated
assuming the mapping cost of our FPGA as a reference. The mapping costs of
commercial FPGAs that were normalised with regard to the mapping cost of our
FPGA are shown in a graphical form in Figure 4.16.

Table 4.3 compares the FPGA mapping costs with the areaA of a standard-cell-
based ASIC implementation of each benchmark. The area figures for the ASIC im-
plementation were obtained after the synthesis step only (in Cadence BuildGates),
and therefore does not include the interconnect (routing) cost. The area ratios (A
ratio) between the FPGA and ASIC implementations were calculated assuming
the ASIC area as the reference. Such results are also shown in a graphical form in
Figure 4.17.

based netlist exploiting specific properties of our architecture. The implemented optimisations
included: efficient packing of data-path multiplexers to the logic blocks, efficient implementation
of multiplexers with one or two inverted inputs, mapping of 2-input Boolean functions onto 2-
LUTs of the logic block, packing multi-bit Boolean functions, and packing flip-flops to the logic
blocks.

90 Data-path-oriented reconfigurable architecture

D
P

-oriented
X

ilinx
V

irtex-E
A

ltera
A

P
E

X
20K

E
N

o.
B

enchm
ark

N
L

B
M

C
N

L
B

M
C

M
C

ratio
N

L
B

M
C

M
C

ratio
[–]

[µ
m

2]
[–]

[µ
m

2]
[–]

[–]
[µ

m
2]

[–]

1
des

451
3414521

166.5
3079751

0.90
76.5

2520293
0.74

2
tim

er
189

1430919
62

1146814
0.80

23.1
761029.5

0.53
3

uart
274

2074454
86.5

1599991
0.77

33.1
1090480

0.53
4

usb
17305

131016155
5302.5

98080343
0.75

2294.8
75602186

0.58
5

video
ctrl

279
2112309

97
1794209

0.85
32.5

1070713
0.51

6
m

em
ptr

367
2778557

258.5
4781475

1.72
135.8

4473931
1.61

7
m

ix
select

170
1287070

63
1165311

0.91
30.9

1018001
0.79

8
erosion

426
3225246

186
3440442

1.07
57.9

1907516
0.59

9
ppone

133
1006943

58
1072826

1.07
25.5

840097.5
0.83

10
lam

bda
299

2263729
124

2293628
1.01

55.8
1838331

0.81
11

alpha
105

794955
60.5

1119069
1.41

28.1
925754.5

1.16
12

betha
105

794955
60.5

1119069
1.41

28.1
925754.5

1.16
13

asu8
268

2029028
270

4994190
2.46

208.8
6878916

3.39
14

dft4
1188

8994348
694

12836918
1.43

455.4
15003153

1.67
15

cordic
289

2188019
169.5

3135242
1.43

85.7
2823387

1.29
Average

1.20
1.08

Table
4.2.

M
apping

cost
com

parison
for

the
proposed

data-path-oriented
F

P
G

A
and

tw
o

com
m

ercialF
P

G
A

s.
T

he
data-path-oriented

F
P

G
A

is
chosen

as
a

reference.
N

ote,thata
custom

ised
m

apping
flow

and
a

full-custom
im

plem
entation

are
assum

ed
forthe

com
m

ercialF
P

G
A

s.

4.8 Benchmarking 91

Figure 4.16. Mapping cost of the commercial FPGAs using the mapping cost of the data-
path-oriented FPGA as a reference.

Because a dedicated mapping tool was not available, the mapping cost of the mod-
ified data-path-oriented architecture was evaluated using the data-path mapping
cost MCDP (see Equation 3.19) and the random logic mapping costMCRL (see
Equation 3.20). The area of the logic tile in the modified data-path-oriented FPGA,
necessary for the calculation of both cost metrics, was obtained by a standard-
cell-based implementation of the tile in the same way as for the other data-path-
oriented architecture. Also, the worst-case delay of the tileT was derived. To
enable a relative comparison of both data-path architectures, the logic tile of the
original data-path-oriented architecture was also compared using theMCDP and
MCRL cost metrics.

Three data-path-optimised FPGAs from academia described in Table 3.1 were
chosen for the assessment of the data-path-oriented architectures. The results of
such an assessment are shown in Table 4.4. For each FPGA, the organisation of
a logic block, the logic tile areaALT (after scaling to a 0.13µmCMOS process),
and the worst-case delayT are mentioned. The mapping costsMCDP andMCRL

(in µm2) that were calculated based on the available data are also listed. The table
makes a distinction between FPGA architectures with the random logic mapping
capabilities (the first group) and FPGA architectures with only multi-bit Boolean
function mapping capabilities (the second group). Consequently, for the second
group of architectures only the data-path mapping costMCDP is given.

92 Data-path-oriented reconfigurable architecture

ASIC
No. Benchmark A A ratio A ratio A ratio

(DP-oriented) (Xilinx) (Altera)
[µm2] [–] [–] [–]

1 des 19798.8 172.5 155.6 127.3
2 timer 5168.1 276.9 221.9 147.3
3 uart 8655.8 239.7 184.8 126.0
4 usb 792878.6 165.2 123.7 95.4
5 video ctrl 12286.8 171.9 146.0 87.1
6 memptr 35361.5 78.6 135.2 126.5
7 mix select 8865.6 145.2 131.4 114.8
8 erosion 17934.9 179.8 191.8 106.4
9 ppone 5605.8 179.6 191.4 149.9
10 lambda 17692.9 127.9 129.6 103.9
11 alpha 8117.2 97.9 137.9 114.0
12 betha 8103.1 98.1 138.1 114.2
13 asu8 45752.1 44.3 109.2 150.4
14 dft4 99316.8 90.6 129.3 151.1
15 cordic 35224.3 62.1 89.0 80.2

Table 4.3. ASIC cost (areaA) versus FPGA mapping cost. Area ratios (A ratio) for the
data-path-oriented FPGAs and two commercial FPGAs are calculated assuming
the ASIC implementation as a reference.

Figure 4.17. Mapping cost of the commercial and proposed FPGAs using the ASIC im-
plementation area as a reference.

4.8 Benchmarking 93

FPGA Logic block ALT T MCDP MCRL

architecture organisation [µm2] [ns] [µm2/bit] [µm2/4-LUT]

LP-PGA II 5/3-LUT 14271 4.2 7136 9514
DP-oriented 4×2-LUT 7571 2.0 1893 7571

CFPA 4-bit logic 4275 1.0 1069 n/a
CHESS 4-bit ALU 6208 1.9 1552 n/a

DP-oriented 4×2-LUT 5824 1.8 1456 n/a
(modified) (shared memory)

Table 4.4. Area and performance comparison of the data-path-oriented and academia FP-
GAs. The area figures for the proposed FPGAs refer to their standard-cell rather
than full-custom implementations. All logic tile areas are scaled to a 0.13µm
CMOS technology.

4.8.2 Benchmarking using the model-based cost metrics

The data-path-oriented and modified data-path-oriented reconfigurable architec-
tures were also compared using the area model of an FPGA logic tile that has
been discussed in Section 3.2.4. The parametersNlmb andPw, which according
to the model characterise the logic and routing resources of the data-path-oriented
FPGAs, are listed in Table 4.5.

Number of pins
FPGA architecture Inputs Outputs Carry Carry Auxiliary Nlmb Pw

input output

Data-path-oriented 8 4 0 1 3 16 11
Data-path-oriented 8 4 0 1 3 4 8

(modified)

Table 4.5. Characterisation of the logic cost (viaNlmb) and the routing resource cost (via
Pw) in the proposed data-path-oriented FPGA architectures.

Given the number of LUT memory bitsNlmb and the weighted pin numberPw as
listed in Tables 3.3 and 4.5, the mapping cost with respect to logicMCL (see Equa-
tion 3.23) and the mapping cost with respect to routingMCR (see Equation 3.24)
were calculated for the set of modern FPGAs (see Section 3.2.4) and the proposed
data-path-oriented FPGAs. Relatively simple functions (basic functional primi-
tives of the data-path, random logic, and memory type) were used as a benchmark
set, and the values of the parameterNLB were obtained according to the method
explained in Section 3.2.4.

Table 4.6 shows the results of the comparison using the above-mentioned metrics.
For each commercial and data-path-oriented FPGA architectures, the table lists the
values ofNLB, and two mapping cost components, that isMCL andMCR.

For a convenient analysis, the data from Table 4.6 are also shown graphically in
Figures 4.18–4.27. Additionally, Table 4.7 summarises the results from Table 4.6

94 Data-path-oriented reconfigurable architecture
S

tate-of-the-artcom
m

ercialF
P

G
A

architectures
X

ilinx
V

irtex
II

A
ltera

S
tratix

A
tm

elAT
40K

B
enchm

ark
N

L
B

M
apping

cost
N

L
B

M
apping

cost
N

L
B

M
apping

cost
function

–
M

C
L

M
C

R
–

M
C

L
M

C
R

–
M

C
L

M
C

R

8-bitA
D

D
1

128
62

0.8
128

50
8

128
48

16×
16

M
U

LT
34

4.25K
2.11k

73
11.41K

4.53k
256

4K
1.54k

2:1
M

U
X

/4-bit
0.5

64
31

0.4
64

25
4

64
24

8:1
M

U
X

/1-bit
0.5

64
31

0.5
80

31
7

112
42

16:1
M

U
X

/1-bit
1

128
62

1
160

62
15

240
90

2-in
O

R
/4-bit

0.5
64

31
0.4

64
25

4
64

24
3-in

N
O

R
/1-bit

0.125
16

8
0.1

16
6

1
16

6
16-in

A
N

D
/1-bit

0.5
64

31
0.4

64
25

5
80

30
4:16

D
E

C
O

D
2

256
124

1.6
256

99
16

256
96

16-long
2-bitS

R
E

G
0.25

32
16

3.2
512

198
32

512
192

P
roposed

data-path-oriented
F

P
G

A
architectures

D
ata-path-oriented

D
ata-path-oriented

(m
odified)

B
enchm

ark
N

L
B

M
apping

cost
N

L
B

M
apping

cost
function

–
M

C
L

M
C

R
–

M
C

L
M

C
R

8-bitA
D

D
2

32
22

2
8

16
16×

16
M

U
LT

64
1K

704
64

256
512

2:1
M

U
X

/4-bit
1

16
11

1
4

8
8:1

M
U

X
/1-bit

1
16

11
1

4
8

16:1
M

U
X

/1-bit
3

48
33

3
12

24
2-in

O
R

/4-bit
1

16
11

1
4

8
3-in

N
O

R
/1-bit

1
16

11
2

8
16

16-in
A

N
D

/1-bit
4

64
44

5
20

40
4:16

D
E

C
O

D
6

96
66

8
32

64
16-long

2-bitS
R

E
G

8
128

88
8

32
64

Table
4.6.

T
he

m
apping

costcom
parison

betw
een

the
state-of-the-artand

proposed
data-path-oriented

F
P

G
A

architectures.

4.8 Benchmarking 95

by showing the relative comparison of the costsMCL andMCR of the compared
FPGA architectures, and assuming the data-path-oriented FPGA architecture as a
reference.

Figure 4.18. 8-bit adder. Figure 4.19. 16-bit multiplier.

Figure 4.20. 2:1 4-bit multiplexer. Figure 4.21. 8:1 1-bit multiplexer.

Figure 4.22. 16:1 1-bit multiplexer. Figure 4.23. 2-input 4-bit OR.

4.8.3 Discussion

The data from Table 4.2, obtained using the area-based cost metricMC, indicate
that the proposed data-path-oriented FPGA compares favourably with the com-
mercial FPGA devices. This is because the mapping cost of our FPGA, averaged

96 Data-path-oriented reconfigurable architecture

Figure 4.24. 3-input 1-bit NOR. Figure 4.25. 16-input 1-bit AND.

Figure 4.26. 4:16 decoder. Figure 4.27. 16-long 2-bit shift register.

Commercial→ Xilinx Virtex II Altera Stratix Atmel AT40K
Proposed↓ MCL ratio MCR ratio MCL ratio MCR ratio MCL ratio MCR ratio

DP-oriented av=2.78 av=1.96 av=4.04 av=2.28 av=3.69 av=2.01
mn=0.25 mn=0.18 mn=1.0 mn=0.55 mn=1.0 mn=0.55
mx=4.25 mx=3.0 mx=11.4 mx=6.43 mx=7.0 mx=3.82

DP-oriented av=10.59 av=2.57 av=15.62 av=3.03 av=14.2 av=2.66
(modified) mn=1.0 mn=0.25 mn=2.0 mn=0.38 mn=2.0 mn=0.38

mx=17 mx=4.12 mx=45.63 mx=8.84 mx=28.0 mx=5.25

Table 4.7. The summary of the results from Table 4.6. The mapping costs w.r.t. logic
MCL and w.r.t. routingMCR of three commercial FPGAs are normalised with
respect to the mapping costs of the data-path-oriented architectures (compari-
son per rows). The average cost ratioav for 10 benchmarks, minimummnand
maximummxcost ratios are given.

4.8 Benchmarking 97

over 15 different benchmark kernels, is 17% and 8% smaller than the mapping
costs of the Xilinx Virtex-E and Altera APEX 20KE devices, respectively4. The
mapping cost clearly depends on the type of the mapped function. The highest ben-
efit of our architecture is, as expected, for the data-path-dominated benchmarks,
such as benchmarks no. 10–15 in our benchmark set (see Figure 4.15). The av-
erage mapping cost of such benchmarks is for the proposed architecture 34% and
37% smaller than the mapping costs for the Xilinx and Altera devices.

All these results were obtained assumingfull-customimplementations of the com-
mercial FPGAs and astandard-cell-basedimplementation of the proposed FPGA.
Also, an unoptimised mapping flow (reuse of the Atmel mapper) was applied to
map onto our FPGA. The latter had a strong impact on the obtained results. A
simple experiment has shown that by only slightly rewriting the benchmark code
(benchmark no. 10), the mapping cost of our FPGA could be decreased by 17%5.
It is interesting to note that even with such assumptions, the mapping cost of the
standard-cell-based data-path-oriented FPGA is close to the mapping cost of the
full-custom Altera APEX 20KE.

The comparison of the FPGA and ASIC mapping costs (see Table 4.3) indicates
that for a large number of benchmarks there is more than a factor of 100 difference
in area between both implementation styles. Such a high factor can be partially
explained by the fact that the cost of interconnect has not been taken into account
in the ASIC implementations. The average difference in area between the ASIC
implementation and the implementation of our FPGA, calculated based on the
results from Table 4.3, is about 142 times.

In Table 4.4, the results of the comparison of both proposed data-path-oriented FP-
GAs with the FPGAs from academia are presented. The results show that standard-
cell-based implementation of our data-path-oriented architecture has 3.77 times
lower data-path mapping costMCDP than the LP-PGA II FPGA device. The ran-
dom logic mapping costMCRL of our device is 1.26 times lower. In the same
comparison, the standard-cell-based implementation of the modified data-path-
oriented architecture is characterised by 1.36 times higher data-path mapping cost
MCDP than the best data-path-optimised and full-custom implemented FPGA from
academia, that is CFPA. Note, that applying the nibble-level control to the logic
and routing resources of the modified data-path-oriented architecture yields a 23%
cost reduction if data-paths are mapped, compared to the similar cost of the bit-
level controlled data-path-oriented architecture.

The benchmarking of the data-path-oriented architectures using the model-based
cost metrics has enabled their technology-independent comparison. Consequently,
only the architectural aspects could be taken into account while comparing these

4Differently: the mapping costs of the Xilinx and Altera devices are 20% and 8% higher.
5This is because the Atmel mapper does not recognise incrementers, decrementers and com-

parison functions. When such functions are found, they are dissolved and mapped as random logic
rather than being preserved as macros.

98 Data-path-oriented reconfigurable architecture

architectures with modern commercial FPGAs. The summary of the results shown
in Table 4.7 indicates that the data-path-oriented architecture reduces both the
logic as well as the routing costs. On average, the logic cost for the Xilinx, Altera
and Atmel FPGAs is 2.78, 4.04 and 3.69 times higher, respectively, than for the
data-path-oriented FPGA. The routing cost for the same devices is on average 1.96,
2.28 and 2.01 times higher than for the data-path-oriented FPGA. As expected, the
modified data-path-oriented architecture reduces further the logic cost (because of
the applied configuration bit sharing). The logic cost of the Xilinx, Altera and
Atmel devices compared to this architecture is 10.59, 15.62 and 14.2 times higher,
respectively. The commercial FPGAs also have one average 2.57, 3.03 and 2.66
times higher routing costs than the modified data-path-oriented FPGA.

4.9 Conclusions

The data-path-oriented reconfigurable logic architecture presented in this chap-
ter targets applications with the data-path-dominated processing kernels. Because
typical data-paths contain a considerable amount of arithmetic, the data-path-
oriented architecture was optimised towards an efficient mapping of basic arith-
metic operations. The optimisation was achieved by applying the inversion-based
folding type I. We showed that a factor of four reduction in the total number of
LUT memory bits compared to the implementations of the state-of-the-art FPGAs
can be achieved in this way.

The logic block of the proposed FPGA was designed to support a cost-efficient
mapping of multi-bit (data-path) functions and reasonably efficient mapping of
functions with a single-bit output (random logic). We also designed an intercon-
nect structure for such a logic block which allows an efficient utilisation of the
routing resources both when multi-bit and single-bit output functions are mapped.
In this way, an unnecessary increase of the amount of routing resources can be
avoided.

We also discussed a modification of the data-path-oriented architecture, namely
the modified data-path-oriented architecture. Such an architecture exploits the
concept of the configuration bit sharing by applying the nibble-level-control to its
logic and routing resources. The modified data-path-oriented architecture offers a
further reduction of the implementation cost.

Two comparison methods applied to assess the quality of the proposed architec-
tures showed that they are superior to the commercial FPGAs for the data-path
applications. This is because the architectures offer a similar functionality at the
lower implementation cost. For example, for a mixture of different benchmarks
our standard-cell-based data-path-oriented FPGA is on average 17% and 8% less
expensive than the Xilinx and Altera FPGAs. If only the data-path benchmarks
are considered, the architecture shows 34% and 37% cost reduction, respectively.

Chapter 5

RANDOM-LOGIC-ORIENTED
RECONFIGURABLE ARCHITECTURE

In this chapter, the second type of the domain-oriented reconfigurable logic archi-
tectures, namely therandom-logic-oriented architectureis discussed. The archi-
tecture targets applications with the random-logic-dominated processing kernels.

5.1 Introduction

5.1.1 Characteristics of the application domain

The networks of combinatorial and sequential logic elements that are connected to-
gether in an arbitrary way are often regarded asrandom logic. The term ‘random’
is used to reflect lack of structure, that is, no apparent regularity in logic and inter-
connect. Typical examples of random-logic are bit-level manipulations, Boolean
operations, and control logic. Bit-level manipulations are simple logic and shift
operations usually performed on pairs of bits. Boolean operations are complex
logic (Boolean) functions performed on multiple 1-bit inputs and producing rel-
atively few outputs (often a single output only). Finally, control logic are condi-
tional logic functions with a state and feedback loops (typically implemented as
finite state machines). Though in the implementation of such functions combina-
tional and sequential logic elements are dominating, some arithmetic computations
can also be encountered.

5.1.2 State-of-the-art

The general-purpose character of today’s FPGAs causes that the random logic
mapping capabilities of FPGAs are compromised with their arithmetic mapping
capabilities. Therefore, though the implementation of random logic would benefit
from larger look-up tables (see the detailed discussion in Section 2.1.2), in practice
a 4-LUT is chosen as a basic logic element of an FPGA logic block. Two main
FPGA vendors, that is Xilinx and Altera, almost exclusively use 4-LUTs in their
devices.

100 Random-logic-oriented reconfigurable architecture

5.2 Logic element

Following the observations from Section 4.1.1 and Section 5.1.1, we propose a
logic element which is optimised for the mapping of random logic still allowing the
mapping of simple arithmetic structures. The logic element constitutes the lowest
level of hierarchy of the random-logic-oriented reconfigurable logic architecture.

The (technology) mapping onto 4-LUTs is found to produce the most cost-efficient
designs [3]. The cost-efficiency in this case is regarded as the area-delay product
that describes the mapped design netlist. We choose thus a 4-LUT as a fundamen-
tal component of the proposed logic element. However, to enable the mapping
of arithmetic, we decompose a monolithic 4-LUT into two 3-LUTs, each having
an independent output. Note, that a 3-LUT suffices to generate a single output
of an arithmetic operation (i.e. a sum or a carry output) without using any addi-
tional logic. Consequently, 3-LUTs can be used to generate two outputs of a 1-bit
arithmetic operation, or be combined together in a 4-LUT to generate a 4-input
Boolean function according to Shannon’s expansion (see Section 3.1.1).

M

d i

c i

b i

a i

ci i

MUXB
MUXA

0
1

3−LUT

3−LUT

ar i

bl i

coi

Figure 5.1. Logic element of the random-logic-oriented reconfigurable logic architecture.

The implementation details of such a basic logic element are shown in Figure 5.1.
The logic element consists of two 3-input look-up tables (3-LUTs) and two 2:1
multiplexers. The inputs of either LUT are paired together. Two of the three LUT
inputs are connected directly to the primary inputsai andbi of the logic element,
while the third input is connected to the output of the multiplexerMUXA. This
multiplexer selects between the third primary inputci of the logic element and the
carry inputcii . The multiplexerMUXA is controlled by a configuration bitM. The
fourth primary inputdi of the logic element is connected to the control input of
the multiplexerMUXB, which performs a selection of the LUT outputs. The logic
element has two primary outputs: an arithmetic outputari and a Boolean output

5.3 Logic block 101

bli . The arithmetic output is the output of the first 3-LUT, while the Boolean output
is the output of the multiplexerMUXB. The secondary output of the logic element
is the carry outputcoi , which is connected to the output of the second 3-LUT.

The suggested logic element has a structure very similar to that of commercial
FPGA devices, such as Altera APEX [4] and Atmel AT40K [8], for example. The
advantage of our logic element is its very simple structure, though (no extra gates
enhancing the functionality).

5.3 Logic block

5.3.1 Basic concept

The following observations have been taken into account while designing the logic
block, which is the next level of hierarchy of the random-logic-oriented reconfig-
urable logic architecture. Firstly, implementations of complex Boolean functions
benefit from large look-up tables [94, 47, 3]. Secondly, random logic functions
often share some of their inputs when producing a multi-output result [14, 61].
Thirdly, feedback loops are common in random logic designs [14]. And finally,
typical arithmetic functions are coarse, that is, they have multi-bit arguments [26].
To meet these requirements, we build the logic block as a cluster of four logic ele-
ments. The resulting granularity of the logic block matches well the requirements
of random logic [14, 3] and arithmetic [26] functions.

5.3.2 Structure in detail

The complete structure of the logic block is shown in Figure 5.2. The logic block
consists of fourlogic elementsand the set of global multiplexers MUX1, MUX2
and MUX3. The eleven primary inputsin1 . . . in11 of the logic block are directed to
theinput selection block, which detailed implementation is shown in Figure 5.3(a).
The input selection block includes two sets of 16:1 multiplexers: the first set has
16 multiplexers, while the second set only three multiplexers. The function of
each multiplexer is to select an input signal from eleven primary inputsin1 . . . in11

of the logic block or four feedback signals connected to the outputsout1 . . .out4 of
the logic block.

The outputs of the multiplexers in the first set of the input selection block are
connected directly to the inputsai ,bi ,ci ,di of successive logic elements, where
i = 1. . .4 is the index of a logic element. Each logic element generates a pair
of signals, which are available on its arithmeticari and Booleanbli outputs. The
arithmetic outputsar1 . . .ar4 are directed to the output selection block, while the
Boolean outputsrl1, rl2 andrl3, rl4 are merged in the global multiplexers MUX1
and MUX2, respectively. The global multiplexer MUX3 combines the outputs
of the multiplexers MUX1 and MUX2. The control signalse, f and g of the

102 Random-logic-oriented reconfigurable architecture

M

M

M

M

1in

2in

3in

5in

9in

8in

7in

6in

10in

11in

co

ci

1a

1b

1c

1d

2d

2c
2b
2a

3d

3c
3b
3a

4a

4b

4c

4d

ar1

bl1

ar2

bl2

ar3

bl3

ar4

bl4

1a

ci 1

co1

ci 2

co2

ci 3

co3

co4

ci 4

co
1

co
2

co
3

out 1

out 2

out 3

out 4

MUX1

MUX2

MUX3

0
1

3−LUT

3−LUT

0
1

3−LUT

3−LUT

0
1

3−LUT

3−LUT

0
1

3−LUT

3−LUT

e

f

Logic element

4
out

4in

MUXC

g

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

Fl
ip

−f
lo

ps

In
pu

t s
el

ec
tio

n
bl

oc
k

Figure 5.2. Logic block of the random-logic-oriented reconfigurable logic architecture.

5.3 Logic block 103

global multiplexers come from the second set of multiplexers of the input selection
block. The outputs of the global multiplexers MUX1, MUX2, and MUX3 are also
directed to the output selection block.

out 1

out 2

out 3

out 4

a 4

d

c

b

a 1

d

c

b
in

out

in
out

in
out

in
out

in
out

in
out

in
out

in
out

1in

2in

3in

4in

5in

6in

7in

8in

9in

10in

11in

1ar

2ar

3ar

4ar
4bl

1bl

2bl

3bl

g

inou
t inou
t inou
t

fe

MUX1

MUX2

Output selection block

4

1

1

1

1

0

0

0

0

Flip−flops

1a

out
in . .

 .
.

11

4

4

4

1

1

1

MUX3

(b)(a)

FF

FF

FF

FF

Figure 5.3. (a) Input selection block and (b) output selection block with flip-flops block.
Each of the multiplexers in the figure is controlled by an independent set of
configuration memory bits.

The output selection block, which is shown in Figure 5.3(b), selects four final
signals of the logic block. For that purpose, the output selection block includes
four 4:1 multiplexers that select between the arithmetic and Boolean outputs of
the logic elements as well as the outputs of the global multiplexers MUX1, MUX2
and MUX31. To guarantee a high level of flexibility, each of the multiplexers in
the output selection block is controlled by an independent set of configuration bits.

The outputs of the output selection block are directed to theflip-flop block (see
Figure 5.3(b)). This block serves two purposes: it permits to register each output
of the logic block, and it allows the implementation of shift registers. The latter
is achieved if the first stage of multiplexers of the flip-flop block is configured
to select the signals from their inputs numbered 1. This results in chaining the
flip-flops. The input of the shift register is a signal available on the first primary
input a1 of the logic block, and the output is any of the outputsout1 . . .out4 of the
logic block. The multiplexers of the first and second stage of the flip-flop block
are controlled independently.

1Note, that by connecting the outputs of the multiplexers MUX1 and MUX2 to the outputs of
the logic block, the implementation of independent 5-input logic functions is enabled.

104 Random-logic-oriented reconfigurable architecture

The logic block has a secondary inputci and a secondary outputco. These ports
of the logic block are used while implementing arithmetic functions, and play the
role of the carry input and carry output, respectively. The signal from the portci is
connected to one of the inputs of the multiplexer MUXA in the first logic element.
The multiplexer MUXA of the next logic element receives one of its input signals
from the second 3-LUT in the preceeding logic element. Finally, the second 3-
LUT of the last logic element has its output connected to thecooutput of the logic
block. In this way, a carry chain is formed.

5.4 Functional modes

The logic block of the random-logic-oriented reconfigurable logic architecture is
designed to support two functional modes, that is:

• Random logic modein which at least one and at most four Boolean functions
are generated. The outputs of the functions are available on the Boolean
outputsbli of the logic elements or on the outputs of the global multiplexers
MUX1, MUX2 and MUX3.

• Arithmetic modein which arithmetic functions of up to four bits are imple-
mented. The outputs of the arithmetic functions are available on the arith-
metic outputsari of the logic elements. The carry chain, with the input and
output on the secondary portsci andco of the logic block, respectively, is
implemented by the chained look-up tables.

Unlike the logic block of the data-path-oriented architecture, the logic block of
the random-logic-oriented architecture can be configured in such a way that a part
of its logic resources implements a random logic function, while the other part
implements an arithmetic function. This improves the resource utilisation.

5.4.1 Random logic mode

In the random logic mode, Boolean functions are implemented in the logic ele-
ments that are configured as 4-LUTs. The logic block offers the following imple-
mentation options: four Boolean functions of four inputs, two Boolean functions
of five inputs, or any Boolean function of six inputs. The inputs of the functions
are selected from the set of eleven primary inputsin1 . . . in11 of the logic block,
and outputs are available on the logic block outputsout1 . . .out4. In the implemen-
tations of five-input and six-input logic functions, the global multiplexers MUX1,
MUX2 and MUX3 are involved. The possibility of connecting the outputs of the
logic block to its inputs (see Figure 5.3(a)), enables the implementation of func-
tions with a feedback loop (e.g. finite state machines).

5.5 Interconnect 105

In the random logic mode, the implementation ofrandom logic multiplexersis
also possible. In such a case, the multiplexers MUXB of the logic elements and
the global multiplexers MUX1, MUX2, and MUX3 are used. Maximally, a 8:1
multiplexer can be implemented in the logic block.

Also, shift registerswith the maximal delay of four clock cycles can be imple-
mented using the flip-flop block resources.

5.4.2 Arithmetic mode

In the arithmetic mode, arithmetic functions with up to 4-bit arguments are
mapped. This is done by configuring each logic element of the logic block as
two 3-LUTs with the shared inputs. The first 3-LUTs of all logic elements gener-
ate the sum signals on their arithmetic outputsari , and all second 3-LUTs generate
the carry signals on theircoi outputs. Two inputs of each pair of LUTs are con-
nected to the primary inputs of the logic block, while the third input is the carry
signalcii selected by the multiplexer MUXA. The carry signalcii of each logic ele-
ment is coupled to the carry outputcoi−1 of the previous logic element (see Figure
5.2). Only the first logic element receives its carry signalci1 from the secondary
inputci of the logic block, and the carry output signalco4 of the last logic element
connects to the secondary outputco of the logic block. The output multiplexer
MUXC allows the selection of one of the intermediate carry signals of the logic
elements (i.e.co1, co2, co3). In this way, a configuration of the logic block in a
combined arithmetic and random logic mode is possible.

5.5 Interconnect

The interconnect structure of the proposed random-logic-oriented reconfigurable
logic architecture has been established via mapping experiments using the MCNC
circuits [120] as a primary benchmark set. In addition, the FPGA routing design
guidelines from [14] have been followed.

We set the number of input ports of the logic block as 11 rather than 16, as it
would be implied from the total number of the 4-LUT inputs (i.e. 4 x 4 inputs).
According to [14, 3], 10 input ports for a logic block implemented as a cluster of
four 4-LUTs suffice to guarantee nearly the 100% logic utilisation if random logic
functions are mapped. This is because such functions often share some of their
inputs [61]. Despite that, we added one extra port (in11) to the logic block to enable
mapping of 8:1 multiplexers (a 8:1 multiplexer needs eight data inputs and three
control inputs). This also relaxes the routing resource requirements slightly. Note,
that eleven input ports is also sufficient for the mapping of arithmetic functions,
since the most coarse (4-bit) function requires only eight input ports (a carry port
is not counted). The reduction of the logic block port number is essential for the
reduction of the total routing cost of the architecture [52].

106 Random-logic-oriented reconfigurable architecture

Furthermore, we chose an uniform routing architecture with the channel width
W=42 tracks. The complete routing architecture includes three types of routing
resources, namely:

• general-purpose,

• special, and

• direct.

Thegeneral-purpose routing resourcesare used to route arbitrary types of signals
of the mapped design. These resources consist of 40 routing tracks, 60% of which
is of the length-four (L4) and 40% of the length-eight (L8). The routing tracks
of the length-four are implemented with pass transistor switches, while the tracks
of the length-eight with bi-directional buffers. The input and output connection
blocks of the general-purpose routing have the 50% connection flexibility, that is
Fci=0.5 andFco=0.5, respectively. The disjoint type of the switch block [14] with
the 50% connection population for the routing tracks of the length-eight is used.
Thespecial routing resourcesinclude two pairs of horizontal and vertical routing
tracks. The tracks are meant for the routing of carry signals if arithmetic func-
tions are mapped. One pair of the routing tracks is of the length-one (L1), while
the other pair is of the length-four (L4). Thedirect routing resourcesimplement
fast connections between neighbouring logic blocks. The direct connections are
implemented in the so-called full topology [85], that is, they connect logic blocks
on the left, right, bottom, top, and diagonally. There are four direct connections

1

general−purpose routing

special routing

Logic block

4 4

L4
L8

L1
L4

1

24

1 1

direct connections

switch block

16

1624

Figure 5.4. Interconnect architecture of the random-logic-oriented reconfigurable logic ar-
chitecture.

5.6 Benchmarking 107

available per each direction. The routing architecture of the random-logic-oriented
architecture is shown in Figure 5.4.

5.6 Benchmarking

To evaluate the random-logic-oriented reconfigurable architecture, a benchmark-
ing method relying on the model-based cost metrics (see Section 3.2.4) was used.

5.6.1 Benchmarking using the model-based cost metrics

The benchmarking using the model-based cost metrics was realised similarly to
the benchmarking of the data-path-oriented architecture described in Section 4.8.2.
The parametersNlmb andPw of the area model as shown in Table 5.1 were assumed
for the characterisation of the random-logic-oriented architecture.

Number of pins
FPGA architecture Inputs Outputs Carry Carry Auxiliary Nlmb Pw

input output

Random-logic-oriented 11 4 1 1 0 64 16

Table 5.1. Characterisation of the logic cost (viaNlmb) and the routing resource cost (via
Pw) in the proposed random-logic-oriented FPGA architecture.

The parametersNlmb andPw from Table 3.3 and Table 5.1 were used to calculate
the mapping cost with respect to logicMCL (see Equation 3.23) and the mapping
cost with respect to routingMCR (see Equation 3.24) for the set of modern FPGAs
and the proposed random-logic-oriented FPGAs. The results are given in Table
5.3. For each of the architectures, the table lists the value of the parameterNLB

and two mapping cost components, that isMCL andMCR.

For a convenient analysis, the data from Table 5.3 are also shown graphically in
Figures 5.5–5.14. Additionally, Table 5.2 summarises the results from Table 5.3
by showing the ratio of mapping costsMCL andMCR assuming the random-logic-
oriented FPGA as a reference.

5.6.2 Discussion

The results of the comparison of our random-logic-oriented FPGA with three com-
mercial FPGAs indicate that the proposed architecture has a lower implementation
cost. The reduction comes mainly from the reduction of the routing resource cost.
As shown in Table 5.2, the Xilinx, Altera and Atmel FPGAs have their average
routing cost 1.62, 1.65 and 1.64 times higher, respectively, than the similar cost
for our FPGA. The cost reduction is possible because of a simpler interface of the
logic block in the proposed architecture (less input and output pins).

108 Random-logic-oriented reconfigurable architecture

Commercial→ Xilinx Virtex II Altera Stratix Atmel AT40K
Proposed↓ MCL MCR MCL MCR MCL MCR

RL-oriented av=0.83 av=1.62 av=1.07 av=1.65 av=1.1 av=1.64
mn=0.06 mn=0.125 mn=0.8 mn=1.25 mn=0.53 mn=0.8
mx = 1 mx=2 mx=1.52 mx=2.36 mx=1.75 mx=2.62

Table 5.2. The summary of the results from Table 5.3. The mapping costs w.r.t. logicMCL

and w.r.t. routingMCR of three commercial FPGAs are normalised with respect
to the mapping costs of the random-logic-oriented architecture. The average
cost ratioav for 10 benchmarks as well as the minimummnand maximummx
cost ratios are given.

Figure 5.5. 8-bit adder. Figure 5.6. 16-bit multiplier.

Figure 5.7. 2:1 4-bit multiplexer. Figure 5.8. 8:1 1-bit multiplexer.

Figure 5.9. 16:1 1-bit multiplexer. Figure 5.10. 2-input 4-bit OR.

5.6 Benchmarking 109

S
ta

te
-o

f-
th

e-
ar

tc
om

m
er

ci
al

F
P

G
A

ar
ch

ite
ct

ur
es

P
ro

po
se

d
F

P
G

A
X

ili
nx

V
irt

ex
II

A
lte

ra
S

tr
at

ix
A

tm
el

AT
40

K
R

an
do

m
-lo

gi
c-

or
ie

nt
ed

B
en

ch
m

ar
k

N
L

B
M

ap
pi

ng
co

st
N

L
B

M
ap

pi
ng

co
st

N
L

B
M

ap
pi

ng
co

st
N

L
B

M
ap

pi
ng

co
st

fu
nc

tio
n

–
M

C
L

M
C

R
–

M
C

L
M

C
R

–
M

C
L

M
C

R
–

M
C

L
M

C
R

8-
bi

tA
D

D
1

12
8

62
0.

8
12

8
50

8
12

8
48

2
12

8
32

16
×

16
M

U
LT

34
4.

25
K

2.
11

k
73

11
.4

1K
4.

53
k

25
6

4K
1.

54
k

12
0

7.
5K

1.
92

k
2:

1
M

U
X

/4
-b

it
0.

5
64

31
0.

4
64

25
4

64
24

1
64

16
8:

1
M

U
X

/1
-b

it
0.

5
64

31
0.

5
80

31
7

11
2

42
1

64
16

16
:1

M
U

X
/1

-b
it

1
12

8
62

1
16

0
62

15
24

0
90

2.
25

14
4

36
2-

in
O

R
/4

-b
it

0.
5

64
31

0.
4

64
25

4
64

24
1

64
16

3-
in

N
O

R
/1

-b
it

0.
12

5
16

8
0.

1
16

6
1

16
6

0.
25

16
4

16
-in

A
N

D
/1

-b
it

0.
5

64
31

0.
4

64
25

5
80

30
1.

25
80

20
4:

16
D

E
C

O
D

2
25

6
12

4
1.

6
25

6
99

16
25

6
96

4
25

6
64

16
-lo

ng
2-

bi
tS

R
E

G
0.

25
32

16
3.

2
51

2
19

8
32

51
2

19
2

8
51

2
12

8

Ta
bl

e
5.

3.
T

he
m

ap
pi

ng
co

st
co

m
pa

ris
on

be
tw

ee
n

th
e

st
at

e-
of

-t
he

-a
rt

an
d

pr
op

os
ed

ra
nd

om
-lo

gi
c-

or
ie

nt
ed

F
P

G
A

ar
ch

ite
ct

ur
es

.

110 Random-logic-oriented reconfigurable architecture

Figure 5.11. 3-input 1-bit NOR. Figure 5.12. 16-input 1-bit AND.

Figure 5.13. 4:16 decoder. Figure 5.14. 16-long 2-bit shift register.

While offering the routing cost reduction, the random-logic-oriented architecture
has its average logic cost similar to the logic cost of the commercial devices (fac-
tors 0.83, 1.07 and 1.1, respectively). Since the routing cost component plays an
essential role (see Section 2.1.3), the fact of a similar logic cost is of lesser impor-
tance.

As shown by Figures 5.6 and 5.12, for example, the benefit of the random-logic-
oriented architecture is sometimes diminished if data-path functions are mapped.

5.7 Conclusions

In this chapter we presented the random-logic-oriented reconfigurable architec-
ture. The architecture has been optimised primarily for mapping multi-level com-
binational and sequential circuits. The logic block of the proposed architecture has
been enhanced such that it also allows the mapping of arithmetic circuits.

The advantages of the random-logic-oriented architecture are a simple (small)
logic block and a less expensive interconnect structure which does not sacrifice
the overall routability. The architecture has been benchmarked with state-of-the-
art FPGAs using the model-based comparison. We showed that at the comparable
logic cost, the routing resource cost of three commercial FPGA architectures is
about 1.64 times higher than the routing resource cost of our FPGA.

Chapter 6

MEMORY-ORIENTED RECONFIGURABLE
ARCHITECTURE

Memory plays an essential role in some applications. The requirement for a mem-
ory is implied either by an algorithm or by its implementation (see Section 2.5). To
address this aspect, in this chapter we present thememory-oriented reconfigurable
logic architecture, which is the third type of the domain-oriented reconfigurable
architectures proposed in this thesis. The memory-oriented architecture targets
applications requiring distributed storage. Despite the optimisation towards the
memory functionality, the architecture also provides an efficient way of mapping
data-paths and random logic functions.

6.1 Introduction

6.1.1 Characteristics of the application domain

The memory functionality we aim at concerns distributed storage elements, such
as small data memories, look-up tables and shift registers (see the discussion in
Section 2.5.3). The storage resources aredistributedbecause of the homogeneous
structure that is assumed for a domain-oriented reconfigurable logic device (see
Section 3.2.1). The LUT memory is reused to implement such storage resources.

As shown in Figure 6.1, a typical memory has theAddressport, multi-bit Input
andOut putports (typically of the same width), and theRead/Write control port
that receives the signal determining the reading or writing operation of the mem-
ory. When implemented in the FPGA logic block, the memory imposes different
constrains on the logic block implementation than the data-path and random logic
functions considered so far. For example, it needs more ports to map functions
of the similar granularity and it supports a write operation. Therefore, assuming
that the data-path and random logic functions are to be implemented using the
same look-up table structure as the memory, the implementation of these func-
tions will be influenced by the memory implementation. Especially, the bit-width
of the LUT output will be impacted. This does not have to be disadvantageous if
the properties of the mapped functions are exploited properly. Note, for example,
that typical data-path functions (and arithmetic functions in particular) produce a

112 Memory-oriented reconfigurable architecture

multi-bit output. Such a multi-bit output signal can be generated cost-efficiently
using amulti-output look-up table(see Section 3.1.3). Next, the implementation of
DSP functions based on the concept of distrubuted arithmetic [111] yields multiple
look-up tables that are addressed by the same set of input signals [113]. Obviously,
such look-up tables can also be implemented as multi-output LUTs. Finally, it has
been shown that many random logic functions share some of their input signals
when generating different Boolean output signals [14, 61]. Multi-output LUTs
are thus suitable for the implementation of such functions. A look-up table with
relatively few inputs and multi-bit output reasonably suits the requirements of the
memory, arithmetic and random logic functions.

Read/Write

Inputs

A
dd

re
ss

.

.

. .
 .

. . Memory

Outputs

Figure 6.1. A model of a typical memory [108].

6.1.2 State-of-the-art

The idea of combining the memory, arithmetic and random logic functionality in
a single logic block of an FPGA device has been explored in the past. Essentially,
by reusing the LUT memory bits in the FPGA logic block, the implementation
of small distributed data memories has been made possible. In Figure 6.2(a), the
logic block structure of the Xilinx XC4000 device that has been designed in this
way is shown1. The logic block consists of two 4-LUTs and one 3-LUT. The
4-LUTs can be used to implement Boolean functions (of up to 4-inputs) and arith-
metic functions (of up to 2-bits). The implementation of the arithmetic functions
is supported by the dedicated carry logic. Next to their traditional function, the
4-LUTs can be also configured as data memories (two 16 x 1-bit or one 32 x 1-
bit). This is possible because such LUTs include both read and write decoders. An
extra data input signal (for writing into the memory) is also added. Though very
flexible, such a memory implementation has several disadvantages. Firstly, inde-
pendent sets of inputs associated with each LUT increase the cost of the routing
resources (especially that only one set of inputs is needed in the memory mode).

1A similar implementation approach has also been applied to the Xilinx Virtex family [118]
and Lucent ORCA 3C [65] FPGA devices

6.1 Introduction 113

Secondly, the LUT resources are underutilised in the arithmetic mode (only 25%
of the memory bits in each LUT are effectively utilised). Finally, separate read
and write decoders in the LUTs contribute to the area overhead.

4−LUT

4−LUT

co

a0
b0

b1

a1
s1

s0
. .

 .
. .

. .
 .

. .
. .

 .
. .

. .
 .

. .
. .

 .
. .

. .
 .

. .
. .

 .
. .

a0
b0

b1

a1

ci

ci

co s0 s1

3−LUT

W
ri

te
 d

ec
od

er

R
ea

d
de

co
de

r

4−LUT

R
ea

d/
W

ri
te

 d
ec

od
er

(a) (b)

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

C
ar

ry
 lo

gi
c

C
ar

ry
 lo

gi
c

Figure 6.2. The LUT-based logic block structures offering the memory, data-path and ran-
dom logic functionality: (a) a commercial FPGA device (Xilinx XC4000), and
(b) a reconfigurable computing device proposed in academia. The figures il-
lustrate the implementation cost of a 2-bit addition in terms of the required
number of LUT memory bits (32 bits and 96 bits, respectively).

The alternative logic block structure supporting the memory mapping has been
proposed at the Iowa University [63]. Because of its primary application as a
reconfigurable cache [63], the logic block structure has been optimised for the
memory functionality. As shown in Figure 6.2(b), such an optimisation has been
achieved by implementing the LUT in the logic block in a memory-like way, that
is, with one read/write decoder and several memory columns. The LUT structure is
actually amulti-output LUT(compare Section 3.1.3). The logic block functionally
equivalent to the Xilinx XC4000 logic block includes a multi-output LUT built of
a 4:16 decoder and six memory columns2. Although such an implementation is
efficient for the memory mapping (16 x 6-bits), it leads to a large cost overhead
if other types of functions are implemented. For example, the implementation
of arithmetic functions requires very many configuration bits (96 bits for a 2-bit

2The logic block of the structure described in [63] is coarser.

114 Memory-oriented reconfigurable architecture

addition). Also, the implementation of Boolean functions is costly since most of
them cannot be decomposed onto 4-input/6-output nodes (leaving most of the LUT
memories unused).

6.2 Applying the inversion-based folding type II

To improve the cost-efficiency of the memory implementation in the LUT-based
FPGA logic block, we use the multi-output LUT structure as implied by the
inversion-based folding type II (proposed in Section 3.1.3). Note, that the com-
plexity of the proposed multi-output LUT, even after the compaction (see Figure
3.11(a)), grows exponentially with the increase of the word-size of the input argu-
ments of a binary adder3. Furthermore, it is also more beneficial (from the delay
and memory size point of view) to generate the carry output signalcoof the adder
using the dedicated carry logic. Therefore, we choose the multi-output LUT with
four inputs and two outputs, that is a4/2-LUT, for our implementation. The de-
tailed structure of such a LUT is shown in Figure 6.3.

. .
 .

. .

co

ci

co

ci

ci

2o1o
1o

1o

1i 2i
we2we1

Memory column

o
o

10

0 1

0 1

. .
 .

. .
. .

 .
. .

ci

a
b
c
d

Controlled inversion
blocks

oa

d

c

b

4/2−LUTM
M

M
M

R
ea

d/
W

ri
te

 d
ec

od
er

M
M

M
M

Carry

Figure 6.3. The structure of the proposed 4/2-LUT.

The 4/2-LUT is implemented in a memory-like way, that is, it contains a 4:16 de-
coder which addresses two memory columns of 16 bits (cells) each. To enable the
implementation of a 2-bit addition, the four inputsa, b, c, d and two outputso1,
o2 of the LUT are connected to the controlled inversion blocks. The controlled in-
version blocks invert the input (address) and output signals of the LUT if the carry
input signalci = 1. In order to use the LUT as a memory, four additional inputsi1,

3For example, for a 3-bit adder, already 26 memory cells are needed to describe each of the four
adder outputs in the resultant LUT.

6.2 Applying the inversion-based folding type II 115

i2 andwe1, we2 are added to the 4/2-LUT. When the look-up table works as a mem-
ory, the inputsi1, i2 play the role of data inputs, and the inputswe1, we2 receive
the control (write enable) signals which determine the LUT operation (i.e. reading
or writing). The 4/2-LUT can also be used for the mapping of Boolean functions
with maximally four binary inputs and two binary outputs. Typical configurations
of the proposed 4/2-LUT are shown in Figure 6.4.

s 0 s 1

a 0

b 1
b 0

a 1

ci

co
o1 o2

0addr
1addr
2addr
3addr

o1
o0

0i 1i

4/2−LUT

(a)

4/2−LUT

(b)

4/2−LUT

(c)

0

a
b
c
d

0

we

Carry Carry Carry

Figure 6.4. Example configurations of the 4/2-LUT: (a) 2-bit arithmetic (addition), (b) 4-
input/2-output Boolean function generator, (c) 16 x 2-bit data memory. The
shaded blocks show the components that are inactive in a given LUT configu-
ration.

The above-described 4/2-LUT shows a number of advantages compared to the
LUT-based memory implementations discussed in Section 6.1.2. Firstly, the 4/2-
LUT reduces by a factor of 2 the number of LUT memory bits that would be
needed if the state-of-the-art multi-output look-up table structure from Figure
6.2(b) was used to implement 2-bit arithmetic functions4. Secondly, compared
to a traditional 4-LUT-based logic structure (see Figure 6.2(a)), the proposed LUT
halves the number of required input ports (due to the sharing of inputs in the multi-
output LUT), and thus the total amount of routing resources that are needed to map
similar type of functions5. Thirdly, in the suggested 4/2-LUT implementation only
one decoder is needed rather than four decoders (i.e. two write decoders and two
read multiplexers) as in a typical implementation based on 4-LUTs (see Figure
6.2(a)). Finally, in contrast to the state-of-the-art multi-output LUT (see Figure
6.2(b)), the proposed 4/2-LUT enables a cost-efficient implementation ofanytype
of functions, that is, memory, arithmetic, and random logic.

4For a fair comparison, we assume that the multi-output LUT architecture from Figure 6.2(b)
may also be enhanced with a dedicated carry logic.

5The only penalty is an inability of mapping twoindependentBoolean functions of 4-inputs.

116 Memory-oriented reconfigurable architecture

6.3 Logic element

The logic element constitutes the lowest level of hierarchy of the memory-oriented
reconfigurable logic architecture. Because of the advantages of the 4/2-LUT (see
Section 6.2), such a LUT is chosen for the implementation of the logic element.
Several modifications and enhancements are introduced to the original 4/2-LUT
structure to improve the mapping capabilities of the logic element.

bl ar i+1

ia ,a i+1 i,b ,b i+1

ic ,c i+1

i+1c

. .
 .

. .
 .

Memory inputs
processing block

Input processing
block

Controlled inversion
blocks

4/2−LUT
Carry logic

clk
Signal selector

MUXA

xci i

coi

i

ar i i

M
em

or
y

co
lu

m
n

M
em

or
y

co
lu

m
n

D
ec

od
er

Figure 6.5. The logic element of the memory-oriented reconfigurable logic architecture.

The logic element has six primary inputsai , ai+1, bi , bi+1, ci , ci+1, a secondary
input xi , a carry inputcii , and a special clock inputclk. It also has three primary
outputs: two arithmetic outputsari , ari+1, a Boolean outputbli , and a carry output
coi . The general structure of the logic element is shown in Figure 6.5, while the
implementation details are shown in Figure 6.6. The 4/2-LUT is implemented as
described in Section 6.2. Thecontrolled inversion blockat the inputs of the 4/2-
LUT is modified to the structure shown in Figure 6.6(a). The inversion of the
LUT inputs, implemented with XOR gates, is no longer dependent on the carry
input signal only (available on the inputcii), but also depends on a control signal
(available on the inputci). This corresponds to the inversion of bits of one of
the operands of a binary adder which is needed if the adder is configured as a
subtractor. The change in the polarisation of the LUT (decoder) inputsd1 . . .d4

and the LUT outputso1, o2 is described in detail in Table 6.1. The table indicates
that during an addition operation withci = 1 all LUT inputs are inverted, while
during a subtraction operation withci = 1 only one pair of them. The inversion
of the LUT outputs depends only on the carry input signalcii , and is implemented
as shown in Figure 6.6(b). The configuration memory bitM1 in Figure 6.6(a)

6.3 Logic element 117

1 01 0

1
0

10

ci i

ic

ci i

co i

ci i

1d 2d 4d3d

ic

i+1ariar

i+1cic
i+1a ib

i+1bia

we1 we2

i+1c
1 0

ic i+1c

1i 2i

x’i

x’i
x i

(a)

(c)

(e)

Controlled inversion block (inputs)

1
00

0

10

Carry logic

(b)

(d)

(f)

*

0

(g)

(data input network)
Memory inputs processing block

Signal selector

10

00
01

b

Controlled inversion block (outputs)

dca

a
c

d

b

a b c d

In
pu

t p
ro

ce
ss

in
g

bl
oc

k

Memory inputs processing block (control network)

clk

M1

M6

M7

M3

M2

M8M9

M5

M4

D

M6

Figure 6.6. Implementation details of the logic element: (a) controlled inversion block at
the inputs, (b) controlled inversion block at the outputs, (c) dedicated carry
logic, (d) input processing block, (e) control network of the memory inputs
processing block, (f) data input network of the memory inputs processing
block, and (g) signal selector.

118 Memory-oriented reconfigurable architecture

determines the type of arithmetic operation (i.e. addition or subtraction) that is
implemented in the logic element, and the initial value of the carry input signalcii .

control (add/sub) carry in inverted arg1? inverted arg2? inverted res?
ci cii d1, d2 d3, d4 ari , ari+1

0 0 not not not
0 1 yes yes yes
1 0 not yes not
1 1 yes not yes

Table 6.1. Polarisation of the bits of the input argumentsarg1 andarg2 and bits of the
result res of an arithmetic operation implemented in the proposed logic ele-
ment. The polarisation depends on the carry input signalcii and the type of the
mapped operation, which is determined by the control signalci . The change of
the polarisation is the consequence of the applying the inversion-based folding
type II and the way of implementing a subtraction operation in a binary adder.
(The subtraction operation of the formres= arg1−arg2 is assumed.)

The support of a subtraction operation has the impact on the implementation of
the dedicatedcarry logic. This is indicated in Figure 6.6(c), where two additional
XOR gates are added at thec andd inputs (bits of the argumentarg2). The gates
guarantee a proper value of the carry output signalcoi if a subtraction operation is
performed.

The primary inputsai , ai+1, bi , bi+1, ci , ci+1 of the logic block are directed to the
input processing block. The input processing block (see Figure 6.6(d)) reduces
the number of input signals from six to four by performing logical AND and NOT
operations on them. This is required, for example, for mapping of multiplexers and
multipliers (see details in Section 6.5). The four outputs of the input processing
blocka, b, c, d are connected to the inputs of the controlled inversion block.

To enable the memory functionality, thememory inputs processing blockis in-
troduced to the logic element. This block provides proper values of the control
and data signals to each memory column of the 4/2-LUT dependent on the type
of a memory function that is to be implemented (e.g. a data memory or a shift
register). The memory inputs processing block consists of the control (see Figure
6.6(e)) and data input networks (see Figure 6.6(f)). The control network produces
two write enable signalswe1 andwe2 based on the value of the global write enable
signal associated with the inputx′i , configuration memory bitsM6 andM7, and the
value of the signalci+1. The signalx′i , which is an input of the control network,
is defined by thesignal selector(see Figure 6.6(g)). Dependent on the mode, the
signal selector assigns the inverted clock signalclk, the external signalx, or the
latched version of the signalx to the write enable signalx′. The data input network
produces two data signalsi1 and i2. Dependent on the configuration determined

6.4 Logic block 119

by the configuration bitM7, the LUT memory columns receive two different data
signals available on the inputsci andci+1, or only one of them, that isci . This
is illustrated in Figure 6.6(f)). The detailed description of the functionality of the
input processing and memory inputs processing blocks is given in Section 6.5.

The outputsari andari+1 of the controlled inversion block at the LUT outputs
are connected to the inputs of the 2:1 multiplexerMUXA (see Figure 6.5). The
multiplexer has a twofold role. It is used to implement Boolean functions of five
inputs by applying Shannon’s expansion (see Equation 3.2) or to implement mem-
ory structures with a 1-bit output. The multiplexerMUXA is controlled by the
signalci+1. Dependent on the mode, the signalci+1 is associated either with the
fifth logic input (random logic mode) or with the fifth bit of the memory address
(memory mode). The output of the multiplexer is available on the Boolean output
bli of the logic element, while the LUT outputs on the arithmetic outputsari , ari+1.

6.4 Logic block

6.4.1 Basic concept

The logic element described in the previous section allows the mapping of 2-bit
arithmetic functions, 5-input random logic functions6, and small memories with
a 1-bit or 2-bit output. To improve the efficiency of mapping the arithmetic and
memory type of functions, which are typically coarser than the granularity of the
proposed logic element, the logic block of the memory-oriented reconfigurable
logic architecture is built oftwo logic elements. As a result, the logic block sup-
ports the implementation of functions with up to a 4-bit output (nibble-level pro-
cessing).

6.4.2 Structure in detail

The structure of the logic block is depicted in Figure 6.7. To account for the
presence of two logic elements in the logic block, their original structure from
Figure 6.5 is slightly modified. The modifications are essential for the memory
mapping and concern the components which are shaded in Figure 6.7.

The logic block has twelve primary inputsin1 . . . in12, two secondary inputst1, t2,
and a special clock inputclk. It also has four primary outputsout1 . . .out4 and
two carry outputsco1 andco2. The first set of six primary inputsin1 . . . in6 of the
logic block is connected directly7 to the primary inputsa1, a2, b1, b2, c1, c2 of
the first logic element; similarly, the second set of six primary inputsin7 . . . in12

6To comply with the architecture template discussed in Chapter 7, we assume here that the
possibility of mapping 4-input/2-output Boolean functions in the 4/2-LUT is discarded.

7Unlike in the data-path-oriented and random-logic-oriented architectures, the input selection
block is replaced by hard-wired one-to-one connections.

120 Memory-oriented reconfigurable architecture

of the logic block is connected directly to the primary inputsa3, a4, b3, b4, c3,
c4 of the second logic element. Because the pairs of the carry and secondary
inputsci1, x1 andci3, x3 of the first and second logic element have a mutually
exclusive function, they are merged at the logic block level into the secondary
input signalst1 andt2, respectively. Therefore, the signalst1 andt2 are distributed
to the carry selection and the signal selector blocks in the first and second logic
element, respectively. Thecarry selectionblocks determine whether the logic
elements use two independent carry signals or one common carry signal when the
logic elements are chained. In the latter case, either logic element can be chosen
to produce less significant bits of an arithmetic operation, and consequently, has
its carry output (co1 or co2) connected to one of the inputs of the carry selection
block.

To enable the implementation of larger memories, thememory inputs pre-
processing blockis placed between the signal selector and the memory inputs
processing blocks of the logic elements (compare with Figure 6.5). Dependent on
the type of memory that is to be mapped, the memory inputs pre-processing and
memory inputs processing blocks assign either one set or two independent sets of
control and data signals to the 4/2-LUTs of the logic elements. The entire control
and data input networks of the memory pre-processing and processing blocks are
shown in Figure 6.8(a) and (b), respectively.

Thecopy block(see Figure 6.8(c)) placed between the 4/2-LUTs of the logic ele-
ments enables an implementation of dual-port memories. The copy block consists
of two sets of 16 copy elements. The copy elements are controlled either by a
static signal ‘0’ or by the signalu, which is connected to one of the signalsx′1 or x′3
from the signal selector blocks in the first and second logic element, respectively
(see Figure 6.8(a)). When activated (M14= 1), the copy block copies the contents
of the LUT memories in the first logic element to the LUT memories in the second
logic element. This happens in the first phase of the inverted clock signal.

To account for the presence of two logic elements, the selection multiplexers
MUX1 andMUX2 are introduced to the logic block, as shown in Figure 6.7. The
multiplexers generate the control signalss1 ands2 by selecting one of the input
signalsin5 (c1) andin11 (c3) of the logic block. The signalss1 ands2 control the
multiplexersMUX1 andMUX2 in the first and second logic element, respectively.
The Boolean outputs of the logic elements are merged in the multiplexerMUX and
the gateAND. The multiplexer allows the implementation of Boolean functions
with up to six inputs and the memory structures with the 6-bit address (i.e. 64 x
1-bit). TheAND gate is used to implement large product functions.The control
signalsof the multiplexerMUX is the output of the selection multiplexerMUX3,
which selects one of the input signalsin6 (c2) andin12 (c4) of the logic block.

The arithmetic outputsar1 . . .ar4, Boolean outputsbl1, bl3, and the outputs of
the global multiplexerMUX and the global gateAND are directed to theoutput
selection block. The output selection block has two stages. In the first stage, the

6.4 Logic block 121

in5
in11

in5
in11

in6
in12

co 2 co 1

co 2co 1

o2

1out 2out 3out 4out

1t 2t
in1 in6. . in7 in12

x1 x3

ar1 ar2 ar3 ar4

1bl 3bl

a3 ,c3,c44,a4,b3,ba1 ,c1,c2

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Carry logic

Carry selection

M
em

or
y

in
pu

ts
 p

re
−p

ro
ce

ss
in

g
bl

oc
k

M
em

or
y

in
pu

ts
 p

ro
ce

ss
in

g
bl

oc
k

MUXA

AND

MUX2

s1 s2

s

clk

MUX

MUXA
MUX1

MUX3

o3 o4o1

o1o2 o3 o4 o3o1 o4 o2 o2o1 o4o3 o4 o2o1 o3

. .

ci1 3ci

Fl
ip

−f
lo

ps

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

,b21,b,a 2

clkFF

M
em

or
y

co
lu

m
n

M
em

or
y

co
lu

m
n

D
ec

od
er

M
em

or
y

co
lu

m
n

M
em

or
y

co
lu

m
n

D
ec

od
er

C
op

y
bl

oc
k

FF FFFF

Figure 6.7. Logic block structure of the memory-oriented reconfigurable logic architec-
ture.

122 Memory-oriented reconfigurable architecture

1
0

1
0

1
0

1
0

10

1
0

1
0x’
3

x’
1

10

1
0

1
0

D
at

a
in

pu
t n

et
w

or
k

10

10

w
e 1

w
e 2

w
e 1

w
e 2

1
0

1
0

1
0

in
5

in
6

in
11

in
12

i 1
i 2

lo
gi

c
el

em
en

t 1

i 1
i 2

lo
gi

c
el

em
en

t 2

M
14

M
12

M
13

M
12

10

0

0
0

1

(a
)

M
em

or
y

in
pu

ts
 p

re
−p

ro
ce

ss
in

g
bl

oc
k

(b
)

(c
)

1

10

0

.
co

py
 e

le
m

en
t

fr
om

 m
em

 c
el

l o
f

C
op

y
bl

oc
k

s3

s10
s20

1
00

s3

C
on

tr
ol

 n
et

w
or

k

lo
gi

c
el

em
en

t 1
lo

gi
c

el
em

en
t 2

lo

gi
c

el
em

en
t 1

lo
gi

c
el

em
en

t 2
to

 m
em

 c
el

l o
f

Memory inputs pre−processing block

1
0

s

u

u

M
6

M
7

M
6

M
7

M
10

M
7

M
7

M
10

Figure 6.8. Implementation details of the logic block components. (a) control network
of the memory inputs pre-processing and processing blocks, (b) data input
network of the memory inputs pre-processing and processing blocks, (c) copy
block.

6.5 Functional modes 123

selection of the output signals that are relevant in a given mode takes place. In
the second stage, the selected signals are associated with particular outputs of the
logic block. The outputs of the output selection block are fed to theflip-flip block
which allows the output signals to be registered. The outputs of the flip-flop block
are connected to the outputsout1 . . .out4 of the logic block.

6.5 Functional modes

The logic block of the memory-oriented reconfigurable architecture has three pri-
mary functional modes. The functional modes determine the type of function
which is implemented in both logic elements of the logic block (for large func-
tions) or in each of the logic elements independently (for small functions). The
following modes are available:

• Data-path modein which the logic elements produce two independent 2-bit
output signals or a single 4-bit output signal of data-path functions. The sig-
nals are available on the arithmetic outputsar1 . . .ar4 of the logic elements.

• Random logic modein which two 1-bit output signals of two independent 5-
input Boolean functions or a 1-bit output signal of a 6-input Boolean func-
tion are produced. The outputs of the independent functions are available
on the Boolean outputsbl1 andbl3 of the logic elements. The output of the
larger function is available on the output of the global multiplexerMUX or
the output of the gateAND.

• Memory modein which two independent memory functions with 1-bit or
2-bit output signals or one larger memory function with 1-bit, 2-bit or 4-bit
output signals are produced. The 2-bit output signals of independent mem-
ory functions and the 4-bit output signal of the large memory function are
available on the arithmetic outputsar1 . . .ar4 of the logic elements. The 1-
bit output signals of the independent memory functions and the 2-bit output
signal of the large memory function are available on the Boolean outputsbl1
andbl3 of the logic elements. The 1-bit output signal of the large memory
function is available on the output of the global multiplexerMUX.

6.5.1 Data-path mode

Addition/Subtraction. The logic block can implement addition, subtraction, or
addition/subtraction operations with up to 4-bit arguments. The input arguments
are connected to the inputsin1 . . . in4 and in6 . . . in10 of the logic block, and the
outputs are available on the arithmetic outputsar1 . . .ar4 of the logic elements.
If a 4-bit operation is implemented, the inputst1 or t2 of the logic block provide
a carry input signal, and the logic element implementing more significant bits of

124 Memory-oriented reconfigurable architecture

the operation has its carry input signal connected internally to the carry output of
the other logic element (i.e.ci3=co1 or ci1=co2; a direction of the carry flow is
arbitrary). The carry output signal is available on one of the carry outputsco1 or
co2 of the logic block. If independent 2-bit arithmetic operations are implemented,
each logic element has its own carry input and carry output signals.

The addition operation (see an example in Figure 6.9(a)) is implemented using
the inversion-based folding type II as described in Section 3.1.3. Consequently,
the 4/2-LUTs in both logic elements implement a 2-bit addition. The LUT inputs
and outputs are inverted if the carry input signal is ‘1’. The subtraction operation
uses the LUT configuration as for a 2-bit addition, but the inversion of the LUT
inputs, outputs, and the carry input signal is modified according to the scheme
from Table 6.1. The configuration of the logic element to perform the addition
or subtraction operations is determined by the bitM1 in the controlled inversion
block (see Figure 6.6(a)), that is,M1 = 0 for the addition andM1 = 1 for the
subtraction. The (dynamic) addition/subtraction operation uses an external signal
(add/sub) to determine the type of executed operation. Such as signal is available
on the inputsin5 (c1) or in11 (c3) of the logic block.

Multiplication. The logic block supports the implementation of the carry-save
type of an array multiplier [80]. Such a multiplier is characterised by the ver-
tical propagation of the carry signal (except for the last row), and is faster than
a traditional array multiplexer with a horizontal carry propagation [80, 70]. The
structure of the logic block that has been described in Section 6.4 allows an imple-
mentation of the two’s complement unsigned version of the carry-save multiplier
(the so-called Braun multiplier [55]). After small modifications of the proposed
logic block structure, the implementation of the signed version of the multiplier
(the so-called Pezaris multiplier [55]) would also be possible.

The logic block implements up to four cells of an array multiplier, which are or-
ganised in a 2 x 2 array as shown in Figure 6.9(b). Each pair of vertical cells of the
array is implemented in a single logic element. Each logic element receives max-
imally five distinct input signals on five out of six primary input ports of the logic
block, that isin1 . . . in6 and in7 . . . in12, and the carry input signal on the inputst1
andt2 of the logic block. Each logic element also produces maximally two output
signals available on the arithmetic outputsar1, ar2 or ar3, ar4, and the carry out-
put signal available on the outputsco1 andco2 of the logic block. The multiplier
mapping technique is explained in detail in Figure 6.10. The input signals of the
vertical cells of the multiplier are connected to the inputs of the 4/2-LUT in a logic
element via the input processing block. The input processing block implements
logic AND operations on pairs of bits, similarly to the AND operation that takes
place in a basic cell of the array multiplier (see Figure 6.10(a)). The 4/2-LUTs in
each logic element are configured as for a 2-bit addition operation8.

8The use of the inversion-based folding type II and the 4/2-LUT to implement a 2-bit addition
implies that a carry signal (e.g. signalc in Figure 6.10(b)) that traverses vertically between pairs

6.5 Functional modes 125

FA
FA

FA
FA

b 2b
3

A
N

D
a 1b 0b

1
a 0

s
0

s
1

s 2
s 3

a 0
b 0

b 1
b 2

b 3
a 3

a 2
a 1

pp
1

pp
2

pp
4

n 0

n 2

n 3

n 1

c
1

o
0

o
1

c
0

o
0

o
1

a
1

c
1

b
1

d
1

pp
5

pp
7

pp
8

a
0

b
0

c
0

d
0

(p
p

4)

m
0

m
0

n 0
m

1n
0

m
1

m
2

m
2n

0
3

m

m
3n

1

m
3n

2

m
3n

3

m
0

pp
1

n 2
n 3

pp
4

co1

co1
add/sub co

a 3
a 2

co3

pp
7

p 2
p

3

m
1

pp
2

n 2
n 3

pp
5

d
0

b
0

s
0

s
1

s 2
s 3

coadd/sub

ad
d/

su
b

7
co

3
co

C

Decoder 2

A
N

D

C

Decoder 2

A
N

D
A

N
D

C

0
0

0
0

Decoder 1

0
0

0

p

p

p

p
p

p
p

p

4−
bi

t a
dd

iti
on

/s
ub

tr
ac

tio
n

4
ce

lls
 o

f a
rr

ay
 m

ul
tip

lie
r

Decoder 1

C

Decoder 1

Decoder 2

d
1

b
1

2

2

D
C

B
A

10
01

00
110

0

0
0

1

1
1

1

u2
u1

0
1

0
1

0

ci

0x
0

a
x

1a
0

2−
bi

t 2
:1

 m
ul

tip
le

xe
r

1
x

x
1

10 xx

ci
0

1

7
6

5
4

3

2

0 1

x x

co7

1

o

u3
u4

0
2

3
4

5

6
7 9

11
108

Figure 6.9. Configuration of the memory-oriented reconfigurable logic block in the data-
path mode. (a) 4-bit carry-ripple adder, (b) four cells of the carry-save array
multiplier, (c) 4-bit 2:1 multiplexer.

126 Memory-oriented reconfigurable architecture

pp 7 pp 4

pp
2

pp
5

n
2

n
3

m 1

pp 2

pp 5

m 1

pp 4

pp 7

n 3

n 2

pp 2m 1n 2pp 5 n 3

n i

m i

pp i

pp i−1
m i

n i

co i

ci i

pp i

co i

pp i−1
ci i

co 7

co 1
co

7
co

1

AND

C

D
ec

od
er

 1

1

(a)

(b) (c) (d)

FA
=

0

a b c d

c

7

4

Figure 6.10. The multiplier mapping technique: (a) a basic multiplier cell, (b) the pair of
vertical cells of the multiplier (the cells correspond to the cells no. 4 and
7 in Figure 6.9(b)), (c) configuration of the logic element, (d) details of the
configuration of the input processing block.

Typically, an m× n carry-save multiplier, wherem and n are the number of
bits of a multiplicand and multiplier, respectively, can be implemented using an
n× (m− 1) array of basic cells, such as the cell shown in Figure 6.10(a) [55].
As mentioned above, four cells of the carry-save multiplier can be implemented
in a single logic block. Nevertheless, the number of logic blocks that are needed
to map the entire multiplier according to the proposed technique differs slightly
from the expected number ofn(m−1)

4 cells. The reason is the horizontal (instead
of the vertical) propagation of the carry signal in the last row of the multiplier,
which enforces the mapping of this row onto a separate set of logic blocks. In
consequence, the implementations ofm×n carry-save multipliers with even and
odd number of bits of the multipliern differ. Whenn is even, the first row of
the multiplier cells and the AND gate generating the output signalp0 are mapped
onto a single set of logic blocks, as shown in Figure 6.11(a). Ifn is odd, the first
two rows of the multiplier cells are mapped onto a single set of logic blocks, and
the AND gate requires an extra logic block, as shown in Figure 6.11(b).

of the multiplier cells is now encoded internally in the 4/2-LUT.

6.5 Functional modes 127

n1

n2

n3

n4

n0

m 0

m 0 p0

n01mn02mn03m
m 1m 2m 3

p1

p2

p3

p5p6p7p9

p4

n04m

p8

n4

n3

n2

n1

n0

m 0

m 0 p0

n01mn02mn03m
m 1m 2

p2

p7 p6 p5 p4

n3

n2

p1

n1

p3

n33m

n23m

n13m

5 x 5 mulltiplier

4 x 4 multiplier

(a)

(b)

0

4m

4m

4m

4m

Total: 7 logic blocks

0 0

Total: 6 logic blocks

0 0

0

0 0 0

Figure 6.11. Mapping of array multipliers with the (a) odd and (b) even number of bits of
the multiplier. The shaded blocks show an assignment of the multiplier cells
to the reconfigurable logic blocks.

128 Memory-oriented reconfigurable architecture

Constant-coefficient multiplication. A special type of multiplication is the mul-
tiplication with a constant argument (e.g.n= const). This type of multiplication is
very common in digital signal processing where many transforms and filtering op-
erations rely on multiplications with constant coefficients. A constant coefficient
multiplier can be implemented using the so-calleddistributed arithmetic[111].
Distributed arithmetic is simply (but not necessarily) a bit-serial computing tech-
nique that calculates an inner (dot) product of a pair of bit-vectors in a single di-
rect step [111]. Distributed arithmetic is a cost-efficient implementation technique
since it reduces a multiplication operation to the series of additions, subtractions,
and binary scalings.

y[n] =
K

∑
k=1

Akxk[n] (6.1)

Equation 6.1 shows the sum of products which represents the responsey[n] of a
linear time-invariant network at discrete timen. xk[n] is a sample of an input signal
andAk is a coefficient. If we drop the time index[n], assume the two’s complement
representation of the input samplexk, that is,

xk =−bk0 +
N−1

∑
n=1

bkn2
−n, (6.2)

and scalexk for convenience such that|xk|< 1 [111], then

y =
N−1

∑
n=1

[
K

∑
k=1

Akbkn]2−n +
K

∑
k=1

Ak(−bk0). (6.3)

Becausebkn represent successive bits of the input sample and take on values 0
and 1, the bracket term∑K

k=1Akbkn may have only 2K possible values. Instead of
computing these values on line, they can be precomputed and stored in the memory
(e.g. ROM). In practice, look-up tables addressed with equally significant bits of
K input samples (e.g.xk0), are used for this purpose. An example realisation of
this concept is shown in Figure 6.12.

Since the result of the inner productAkbkn is a complete word rather than a sin-
gle bit, look-up tables in distributed arithmetic have multi-bit outputs. This fact
makes the logic block of the proposed memory-oriented architecture superior to
the logic blocks of traditional FPGAs. This is because a basic building block of
the memory-oriented logic block is a cost-efficient 4/2- LUT (the LUT has simpler
decoder logic and lower amount of routing resources because of the LUT inputs
sharing).

Data-path multiplexers. The logic block can be configured to implement data-
path multiplexers with two or four inputs, each of the inputs having 2-bits or 4-bits.
A mapping example of a 2-bit 4:1 multiplexer is shown in Figure 6.9(c).

6.5 Functional modes 129

A

x1n

x3n

x4n

A1

A2

A3

A4

x2n

A1A2A1 A2

A2A1 A3 A4+ + + . .
 .

. .

0

2
1

15

3
A

x2n x3nx1n x4n

A A A

A−1

LUT
DA

1

1

1

1

x1

x0

x2

x3

(a)

y

0

+

. .
 .

. .

(c)(b)

Adder/Subtractor Accumulator

Scaling accumulator

Parellel−to−serial shift registers

Figure 6.12. The bit-serial realisation of the sum of productsy = ∑4
k=1Akxk using dis-

tributed arithmetic. The 10-bit representation (i.e.N = 10) of the samples
xk of the input signal is assumed. (a) implementation architecture, (b) LUT
addressing, (c) LUT implementation and configuration.

To enable the implementation of data-path multiplexers in the proposed logic
block, the multiplexers have to be first decomposed into a network of 2:1 mul-
tiplexers. The first level of multiplexers of such a network is then implemented
in the 4/2-LUTs, while the second level in the multiplexersMUXA of the logic
elements. Because each pair of 2:1 multiplexers in the first layer has five distinct
input signals (see Figure 6.9(c)), their direct implementation in the 4/2-LUT hav-
ing only four inputs is impossible. Therefore, the number of distinct input signals
is first reduced to four signals. Such a reduction takes place in the input process-
ing blocks of the logic elements, each of which receives four bits of the data inputs

0x

a 0 b 0c 0 d 0

0x a 0 b 0c 0 d 0

0 1 0 1

u1 u2

(a) (b)

b c da

Figure 6.13. The implementation of multiplexers in the 4/2-LUT: (a) mapping of a 2-bit
multiplexer structure, (b) the required configuration of the input processing
block.

130 Memory-oriented reconfigurable architecture

(a0, b0, c0, d0 in Figure 6.13(a)) and the least significant control bit (x0 Figure
6.13(a)) of the mapped multiplexer. The input processing blocks perform logical
AND operations, generating intermediate signalsa, b, c andd, as described (for
the input processing block of the first logic element) by Equation 6.4.

a = c0 ·x0, b = d0 ·x0, c = a0 · x̄0, d = b0 · x̄0 (6.4)

The signalsa, b, c, d are directed to the inputs of the 4/2-LUTs. The LUTs are
configured to execute an OR operation. The 4/2-LUT in the first logic element
generates the signalsu1, u2 on its arithmetic outputsar1, ar2, and the 4/2-LUT
in the second logic element generates the signalsu3, u4 on its arithmetic outputs
ar3, ar4 (see Figure 6.9(c)). The signalsu1 andu2 of the first logic element are
described by Equations 6.5 and 6.6, respectively.

u1 = c+a (6.5)

u2 = b+d (6.6)

If a 4:1 data-path multiplexer is mapped, the pairs of signalsu1, u2 andu3, u4 are
connected further to the inputs of the multiplexersMUXA in the first and second
logic element, respectively. The multiplexers are controlled by the second control
signal of the mapped multiplexer (x1 in Figure 6.9(c)), and generate the output
signals available on the Boolean outputsbl1 andbl3 of the logic elements.

Multi-bit Boolean functions. The logic block enables an implementation of 2-
input Boolean functions with 2-bit or 4-bit inputs. Such functions are implemented
in the 4/2-LUTs of the logic elements. The inputs of multi-bit Boolean functions
are available on the inputsin1 . . . in4 and in7 . . . in10 of the logic block, while the
successive bits of the output on the arithmetic outputsar1 . . .ar4 of the logic ele-
ments.

6.5.2 Random logic mode

Boolean functions.In the random logic mode, multi-input Boolean functions can
be mapped. Such functions are implemented using the 4/2-LUTs, the multiplex-
ers MUXA of the logic elements and the global multiplexerMUX of the logic
block. When configured independently, the logic elements allow mapping of two
Boolean functions with up to 5-inputs each. In such a case, the inputs of the func-
tions are available on the inputsin1 . . . in5 and in7 . . . in11 of the logic block, and
two outputs of the functions on the Boolean outputsbl1 andbl3 of the logic el-
ements. When combined together, the logic elements allow the implementation
of a Boolean function with 6-inputs. The 6-input Boolean function uses the same
inputs of the logic block as the 5-input functions, and the sixth input is available

6.5 Functional modes 131

either on the inputin7 or in12 of the logic block. The output of the 6-input Boolean
function is generated by the global multiplexerMUX.

The logic block also provides a special support for the implementation of large
product or sum of products functions. Such functions are implemented using the
globalANDgate located in parallel to the global multiplexerMUX.

Random logic multiplexers. Random logic multiplexers are implemented simi-
larly to the data-path multiplexers, but have binary inputs and outputs. Each logic
element can implement a 2:1 or 4:1 multiplexer. When combined together, the
logic elements can also implement a 8:1 multiplexer using the global multiplexer
MUX of the logic block. The third control signal of the 8:1 multiplexer can be
connected to either the inputin7 or the inputin12 of the logic block. The selected
signal is assigned to the selection signalsof the global multiplexerMUX (see Fig-
ure 6.7). The outputs of the 2:1 and 4:1 multiplexers are available on the Boolean
outputsbl1, bl3 of the logic block, and the output of the 8:1 multiplexer is available
on the output of the global multiplexerMUX.

6.5.3 Memory mode

Data memory. The logic block allows the implementation of two independent or
one large single-port data memories of the following types:

• two 16 x 2-bit memories

• two 32 x 1-bit memories,

• one 64 x 1-bit memory.

The data memories are implemented in the 4/2-LUTs of the logic elements and
use the memory inputs pre-processing block, memory inputs processing blocks,
and optionally the global multiplexerMUX. The type of the mapped memory is
established by the configuration bitsM6 andM7 in the memory inputs process-
ing blocks of the logic elements, and by the bitM10 in the memory inputs pre-
processing block (see Figure 6.8(a) and (b)) according to the following scheme.

• Bit M6 determines the functional mode of a single logic element. BitM6= 0
if the logic element is used as a data memory or a shift register, andM2 = 1
if the 4/2-LUT in the logic element is used to implement logic.

• Bit M7 determines the number of data inputs (data outputs) of the memory
implemented in one logic element. That is,M7 = 0 if such a memory has
two data inputs, andM7 = 1 if it has only one input.

• Bit M10 determines whether memories implemented in the logic elements
work independently or whether they are combined together forming a larger
memory. That is,M10 = 0 if the logic elements work independently, and
M10= 1 if the logic elements are combined together.

132 Memory-oriented reconfigurable architecture

Because the implementation of different types of data memories is analogous, we
describe as an example the implementation of the most complex, that is, a 64 x 1-
bit memory. As shown in Figure 6.14(a), the 64 x 1-bit memory has a 6-bit address
addr0 . . .addr5, a 1-bit data inputin0, a 1-bit data outputout0, and a write enable
signalwe. The four least significant bits of the address are connected to the inputs
in1 . . . in4 and in6 . . . in10 of the first and second logic element. The fifth address
bit is assigned to the inputin5 or in11 of the logic block, and the sixth signal to the
input in6 or in12. Dependent on which of the inputs is selected as the fifth address
bit, the data input signal of the memory is connected to the inputin11 or in5 of the
logic block. The write enable signal of the memory can be connected to one of
the secondary inputs of the logic block, that is,t1 or t2. Finally, the data output of
the memory is available on the output of the global multiplexerMUX and can be
assigned to any of the outputsout1 . . .out4 of the logic block. The configuration
bits are set such thatM6 = 0, M7 = 1, andM10= 1.

The 64-bit capacity of the 64 x 1-bit memory is divided into four sections such that
the first and second column of the first 4/2-LUT store bits 0. . .15 and 16. . .31,
respectively, and the first and second column of the second 4/2-LUT store bits
32. . .47 and 48. . .64, respectively (see Figure 6.14(a)). The most significant bit
of the memory address, which is coupled to the signals (see Figure 6.8(a)), selects
one of the logic elements. The fifth memory address bit, which is coupled to the
signals1 = s2 (see Figure 6.8(a)), selects the memory column of the 4/2-LUT in
the selected logic element. The remaining four bits of the memory address, which
are connected to the LUT inputsd4 . . .d1 (see Figure 6.6(a)), choose the memory
location within the selected memory column that is accessed. During the write
operation (we= 1), the control networks of the memory inputs pre-processing and
processing blocks (see Figure 6.8(a)) take care that only the selected memory col-
umn receives the original value of the write enable signalwe, which is accessible
through one of the inputsx′1 or x′3 of the logic elements; the other memory columns
have theirwe1 andwe2 inputs coupled to ‘0’ at that time. (This guarantees that
inactive memory columns are read rather than written.) Similarly, the data input
networks of the memory inputs pre-processing and processing blocks (see Figure
6.8(b)) take care that only the selected memory column receives the valid data
input signalin, which is accessible through the chosen inputin5 or in11 of the
logic block. During the read operation (we= 0), the signalss1 = s2 ands (see
Figure 6.7), which are associated with the fifth and sixth memory address bits,
respectively, assure that the value from the selected memory location is directed
to the output of the global multiplexerMUX.

Dual-port memory. The logic block also allows the implementation of dual-port
memories. As shown in Figure 6.15, a dual-port memory enables a simultaneous
read operation from two independent memory locations (address1 andaddress2),
and a write operation to one of those memory locations (address1). Similarly to
[117], we assume that one of the read memory addresses and the write address are

6.5 Functional modes 133

0
ad

dr

1
ad

dr

2
ad

dr

3
ad

dr

4
ad

dr

5
ad

dr

5
ad

dr

4
ad

dr
4

ad
dr

0
ad

dr
3

ad
dr

. .
 .

0
ad

dr
3

ad
dr

. .
 .

in
0 in

0

ou
t 0 ou

t 0

in
0

in
1

ou
t 0

ou
t 1

in
0

in
1

ou
t 0

ou
t 1

0
ad

dr
3

ad
dr

. .
 .

0
ad

dr
3

ad
dr

. .
 .

in
0

in
1

in
2

in
3

ou
t 1

ou
t 3

ou
t 0

ou
t 2

in
3

in
2

in
1

in
0

ou
t 0

ou
t 1

ou
t 2

ou
t 3

0
ad

dr

1
ad

dr

2
ad

dr

3
ad

dr

4
ad

dr
1

4
ad

dr
2

0
ad

dr
1

3
ad

dr
1

. .
 .

0
ad

dr
2

3
ad

dr
2

ad
dr

1

ad
dr

2

0 .. 15

16 .. 31

48 .. 63

32 .. 47

64
x1

 R
A

M

Decoder 1

Decoder 2

Decoder 1

Decoder 2

32
x1

 D
P−

R
A

M
16

x4
 S

R
E

G

Decoder 1

Decoder 2

32
x2

−b
it

du
al

−p
or

t R
A

M
64

x1
−b

it
(s

in
gl

e−
po

rt
) R

A
M

16
x4

−b
it

sh
if

t r
eg

is
te

r

w
e

w
e

w
e

w
e

w
e w

e

. .
 .

4 4

Figure 6.14. The configuration of the memory-oriented reconfigurable logic block in the
memory mode. (a) 64 x 1-bit data memory, (b) 16 x 2-bit dual-port memory,
(c) 16 x 4-bit shift register.

134 Memory-oriented reconfigurable architecture

the same.

Dual−port
memory

data input

address 1

address 2

write enable

output 1 (from address 1)

output 2 (from address 2)

Figure 6.15. A dual-port memory.

Because the implementation of a dual-port memory in the proposed logic block
involves both logic elements, only the following memory configurations are pos-
sible:

• 16 x 2-bit dual-port memory,

• 32 x 1-bit dual-port memory.

The dual-port memory uses the inputsin1 . . . in4 andin7 . . . in10 of the logic block,
and optionally also the inputsin5 and in11, as two sets of address inputs. It also
uses the inputin5 and optionally the inputin6 as data inputs. The write enable sig-
nal of the mapped memory is assigned to one of the secondary inputs of the logic
block, that is,t1 or t2. The data outputs of a dual-port memory are always available
on the outputs ofboth logic elements. If a 2-bit dual-port memory is mapped, the
pairs of the arithmetic outputsar1, ar2 andar3, ar4 of the logic elements provide
two bits of the first and second read-out value, respectively. If a 1-bit dual-port
memory is mapped, the Boolean outputsbl1 andbl3 of the logic elements provide
one bit of the first and second read-out value, respectively. A mapping example of
a 16 x 2-bit dual-port memory is shown in Figure 6.14(b).

The operation of the dual-port memory is based on theread-before-writescheme.
The read operation takes place in the first half of the clock cycle, while the write
operation uses the second half. Therefore, the write enable signalswe1 andwe2

of the 4/2-LUTs in the logic elements are connected to the inverted clock signal
clk 9, which isAND-ed with the write enable signal of the memory. Consequently,
M8 = 0 andM9 = 0 in Figure 6.8(g). If a dual-port memory is implemented, the
copy block of the logic block is activated, that is,M14= 1 in Figure 6.8(c).

The detailed configuration of the logic block when it is used as a 16 x 2-bit dual-
port memory is illustrated in Figure 6.16(a). During the write operation (see Fig-
ure 6.16(b)), the logic block works as a data memory with two storage sections.
The write address provided on the inputsin1 . . . in4 of the logic block (address1)

9We assume that the rising edge of the clock signalclk activates the logic block operation.

6.5 Functional modes 135

clk

clk

D
ec

od
er

 1

C
op

y
bl

oc
k D

ecoder 2

output 1 output 2

address 1 address 2

write enableclk

D
ec

od
er

 1

L
og

ic
 b

lo
ck

4/2−LUT (1) 4/2−LUT (2)

C
op

y
bl

oc
k D

ecoder 2

address 1 address 2

output 1 output 2

(a)
write enable

(b) (c)

data inputs

D
ec

od
er

 1

D
ecoder 2

address 1

write enable

C
op

y
bl

oc
k

Figure 6.16. The implementation of a dual-port memory in the proposed logic block: (a)
general structure of the memory, (b) read operation, (c) write operation.

selects two memory locations (memory cells) in the 4/2-LUT of the first logic el-
ement. Because of the activated copy block, the data which are being written to
these locations are immediately copied at the same address to the 4/2-LUT in the
second logic element. During the read operation (see Figure 6.16(c)), the copy
block is disactivated by the write enable signal being ‘0’ (the first phase of the
clk), and the memories implemented in the logic elements of the logic block work
independently. The first logic element reads out the values from the same address
that has been used during the write operation. The second logic element reads
out the values from the second read address (address2), which is available on the
inputsin7 . . . in10 of the logic block.

Shift register. The logic block enables the implementation of shift registers (delay
lines) of various lengths (delays) and with various bit-widths of the input. The
following shift register configurations are possible in the logic block:

• one 1-bit shift register of the maximal length 64,

• one 2-bit shift register of the maximal length 32,

136 Memory-oriented reconfigurable architecture

• two 1-bit shift registers of the maximal length 32,

• two 2-bit shift registers of the maximal length 16.

The shift register implementation (see an example in Figure 6.14(c)) is identical
to the implementation of a single-port data memory, except for the read and write
operations that take place in the same clock cycle according to the read-before-
write scheme (as in the dual-port memory implementation). Consequently, the
write enable inputswe1, we2 of the 4/2-LUTs receive the inverted clock signalclk,
and the external write enable signal, which is connected to one of the secondary
inputst1, t2 of the logic block, works as a control signal.

write

read

selected location

D
ec

od
erAddress

generator

n
bi

tsL
og

ic
 e

le
m

en
t

out

in
write enable

(mod−n counter)

Figure 6.17. The implementation of a shift register generating a delay ofn clock cy-
cles (for the sake of simplicity, only one memory column of the 4/2-LUT
is shown).

In Figure 6.17, the implementation of a shift register of an arbitrary lengthn≤ 16,
is explained. The memory column of the 4/2-LUT is addressed by the address sig-
nal coming from the modulo-n counter implemented in an additional logic block.
During the period ofn clock cycles,n successive locations in the 4/2-LUT mem-
ory column memory are selected one after the other. At the first half of each clock
cycle, the value from the selected memory location is directed to the outputout;
at the second half of the clock cycle, a new value available at the data inputin
is stored at the same location. Aftern clock cycles, the firstn memory locations
are updated. The modulo-n counter again selects the first memory location and
the described procedure repeats. In this way, a given memory location is always
accessible everyn clock cycles. If shift registers with a delay longer than 16 cy-
cles are to be implemented, other memory columns are utilised. The reading from
and writing to the additional columns are determined by the value of the most
significant bits of the address.

6.6 Configuration architecture 137

6.6 Configuration architecture

The memory-oriented reconfigurable logic architecture has been designed to sup-
port partial and a restricted form of dynamic reconfiguration. The partial recon-
figuration means that the functionality of the device can be changed selectively
without re-loading the entire content of the configuration memory. Because such
a reconfiguration procedure may take place during the operation of the device, we
also regarded it as dynamic reconfiguration. The dynamic reconfiguration is re-
stricted since only the part of the device that is currently not executing any task
can be reconfigured.

The configuration architecture is hierarchical. On the first level, the tile that is to
be configured is selected, while on the second level, a set of bits within the tile,
the state of which is to be changed, is chosen. The configuration architecture of a
2 x 2 array of logic tiles is illustrated in Figure 6.18(a). The vertical and horizon-
tal global decodersgenerate horizontal and vertical address signalsh0 . . .h3 and
v0 . . .v3 based on the 2-bit address vectorsH andV, respectively. The logic tile
at the location(x,y) of the array receives a pair of global address signals(hx,vy).
Each tile of the array receives also a set of 18 configuration signals, 14 of which
are distributed to the configuration memories of both logic elements. Thelocal
configuration memoryof a single logic element is shown in Figure 6.18(c). Such
a memory consists of the control and LUT memories. Thecontrol memorycon-
figures switches and multiplexers of the logic and routing resources of the logic
element, while theLUT memorydetermines the type of function which is im-
plemented in the 4/2-LUT. The bits of both the control and LUT memories are
organised in columns of 16 memory cells each. The number of memory columns
determines the minimal number of bits than can be changed at once (here: eight).
The memory columns are addressed by the signals from a local 4:16 decoder. Such
a decoder is part of the 4/2-LUT (see Section 6.3), and is used normally to address
the LUT memory bits. The sharing of the decoder logic contributes to the reduc-
tion of the logic block area. The set of 16 switches is placed between the control
memory and the local decoder to disconnect them if the configuration procedure is
not performed. The memory cells of the control and LUT memories have different
implementations (see details in Chapter 8).

The set of configuration signals associated with each logic block (logic tile) in-
cludes:

• two independent sets of two configuration enable signalsecm1, elm1 andecm2,
elm2 for the control and LUT memories of the first and second logic element,
respectively,

• four local decoder signalsdec0 . . .dec3,

• eight configuration data signalscd0 . . .cd7 for the control memory,

138 Memory-oriented reconfigurable architecture

h 2

v 2

v 1

v 0

v 3

h 3h 1h 0

v y

e
cm

1 0ld 1dx 4

x 2

x 2

tri−state switch

cd 7cd 0

we1

1i0ld

l1c1

e
cm

2

e
lm

1
e

lm
2

Configuration enable signals (4)

Data signals (10)

Local decoder signals (4)

Global decoder signals (4)

G
lo

ba
l d

ec
od

er
 2

H

V Tile

(a) (b)

01

xh
local decoder input

Local decoder inputs (x 4)

Global decoder 1

(c)

16
 x

4/2−LUT.

switch

control memory cell

LUT memory cell

Control memory LUT memory

L
oc

al
 d

ec
od

er

data inputs

c1

LUT data inputs

LUT write enable inputslocal decoder inputs

LUT outputs

c1
l1

01

LUT write enable input

01

LUT data input

l1

l1

l2c2 se
co

nd
 lo

gi
c

el
em

en
t

fi
rs

t l
og

ic
 e

le
m

en
t

Figure 6.18. Configuration architecture of the memory-oriented reconfigurable logic de-
vice: (a) the first level with global decoders, (b) connection of the configura-
tion signals to the physical ports of the first 4/2-LUT, (c) second level with a
local controller of the first logic element.

6.7 Interconnect 139

• two configuration data signalsld0, ld1 for the LUT memory.

The connection of such signals to the physical ports of the 4/2-LUT is shown in
Figure 6.18(b). When a logic tile is selected (i.e. whenhx = 1 andvy = 1), the
signalsc1 andl1 that are generated based on the values of the enable signalsecm1

andelm1 of the first logic element determine which of the configuration memories
is to be configured. This is implemented by connecting the signalsc1 andl1 to
the control inputs of 2:1 multiplexers which select the inputs of the 4/2-LUT in the
first logic element. For example, if both the control and the LUT memories are to
be configured, the switches between the control memory and the local decoder are
activated, the inputs of the local decoder are connected to the signalsdec0 . . .dec3
signals, and write enable and data input ports of the first 4/2-LUT are connected
to thel1 andld0, ld1 signals, respectively.

6.7 Interconnect

The interconnect architecture of the memory-oriented logic block has been estab-
lished by experience. The routing channels consisting of 30 routing tracks and
three different types of the routing resources have been chosen. They are:

• general-purpose routing resources,

• special routing resources,

• direct routing resources.

Thegeneral-purpose routing resourcesare used for the routing of general-purpose
signals. This type of resources includes 12 tracks of the length-one (L1) and 16
tracks of the length-four (L4). The routing tracks of the length-four can also be
used for the implementation of 4-bit buses between the mapped data-path compo-
nents. Such buses are implemented in a twisted-like way (see Figure 6.19(b)),
which greatly simplifies their physical implementation (see details in Chapter
7). The general-purpose routing resources are connected to the input and out-
put ports of the logic block using connection blocks which the flexibilityFci = 0.4
andFco = 0.5, respectively. Furthermore, the switch block with six switches at
the crossing of each pair of horizontal and vertical routing tracks (the full switch
block) is used.

The special routing resourcesare formed by two vertical and horizontal routing
tracks. These tracks are meant only for the routing of the carry signals of arith-
metic components and for the write enable signals of memory structures. Finally,
thedirect routing resourcesinclude direct connections between neighbouring logic
blocks enabling their fast communication. Each logic block distributes four out-
put signals and two carry output signals in this way. The direct connections are

140 Memory-oriented reconfigurable architecture

distributed in all directions, that is, horizontally, vertically, and diagonally. The
schematic diagram representing the proposed interconnect structure is shown in
Figure 4.10.

4
4

4
4

4

4
1

4
4

1

Logic block

4 4

direct connections

switch box

general−purpose routing

(a) (b)

LB

fixed type of switch boxes

(LB)

L1
L4

L4
L4
L4
L1

12

L4

12 4 4 4 4 1 1

dedicated routing

Figure 6.19. The interconnect architecture of the memory-oriented reconfigurable logic
device: (a) overall routing resources, (b) implementation of the length-four
routing tracks using a twisting mechanism (only a horizontal routing channel
is shown).

6.8 Benchmarking

Similarly to the random-logic-oriented architecture, the memory-oriented recon-
figurable architecture was evaluated using only the model-based cost metrics (see
Section 3.2.4).

6.8.1 Benchmarking using the model-based cost metrics

The benchmarking using the model-based cost metrics was realised in an analo-
gous way to the benchmarking of other domain-oriented reconfigurable architec-
tures (see Section 4.8.2 and Section 5.6.1). In Table 6.2, the architecture-specific
parametersNlmb andPw are listed. Such parameters were used to model the cost
of the memory-oriented reconfigurable architecture during the benchmarking pro-
cedure.

The parametersNlmb andPw from Tables 3.3 and 6.2 were used to calculate the
mapping cost with respect to logicMCL (see Equation 3.23) and the mapping cost

6.8 Benchmarking 141

Number of pins
FPGA architecture Inputs Outputs Carry Carry Auxiliary Nlmb Pw

input output

Memory-oriented 12 4 0 2 2 64 18

Table 6.2. Characterisation of the logic cost (viaNlmb) and the routing resource cost (via
Pw) in the proposed memory-oriented FPGA architecture.

with respect to routingMCR (see Equation 3.24) for the proposed memory-oriented
FPGA and three commercial FPGA devices. The results of such a comparison are
shown in Table 6.4. For each FPGA, the table lists the value of the parameterNLB

and the mapping cost componentsMCL andMCR.

The data from Table 6.4 are also shown graphically in Figures 6.20–6.30. Table
6.3 summarises the results from Table 6.4 by showing the ratio of mapping costs
MCL andMCR assuming the memory-oriented FPGA as a reference. Note, that
results from Figure 6.27 should be interpreted remembering that the logic blocks
of the Altera and Atmel FPGA devices do not allow memory mapping.

Commercial→ Xilinx Virtex II Altera Stratix Atmel AT40K
Proposed↓ MCL MCR MCL MCR MCL MCR

MEM-oriented av=0.94 av=1.62 av=2.65 av=3.64 av=2.59 av=3.46
mn=0.5 mn=0.89 mn=0.5 mn=0.67 mn=0.5 mn=0.67

mx= 1.01 mx=1.78 mx=16 mx=22 mx=16 mx=21.33

Table 6.3. The summary of the results from Table 6.4. The mapping costs w.r.t. logic
MCL and w.r.t. routingMCR of three commercial FPGAs are normalised with
respect to the mapping cost of the memory-oriented architecture. The average
cost ratioav for 11 benchmarks of Xilinx and 10 for Altera and Atmel, the
minimummnand maximummxcost ratios are given.

Figure 6.20. 8-bit adder. Figure 6.21. 16-bit multiplier.

142 Memory-oriented reconfigurable architecture

S
tate-of-the-artcom

m
ercialF

P
G

A
architectures

P
roposed

F
P

G
A

X
ilinx

V
irtex

II
A

ltera
S

tratix
A

tm
elAT

40K
M

em
ory-oriented

B
enchm

ark
N

L
B

M
apping

cost
N

L
B

M
apping

cost
N

L
B

M
apping

cost
N

L
B

M
apping

cost
function

–
M

C
L

M
C

R
–

M
C

L
M

C
R

–
M

C
L

M
C

R
–

M
C

L
M

C
R

8-bitA
D

D
1

128
62

0.8
128

50
8

128
48

2
128

36
16×

16
M

U
LT

34
4.25K

2.11k
73

11.41K
4.53k

256
4K

1.54k
67.5

4.22K
1.22k

2:1
M

U
X

/4-bit
0.5

64
31

0.4
64

25
4

64
24

1
64

18
8:1

M
U

X
/1-bit

0.5
64

31
0.5

80
31

7
112

42
1

64
18

16:1
M

U
X

/1-bit
1

128
62

1
160

62
15

240
90

2.5
160

45
2-in

O
R

/4-bit
0.5

64
31

0.4
64

25
4

64
24

1
64

18
3-in

N
O

R
/1-bit

0.125
16

8
0.1

16
6

1
16

6
0.5

32
9

16-in
A

N
D

/1-bit
0.5

64
31

0.4
64

25
5

80
30

1
64

18
4:16

D
E

C
O

D
2

256
124

1.6
256

99
16

256
96

4
256

72
16-long

2-bitS
R

E
G

0.25
32

16
3.2

512
198

32
512

192
0.5

32
9

16×
4-bitR

A
M

1
64

31
–

–
–

–
–

–
1

64
18

Table
6.4.

T
he

m
apping

costcom
parison

betw
een

the
state-of-the-artand

proposed
m

em
ory-oriented

F
P

G
A

architectures.

6.8 Benchmarking 143

Figure 6.22. 2:1 4-bit multiplexer. Figure 6.23. 8:1 1-bit multiplexer.

Figure 6.24. 16:1 1-bit multiplexer. Figure 6.25. 2-input 4-bit OR.

Figure 6.26. 3-input 1-bit NOR. Figure 6.27. 16-input 1-bit AND.

144 Memory-oriented reconfigurable architecture

Figure 6.28. 4:16 decoder. Figure 6.29. 16-long 2-bit shift register.

Figure 6.30. 16 x 4-bit memory.

6.8.2 Discussion

The results of benchmarking the memory-oriented FPGA, which are summarised
in Table 6.3, show that the proposed FPGA architecture is superior to the compared
commercial FPGAs. Unlike the random-logic-oriented architecture, the memory-
oriented architecture offers the reduction of both logic and routing costs.

The cost reduction factor depends on the compared FPGA, and is higher for Altera
and Atmel devices. This is because logic blocks of such devices do not have mem-
ory mapping capabilities (within logic blocks). Consequently, the logic cost of the
Altera and Atmel devices is on average 2.65 and 2.59 times higher, respectively,
than the logic cost of our FPGA. Furthermore, the average routing resource cost
of the Altera and Atmel devices is 3.64 and 3.46 times higher, respectively, than
for our FPGA. At the same time, the logic and routing resource costs of the Xilinx
FPGA are on average 6% lower and 1.62 times higher, respectively, than similar
costs of our FPGA.

It is interesting to note that even at a very similar logic cost, the proposed memory-
oriented FPGA reduces the routing resource cost compared to the functionally
equivalent Xilinx FPGA.

6.9 Conclusions 145

6.9 Conclusions

In this chapter, we discussed the memory-oriented reconfigurable architecture
which targets designs with distributed storage. The memory functionality has been
obtained by the use of a novel multi-output look-up table, such as a 4/2-LUT, as
a basic building block of the reconfigurable logic block. An efficient implementa-
tion of arithmetic in such a LUT has been enabled by applying the inversion-based
folding type II. This yields a factor of 2 reduction in the number of LUT configu-
ration bits of the multi-output LUT compared to the number of bits required in a
traditional implementation.

Because the 4/2-LUT also allows the random logic mapping, the memory-oriented
reconfigurable logic architecture has a general-purpose character. However, in
contrast to state-of-the-art general-purpose FPGAs, the implementation cost of the
proposed architecture is substantially reduced. The reason is the reduction of the
amount of routing resources which is the result of sharing input ports of the multi-
output LUT. The model-based comparison of our FPGA with the Xilinx Virtex
II FPGA which also supports memory mapping confirms the routing resource re-
duction. The Xilinx FPGA is found to have on average 1.62 times higher routing
resource cost than our FPGA.

146 Memory-oriented reconfigurable architecture

Chapter 7

TEMPLATE-BASED METHODOLOGY FOR
RECONFIGURABLE LOGIC DESIGN

In Chapters 4–6, we addressed the problem of cost-efficiency of embedded recon-
figurable logic from the architecture perspective. We showed that the cost reduc-
tion (in terms of the silicon area that is required to implement a given function)
can be achieved by tuning a reconfigurable logic architecture to a target appli-
cation domain (or a set of processing kernels). However, the implementation of
basic building blocks of a reconfigurable logic architecture, such as the logic tile
we focused on, is only one of the aspects that must be considered while design-
ing reconfigurable-logic-based systems. To address very different requirements of
such systems, embedded reconfigurable logic cores must be available in different
sizes and (unlike stand-alone FPGAs) in different shapes. Also, to further reduce
the cost, there may be a need for several different variants of the same domain-
oriented reconfigurable logic core.

Design time and effort are important aspects that must be considered. Next, the
complexity and availability of mapping tools must be taken into account. Such
tools should fully exploit the mapping capabilities of different types of reconfig-
urable logic cores. They should also ensure that structural and functional differ-
ences between the cores are properly reflected during the mapping procedure.

To address the above-mentioned aspects, we propose atemplate-basedmethodol-
ogy for reconfigurable logic design. Such a methodology plays a central role in
the process of application domain specialisation of reconfigurable logic described
in Chapter 2. In this chapter, we discuss basic characteristics of the methodology
and present a hierarchical template of a reconfigurable logic architecture. We also
discuss the implications for the physical design and mapping process.

7.1 The concept

Our methodology is based on the use of atemplate. The template is a generic
model of an architecture of an embedded reconfigurable logic core and is described
by a set of parameters. By setting the template parameters according to the spe-
cific values, application-domain-specific instances of the template can be created.

148 Template-based methodology for reconfigurable logic design

Note, that this is analogous to the concept of Application-Specific Instruction set
Processors (ASIPs), which play a key role in designing cost-efficient embedded
systems [107]. Typically, ASIP cores target specific application domains and are
also generated from a parametrised architecture template.

The proposed template serves the following purposes:

• The template is used togeneralisethe concept of application domain special-
isation introduced in Chapter 2. The application-domain-oriented instances
of the template, for example such as described in Chapters 4–6, are derived
by setting the template parameters accordingly.

• By using a generic architecture template and allowing an arbitrary change
of its parameters, many different architectural instances of the template can
be created. This enables a systematicarchitecture space explorationwith
experiments on a much larger set of potentially interesting solutions than
would be possible using conventional (manual) methods. In this way, a fast
evaluation of the domain-specific instances of the template is possible.

• The template is used to reducedesign time and effort. For example, a VLSI
implementation of different types of logic cores (template instances) can be
considerably reduced if their netlists and layouts are generated automatically
from a template.

• Assuming that the parametrised architecture template is also used as a model
in mapping (CAD) tools (e.g. technology mapping, placement, routing),
such tools can be maderetargetable.

The idea of a parametrised reconfigurable logic architecture is not entirely new.
In [14], Betz et al. use a parametrised description to model different variants
of FPGA architectures for the purpose of a flexible CAD tool-set. Such a tool-
set, including a placement and routing tool called VPR (Versatile Placement and
Routing) and a packing (clustering) tool called T-VPack (Timing-driven Packing
for VPR), is meant as the back-end of the mapping flow targeting an arbitrary
LUT-based FPGA architecture1. The details of Betz’s architecture model and the
description of the automatisation of the architecture generation process from a high
level description can be found in [13]. In [29], the concept of domain-specific re-
configurable subsystems, which forms the basis of the Totem project, is described.
Reconfigurable subsystems are generated automatically based on the requirements
of a given group of applications. The resulting architecture is a reconfigurable
data-path consisting of a computational structure and a routing fabric.

There are several aspects that differentiate our concept from the prior art. Firstly,
the primary purpose of Betz’s model is the introduction of flexibility to the FPGA

1The architecture model used by Betz introduces some limitations, because of which only rel-
atively simple FPGA structures can be modelled.

7.2 The reconfigurable logic architecture template 149

placement and routing tool allowing the use of such a tool for different FPGA ar-
chitectures. In consequence, the logic resources in Betz’s model are modelled as
black boxes of the specified granularity, and are described by only those param-
eters that are relevant for the proper functioning of the tool (e.g. for its timing
engine). In contrast, our template defines the complete architecture of a reconfig-
urable logic device, that is, all functional blocks and the associated routing. Also,
our template can be applied both to an application mapping flow and to a VLSI
design flow. Secondly, Betz’s model targets conventional general-purpose FPGA
architectures. It assumes a simplek-input LUT as a basic logic element of such
architectures; the LUTs can be clustered together to form a coarser logic block.
Again, this is in contrast to our template, which is meant for the modelling of
application-domain-oriented architectures. The values of the template parameters
depend thus on a target application domain. In addition, logic elements in our
model may have a different structure and a higher complexity than a singlek-LUT
that is assumed in T-VPack and VPR. Finally, Betz’s architecture model is based
on four levels of hierarchy, while our architecture template features five levels.
The additional level of hierarchy in our model allows an unambiguous description
of functionally different domain-oriented reconfigurable logic structures.

Our reconfigurable architecture template also differs from the concept proposed
in the Totem project. The Totem concept does not rely on a parametrised archi-
tecture template: the generated architectures are assembled from a library of basic
components, such as multipliers, adders, memories. Furthermore, the Totem ar-
chitectures fall into a category of coarse-grain architectures and not of fine-grain
architectures, the category we aim at (see a discussion in Section 1.4.1). Also, they
are built as one-dimensional structures rather than two-dimensional structures. Fi-
nally, the Totem domain-specific reconfigurable subsystems provide much more
restricted flexibility than the domain-specific instances generated from our recon-
figurable logic architecture template.

7.2 The reconfigurable logic architecture template

The reconfigurable logic architecture template defines the way of generating the
completearchitecture of anarbitrary type of anapplication-domain-orientedre-
configurable logic core using alimited numberof basic building blocks calledtiles.
As in Chapter 3, we assume that the architecture of the generated core ishomo-
geneous. The proposed template is hierarchical. Five levels of hierarchy, each of
which is described by a unique set of parameters, include (in a bottom-up order):
a logic element, a processing element, a logic block, a tile, and an array. Below,
we define each level of hierarchy and explain the rationale behind it.

150 Template-based methodology for reconfigurable logic design

7.2.1 Level I – Logic element

Logic element (le)is a basic LUT-based functional component of a reconfigurable
logic architecture.

1p

|A|a

1s ci

co

|P|p

|S|s

1a

. .
 .

. . .

b

. .

Logic element

Figure 7.1. Logic element.

The logic element has the setP = {pi : i ∈ N}2 of primary input ports, the set
S= {si : i ∈ N} of secondary input ports, and a carry input portci. It also has the
setA = {ai : i ∈N} of arithmetic output ports, a boolean output portb, and a carry
output portco. This is illustrated in Figure 7.1. The number of ports of the logic
element and its functionality are determined by the typeT of the logic element.
The typeT depends on a target application domain.

The three types of the logic elements that have been proposed in Chapters 4–6 can
be modelled as shown in Figure 7.2. The number of ports and functionality of the
logic elements are given in Table 7.1 and Table 7.2, respectively. The functionality
is determined by the largest Boolean, arithmetic and memory functions that can be
implemented in the logic element. Consequently, the number of bits of the input
vector of the largest Boolean function, the number of bits of the argument of the
arithmetic function, and the number of bits of the data input of a memory define
the functionality of the logic elements.

1a

2a1p

2p

1a 1a

co co

ci

co

1s 2s 3s

1p
2p
3p
4p

1p
2p
3p
4p
5p
6p

1s cici

b
b

(a) (c)(b)

b
le le le

Figure 7.2. Application-domain-oriented instances of the logic element that have been
proposed in Chapters 4–6: (a) data-path-orientedle, (b) random-logic-
orientedle, (c) memory-orientedle.

2We useN to denote the set of natural numbers excluding 0.

7.2 The reconfigurable logic architecture template 151

Type T of logic element |P| |S| |A|
Data-path-oriented 2 3 1

Random-logic-oriented 4 0 1
Memory-oriented 6 1 2

Table 7.1. Number of ports of the logic element dependent on its typeT . (It is assumed,
that all logic elements have asingleboolean outputb, which, for the simplicity’s
sake, is not listed in the table.)

Type T of logic element Boolean Arithmetic Memory
Data-path-oriented 2 1 –

Random-logic-oriented 4 1 –
Memory-oriented 5 2 2

Table 7.2. Functionality of the logic element dependent on its typeT .

7.2.2 Level II – Processing element

Processing element (pe)consists of the setN = {lei : i = 2 j , j ∈N0}3 of logic ele-
ments connected in parallel. The number|N| of logic elements is chosen such that
the implementation of large Boolean functions according to Shannon’s expansion
(see Equation 3.2) is possible.

. . .

s1

y |Y|

le 1

le 2

le |N|

1x

y 1
y 2

y 3
y 4

. .
 .

. .
 . . .
 .

. .
 .

. .
 .

. .
 .

. .

. .
 . . .

. .
 . . .

. . .

. .
 .

. .

. .
 .

In
pu

t s
el

ec
tio

n
bl

oc
k

. . .

cis |S|

z

Multiplexer block

co

x |X|

. . .|U|

Figure 7.3. Processing element.

3N0 denotes the set of natural number including 0.

152 Template-based methodology for reconfigurable logic design

The processing element, which is shown in Figure 7.3, has the setX = {xi : i ∈N}
of primary input ports, the setS= {si : i ∈N} of secondary input ports, and a carry
input portci. It also has the setY = {yi : i ∈N} of arithmetic output ports, a boolean
output portz, and a carry output portco. The input portsxi of the processing
element are connected via theinput selection blockto the primary input portspi

of |N| successive logic elements. The input selection block, which comprises a set
of multiplexers (e.g. in the configuration as shown in Figure 4.7(a)), guarantees
that, dependent on the functional mode of the processing element, the primary
input ports of the logic elements always receive the right set of signals from the
primary input ports of the processing element. The number|X| of the primary
input ports is equal to the cumulative number of 1-bit inputs of the largest Boolean,
arithmetic or memory functions, whichever is greater, that can be implemented in
the processing element. The|S| secondary input portssi of the processing element
are connected directly to the secondary input portssi of all logic elements. In
contrast, the carry input portsci and carry output portsco of logic elements are
chained. This means that all logic elements except the first one have their carry
input portsci connected to the carry output portcoof the preceeding logic element.
The first logic element of the processing element, that isle1, has its carry input
port ci connected to the carry input portci of the processing element (or it may
be shorted with one of the secondary input ports if the selected secondary input
port and the carry input port of the processing element are used in a mutually
exclusive way; see examples in Section 7.3). Similarly, the last logic element of
the processing element, that isle|N|, has its carry output portco connected to the
carry output portco of the processing element. The arithmetic output ports of the
logic elements are connected directly with the|Y| output ports of the processing
element. The boolean output portsb of the logic elements are multiplexed in the
multiplexer blockconsisting of alog|N|- level network of 2:1 multiplexers. The
multiplexers are controlled by the setU = {ui : i ∈N} of the control signals that are
generated in the input selection block. The output of the multiplexer block, which
is the output of the final 2:1 multiplexer in this block, connects to the boolean
outputz of the processing element.

The number of input and output ports and the functionality of the processing ele-
ment as a function of its type are described in Tables 7.3 and 7.4, respectively. The
functionality of the processing element is defined as in Section 7.2.1.

Processing element type |X| |S| |Y|
Data-path-oriented 2· |N| 3 |N|

Random-logic-oriented max(log|N|+4, 2· |N|) 0 |N|
Memory-oriented 6· |N| 1 2· |N|

Table 7.3. The number of ports in the processing element dependent on its type. (As
in Section 7.2.1, it is assumed that all processing elements also have asingle
boolean outputz.)

7.2 The reconfigurable logic architecture template 153

Processing element type Boolean Arithmetic Memory
Data-path-oriented log|N|+2 |N| –

Random-logic-oriented log|N|+4 |N| –
Memory-oriented log|N|+5 2· |N| 2· |N|

Table 7.4. Functionality of the processing element dependent on its type.

7.2.3 Level III – Logic block

Logic block (lb)consists of the setM = {pei : i = 2 j , j ∈ N0} of processing el-
ements, which are organised in|K| parallel clusters. Similarly to the number of
logic elements in the processing element, the number of processing elements in the
logic block is implied by the LUT-based implementation of Shannon’s expansion
(see Equation 3.2).

co |K|

t	 |S
|(|

K
|−

1)
t |S

||K
|

w1

co1

ci1

i1

ci
|K

|
co

1

o 1

o |O|

i |I|

t |S|t1

pe 1

pe |M|/|K|

|M|pe

|M|−|K|pe

o 1

o |O|

...
...

...

. .
 .

. .

...

...
.... .

 .
.

. .
 .

.

...
...

...

. .
 .

. .

...

...
.... .

 .
.

. .
 .

. .

. .
 .

.

. .
 .

. .

. .
 .

. .

w

. .
 .

. .

Multiplexer block

.

. .
 .

. .

w|M|/2

w|M|/2+1

|W| . .
 .

. .

|W|

Fl
ip

−f
lo

ps

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

In
pu

t s
el

ec
tio

n
bl

oc
k

Figure 7.4. Logic block.

154 Template-based methodology for reconfigurable logic design

The logic block structure is shown in Figure 7.4. Each cluster of the logic block
is characterised by an independent set of secondary input ports and independent
carry input and output ports. The outputs of the logic block can be registered.
The outputs can also be connected to the inputs of the logic block allowing the
realisation of more complex logic functions or functions with feedback loops.

The logic block has the setI = {i i : i ∈N} of primary input ports, and|O| feedback
ports that are connected to the ports in the output port setO = {oi : i ∈ N} of the
logic block. The logic block also has the setT = {ti : i ∈ N} of secondary input
ports such that|T| = |S| · |K|. The first|S| inputs of the setT, that ist1, . . . , t|S|,
belong to the first cluster of processing elements, the second|S| inputs of the set
T, that ist|S|+1, . . . , t2·|S|, belong to the second cluster of processing elements, etc.
The logic block has also|K| carry input portscii and |K| carry output portscoi ,
with i being the cluster index such that 0< i ≤ |K|.
The |I | primary inputs and|O| feedback inputs are fed to theinput selection block
consisting of a set of multiplexers. The input selection block of the logic block
serves two purposes. Firstly, it implements the full connectivity between the pri-
mary input ports of the logic block and the primary input ports of processing el-
ements. Secondly, it implements feedback between the primary output ports and
the primary input ports of the logic block.

Full connectivity means that a signal from each primary input port of the logic
block is distributed to the primary input ports of all processing elements. This
type of connectivity is introduced if the number of primary input ports of the logic
block is lower than the number of primary input ports of processing elements in
all clusters, that is, when|I | < |M| · |X|. The number of input ports of the logic
block is lowered to reduce the routing cost (see Equation 3.22). Full connectivity
helps in such a situation to increase the routability of mapped circuits. The mini-
mum number of inputs|I | of the logic block consisting of|M| |X|-input LUTs can
be calculated based on an empirical formula from [3], which is given by Equa-
tion 7.14.

|I |= |X|
2
· (|M|+1) (7.1)

While Equation 7.1 addresses requirements of Boolean functions, it does not take
into account the input port requirements of large multiplexers. Because multiplex-
ers are important implementation components (see Section 2.3.1), and because the
number of inputs (data and control inputs) of a large multiplexer is higher than
the number of inputs of a typical LUT-mapped Boolean function, we derive a new
limit on the number of primary input ports of the logic block. Such a limit can be
calculated as

|I |= |M| ·Z+ logZ+ log|M|−1. (7.2)

4The formula makes use of the fact that most Boolean functions share some of their inputs.

7.2 The reconfigurable logic architecture template 155

Z denotes the number of data inputs of a multiplexer that can be implemented in a
single processing element of the logic block, and is derived using Equation 7.3.

Z =
{

2 if |N|= 1
|N| if |N| ≥ 2

(7.3)

Note, the number of primary input ports of the logic block given by Equation
7.2 relaxes slightly the routing constrains of the logic block (due to more routing
resources) compared to the constrains implied by Equation 7.1.

As already stated, the input selection block also allows the realisation of feed-
back if signals from the setO of the output (feedback) ports of the logic block
are selected as inputs of the processing elements. Dependent on a target applica-
tion domain, the input selection block of the logic block can be designed with the
one-to-one type or the full type of feedback connections. Theone-to-one feedback
connectionsare illustrated in Figure 4.7(a). Such connections are typical for the
data-path-oriented architectures and allow the realisation of sequential arithmetic
modules (such as counters, incrementers and decrementers), in which one of the
inputs receives the registered signal from the output. The one-to-one feedback
connections connect the|O| output ports of the logic block to the|O| primary in-
put ports of the processing elements. Thefull feedback connectionsare shown in
Figure 4.7(b). Such connections are typical for the random-logic-oriented archi-
tectures and allow the implementation of complex Boolean functions (the feedback
signals are unregistered then) or different types of finite state machines (the feed-
back signals are registered then). The full feedback connections connect all|O|
output ports of the logic block to all|M| · |X| primary input ports of the process-
ing elements. The input selection blocks with the one-to-one and full feedback
connections are also shown in Figure 4.7(a) (the first set of multiplexers only) and
Figure 5.3(a), respectively.

The outputs of the input selection block are connected to the primary input ports of
the processing elements. The|S| secondary input ports of the processing elements
in the j-th cluster receive signals from thej-th set of the secondary input ports
of the logic block, that is, from portst(j−1)·|S|+1, . . . , t j·|S|. Each first processing
element in thej-th cluster of processing elements receives a carry input signal
from the j-th carry input portci j of the logic block. Similarly, each last processing
element of thej-th cluster generates a signal that is directed to thej-th carry output
coj of the logic block. All processing elements in the cluster have their carry
input ports and carry output ports connected serially. In addition, the independent
clusters of processing elements can also be connected serially. This is enabled by
the 2:1 multiplexer at the carry input port of each first processing element in each
j-th cluster (except the first cluster). The multiplexer in thej-th cluster selects
between a signal from the carry input portci j of the logic block and the signal
from the carry output portcoof the (j−1)-th cluster.

The multiplexer blockof the logic block is anlog|M|-stage network of 2:1 mul-
tiplexers that are controlled by the control signals from the setW = {wi : i ∈ N}

156 Template-based methodology for reconfigurable logic design

i1

o 1

o |O|

pe 1

pe |M|

i |X|

i |I|−|X|

i |I|

pe 1

pe |M|

..i |I|

..o|O|o 1

1i

..i |I|

..o|O|o 1

1i

..i |I|

..o|O|o 1

1i

..i |I|

..o|O|o 1

1i

. .
 .

. .

. .
 .

. .

...

...
...

...

...
...

(a) (b)

. .
 .

. .

. .
 .

. .
. .

 .
. .

...

...
...

. .
 .

. .
...

...
...

...
...

. .
 .

. .
...

|O|

. .
 .

. .
...

|O|

|O|

|I|

|I|

|O|

|I|

|I|

Input selection block

Figure 7.5. Comparison of the input selection blocks with (a) one-to-one feedback con-
nections and (b) full feedback connections. In Figure (a) it is assumed that the
first primary inputs of all processing elements are associated with successive
bits of the first arithmetic argument (e.g. in thex− y operation,x is the first
argument).

that are generated in the input selection stage. The multiplexers in the first stage
of the multiplexer block select between signals from the boolean output portsz
of successive pairs of processing elements. Each multiplexer of the second stage
selects between a pair of output signals of multiplexers in the first stage; each mul-
tiplexer of the third stage selects between a pair of output signals of multiplexers in
the second stage, etc., as shown in Figure 7.4. The output signals of multiplexers
in all stages are the output ports of the multiplexer block. This is in contrast to
the multiplexer block of the processing element, which has only one output port
(connected to the output of the multiplexer in the last stage).

The signals from the output ports of the multiplexer block and signals from the|Y|
arithmetic output ports of all processing elements are connected to the inputs of the
output selection block. The output selection block is a multiplexer network which
determines the final number of output signals of the logic block and the ports on
which these signals appear. It is assumed that all output signals of the multiplexer
block and all|Y| arithmetic signals of the processing elements can be chosen as
logic block outputs. The example of the output selection blocks designed in this
way are shown in Figures 4.7(b) and 5.3(b).

The signals from the output selection block are directed to theflip-flopblock. The
flip-flop block, which example implementation is shown in Figure 5.3(b), allows
any output of the logic block to be registered. The output signals of the flip-flop
block, registered or not, are directed to the|O| output ports of the logic block.

Table 7.5 lists the number of primary input and output ports in the logic block and

7.2 The reconfigurable logic architecture template 157

Table 7.6 the functionality of the logic block dependent on the logic block type.
The functionality of the logic block is defined as in Section 7.2.1.

Logic block type I O
Data-path-oriented |X| · |M| |Y| · |M|

Random-logic-oriented max(|M| ·Z+ logZ+ log|M|−1, |X|
2 · (|M|+1) |Y| · |M|

Memory-oriented |X| · |M| |Y| · |M|

Table 7.5. Number of ports in the logic block dependent on its type.

Logic block type Boolean Arithmetic Memory
Data-path-oriented log|M|+ log|N|+2 |M| · |N| –

Random-logic-oriented log|M|+ log|N|+4 |M| · |N| –
Memory-oriented log|M|+ log|N|+5 2· |M| · |N| 2· |M| · |N|

Table 7.6. Functionality of the logic block dependent on its type.

7.2.4 Level IV – Tiles

The level IV of our template describes four basic building blocks of a reconfig-
urable logic architecture, that is, a logic tile, an input/output tile with routing, an
input/output tile, and a corner routing tile. Such tiles are necessary for the cre-
ation of a homogenous symmetrical reconfigurable logic architecture, which will
be discussed in detail in Section 7.2.5.

Logic tile

Logic tile (lt) is the main building block of a reconfigurable logic architecture. It
consists of a logic block and routing resources. The routing resources define the
number of routing tracks in the horizontal and vertical routing channels, their seg-
mentation, and the way how routing tracks connect to the ports of the logic block.
The routing resources also define the types of programmable switches which link
the routing wire segments together.

The logic tile is shown in Figure 7.6. The tile has three different types of ports:
logic portsLL (left), LR (right), LT (top) andLB (bottom), routing portsRHL (hor-
izontal left),RHR (horizontal right),RVT (vertical top),RVB (vertical bottom), and
direct portsDI (inputs) andDO (outputs). Thelogic portsconnect the ports of the
logic block to the routing tracks of neighbouring tiles; therouting portsare the
end terminals of the routing tracks of the same logic tile; thedirect portsenable
direct connectivity of neighbouring logic tiles, that is, without passing through
programmable switches.L in Figure 7.6 denotes the set of all ports of the logic
block. L includes the sets of the primary input portsI , secondary input portsT,

158 Template-based methodology for reconfigurable logic design

|C |I

|C |O

OD

DI

LR

LB

ω i
HLR HRR

VBR

VTR

LL

. .
 .

. .
. .

 .
. .

LT

.

|L|

|I|

|T|

lb

.
. .

 .
. .

|O|

.
. .

 .
. .

. .
 .

. .

. . . .
. .

 .
.

.

. .
 .

. .

. .
 .

. .
. .

 .
. .

. . . .

. .
 .

.

.

.
λ

. . . .

. .
 .

.

connection blocks
twisters

wire

switch block

direct connection block

routing track

T B

I

O

R

V

H

L

α α

β

β

α

θ

θ

α

Figure 7.6. Logic tile.

and carry input portsCI , as well as the sets of output portsO and carry output ports
CO, that is

L = I ∪T ∪CI ∪O∪CO. (7.4)

The ports in the setL of the logic block are distributed to the ports in the setsLL

andLT of the logic tile. The ports in the setLL connect to the routing tracks of the
logic tile on the left via the ports in the setLR of the left logic tile; the ports in the
setLT connect to the routing tracks of the logic tile on the top via the ports in the
setLB of the top logic tile. The ports in the setL of the logic tile also connect to
the routing tracks within that tile. The connections of the logic block ports to the
routing tracks are realised in the so-calledconnection blocks. In contrast to [14],
we describe the connectivity in the connection blocks using a matrix notation. The
rows of theconnectivity matrixare elements of the routing port sets, while the
columns are elements of the logic block port sets. The connectivity matrix is filled

7.2 The reconfigurable logic architecture template 159

with ‘0’s and ‘1’s. ‘1’ at the (i, j) position in the matrix means the presence of a
connection between ani-th routing track andj-th logic block port; ‘0’ means no
connection. The connection blocks of the logic tile which is shown in Figure 7.6
are modelled by the connectivity matrices defined by the functionsαT , αB, αL and
αR as follows

αT : (RHL×LB)→{0,1}, (7.5)

αB : (RHL×L)→{0,1}, (7.6)

αL : (RVT×LR)→{0,1}, (7.7)

αR : (RVT×L)→{0,1}. (7.8)

The connectivity indirect connection blocks, that is, between logic block ports
and the direct ports of the logic tile, is defined in a similar way. The rows of the
connectivity matrix in this case are addressed by the elements of the direct port set
DI or DO, and the columns by the elements of the logic block port setL. The di-
rect connection block for inputs is described by the connectivity matrix defined by
the functionβI , while the direct connection block for outputs by the connectivity
matrix defined by the functionβO. Note, that the connectivity matrix of the direct
connection block for inputs has its last|O|+ |CO| columns filled with ‘0’ (no con-
nections to the output ports of the logic block), whereas the connectivity matrix of
the direct connection block for outputs has its first|I |+ |T|+ |CI | columns filled
with ‘0’ (no connections to the input ports of the logic block). The functionsβI

andβO are defined as follows.

βI : (DI ×L)→{0,1} (7.9)

βO : (DO×L)→{0,1} (7.10)

The input and output ports of the logic block that connect to the exactly the same
set of routing tracks (via the logic ports of the logic tile) as well as to the same
set of the direct input and direct output ports of the logic tile can be reduced to
a single port only. This allows the reduction of the implementation cost of the
routing architecture.

In Figure 7.7(a), an example of the connectivity between selected ports of the logic
block, the direct ports, and the routing tracks of the horizontal routing channel is
shown. Figure 7.7(b) shows the corresponding connectivity matrices (functions
αB andβI), and Figure 7.7(c) shows the suggested implementation method of the
connection blocks.

160 Template-based methodology for reconfigurable logic design

1
1
1
1
0
0
0
0

1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1

|DI|

0
0
0
0
1
1
1
1

0

0
1
1
1

1
1

1
1
1
0

0
1

1
1
0
0

1
1

1
1
1
0

0
|RHL|

|L|

.

|L|

.

(b)

r HL3
r HL4
r HL5

r HL2
r HL1
r HL0

dIn
dIs
dIw
dIe
dInw
dIne
dIsw
dIse

DI

HLR

input port

direct ports

routing tracks

(a) L

......

(c)
output port

direct ports

routing tracks

programmable switch

I

B

β

α

Figure 7.7. Connection blocks: (a) a connectivity example, (b) corresponding connectiv-
ity matrices, and (c) the suggested implementation method of the input and
output connection blocks.

The segmentation (length) of the routing tracks (expressed in the number of logic
blocks that a routing track, separated by two programmable switches, span), the
switch block architecture (i.e. the way how routing tracks in horizontal and vertical
routing channels are connected together), and the type of programmable switches
are described by theswitching matrix(see Figure 7.6). The rows of the switch-
ing matrix are elements from the routing port setRHL, and the columns are the
elements from the routing port setRVT. The switching matrix is defined by the
functionλ such that

λ : (RHL×RVT)→{0,Ω}. (7.11)

The switching matrix is filled with ‘0’s (no connection between crossing tracks) or
the elements of the setΩ (see Equation 7.12) that describes switching point types.

Ω = {ωi : i ∈ N} (7.12)

A switching pointωi is described by the segment connection pattern and the type of
a programmable switch (see Figure 7.8). The segment connection pattern defines

7.2 The reconfigurable logic architecture template 161

the number of connections (paths) between horizontal and vertical track segments
that are associated with a given switching point, while the programmable switch
describes the implementation of such connections. For example, for two different
types of the segment connection patterns (e.g. ’disjoint’ [14] and ’half’ shown in
Figure 7.8(a)) and three types of programmable switches (e.g. a pass transistor,
a dual-pass gate and a bidirectional buffered switch shown in Figure 7.8(b)), six
different switching pointsω1 . . .ω6 are possible.

switching point

‘disjoint’ segement connection patattern

’half’ segment connection pattern

(a) (b)

dual−pass gate switch

pass transistor switch

bidirectional buffered switch

M

M

M

M

Figure 7.8. Examples of various switching points: (a) ‘disjoint’ segment connection pat-
tern and ‘half’ connection pattern, (b) the programmable switch types: a pass
transistor, a dual-pass gate, and a bidirectional buffered switch.

The horizontal and vertical tracks in the logic tile end with the so-calledwire
twisters. Thanks to the wire twisters, the routing resources of each logic tile can
be made identical. Consequently, only one type of logic tile, rather than many dif-
ferent types, suffices to implement a reconfigurable logic core. The wire twisters
are needed if the routing architecture includes routing segments longer than the
length-one, that is spanning more than one logic block. Such long segments must
be twisted in the way illustrated in Figure 7.9(b)). Furthermore, the total number
of tracks of a given length must always be the multiple of the wire segment length.
For example, the acceptable numbers of the routing tracks of the length-four are:
4, 8, 12, 16, etc.

The wire twisting scheme in the horizontal and vertical routing channels is de-
scribed by thetwist matricesdefined by the functionsθH and θV , respectively,
such that:

θH : (RHL×RHR)→{0,1}, (7.13)

162 Template-based methodology for reconfigurable logic design

ω1

ω2

ω 1

ω 1

ω 2

ω 2

ω 1

length−one wire segment
length−four wire segment

logic tile

switching point
switch block

(a)

(b)

(c)
Switching matrix Twist matrix

wire twister

lb lb lb lb

lblblblb

swiching point

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

Figure 7.9. Routing architecture modelling: (a) an example architecture with three length-
one routing tracks and eight length-four routing tracks, (b) an example im-
plementation of the routing architecture with a wire twisting scheme, (c) the
switching matrix and twist matrix (horizontal and vertical) for the example
routing architecture.

7.2 The reconfigurable logic architecture template 163

θV : (RVT×RVB)→{0,1}. (7.14)

The rows of the twist matrices are elements of the routing ports sets on the left
and top of the logic tile, that is,RHL andRVT, respectively. The columns of the
matrices are elements of the routing ports sets on the right and bottom of the logic
tile, that is,RHR andRVB, respectively. The matrices are filled with ‘0’s and ‘1’s.
‘1’ means a connection between the routing tracks that are associated with given
routing ports, ‘0’ means no connection. Typically, the horizontal and vertical twist
matrices are identical.

Figure 7.9 shows an example of the routing architecture. In such an architecture,
the routing channel consists of three length-one tracks and eight length-four tracks.
Figure 7.9(a) illustrates the architecture in a conceptual way. Note, that the length-
one wire segments of routing tracks use switching point of the typeω1 (e.g. a
‘disjoint’ segment connection pattern and pass-transistor-based switch), while the
length-four wire segments use switching point of the typeω2 (e.g. a ‘disjoint’
segment connection pattern and a buffer-based switch). In Figure 7.9(b), the im-
plementation details of such architecture are shown. The wire segments of the
length longer than one are twisted according to the modulo-length scheme. Figure
7.9(c) shows the switching matrix and the twist matrix (horizontal and vertical) of
the tile.

Input/output tile with routing

Theinput/output tile with routing (iort)contains elements that play a role of the in-
terface between the logic resources of the reconfigurable logic core and resources
of the system in which the core is embedded. As indicated by its name, the in-
put/output tile with routing is also enhanced with routing resources. The tile is
available in two versions, that is, a top and a left version. Both versions of the tile
are defined in an analogous way to the definition of elements of the logic tile.

The top input/output tile with routing (see Figure 7.10(a)) has two sets of in-
put/output portsFT and GB, and three sets of routing ports, that is,RHL, RHR,
andRVB. The ports in the setFT connect to the system resources, while the ports
in the setGB enable the connection of the ports in the setLT of a logic tile at the
top of the array to the routing resources of the top input/output tile with routing.
The routing ports in the setsRHL andRHR connect to the ports in the setsRHR and
RHL of the neighbouringiort tiles, respectively. The ports in the setRVB connect
to the ports in the setRVT of a logic tile at the top of the array. The setE is the
set of the direct input and output ports of the tile and it connects to the direct input
ports and direct output ports in the setsDI andDO, respectively. The functions
γT , γB andδT that describe connectivity matrices of the tile in Figure 7.10(a) are
defined as follows.

γT : (RHL×GB)→{0,1} (7.15)

164 Template-based methodology for reconfigurable logic design

γB : (RHL×FT)→{0,1} (7.16)

δT : (E×FT)→{0,1} (7.17)

The left input/output tile with routing (see Figure 7.10(b)) consists of the same el-
ements as the top input/output tile with routing. The positions of the elements are,
however, mirrored with respect to the positions of elements in the top input/output
tile with routing. The left input/output tile with routing has two sets of input/output
portsFL andGR, three sets of routing ports, that is,RVB, RVT, andRHR, and the
set of direct portsE. The ports in the setFL connect to the system resources, while
the ports in the setGR enable the connection of the ports in the setLL of the logic
tile on the left edge of the array to the routing resources of the left input/output tile
with routing. The routing ports in the setsRVB andRVT connect to the ports in the
setsRVT andRVB of the neighbouringiort tiles, respectively. The ports in the set
RHR connect to the ports in the setRHL of the logic tile at the left edge of the array.
The connectivity matrices of the tile in Figure 7.10(b) are defined by the functions
γL, γR andδL such that:

γL : (RVT×GR)→{0,1}, (7.18)

γR : (RVT×FL)→{0,1}, (7.19)

δL : (E×FL)→{0,1}. (7.20)

Corner routing tile

Thecorner routing tile (crt)(see Figure 7.10(c)) contains only routing resources
that supplement routing resources of the input/output tiles with routing. The corner
routing tile has two sets of routing ports, that is,RVB andRHR. The ports in the set
RVB connect to the ports in the setRVT of the top input/output tiles with routing.
The ports in the setRHR connect to the ports in the setRHL of the left input/outputs
tile with routing.

Input/output tile

The input/output tile (iot)contains elements that play a role of the interface be-
tween the logic resources of the reconfigurable logic core and resources of the
system in which the core is embedded, and no routing resources. The input/output
tile has two versions, that is, a right and a bottom version.

The right input/output tile (see Figure 7.11(a)) has two sets of input/output ports
FR andGL, and the set of direct portsE. The ports in the setFR connect to the
system resources, while the ports in the setGL connect to the routing resources of

7.2 The reconfigurable logic architecture template 165

FL

EθV

VBR

θH

HRR

VTR

θV

θH

HLR HRR

VBR

E

θV

θH

ω i
HRR

VBR

FT

(a)

(c)

(b)

.

. . . .

.

. . . .

.

. . . .

.
 .

. .

.

.
δ

λ

γ R

iω

. .
 .

.

. .
 .

.

.

. .
 .

. .

. .
 .

. .

. .
 .

.

.

. .
 .

.

Bγ

δ

λ

iω

Input/output tile with routing (iort): top

Input/output tile with routing (iort): left

GB

GR

.

. .
 .

. .

λ

.

γ T

γ L

T

L

Corner routing tile (crt)

Figure 7.10. Components of a reconfigurable logic core: (a) input/output tile with routing
(a top version), (b) input/output tile with routing (a left version), (c) corner
routing tile.

166 Template-based methodology for reconfigurable logic design

E

E

(a)

(b)

Input/output tile (iot): right

. .
 .

.
. .

 .
.

. .
 .

. δ

.

.

GL

. .
 .

.

.

.

. .
 .

.

. .
 .

.

FB

GT

Input/output tile (iot): bottom

FR

R

δ B

Figure 7.11. Components of a reconfigurable logic core: (a) input/output tile (a right ver-
sion), (b) input/output tile (a bottom version).

logic tiles via the setLR of the logic tile ports. The connectivity matrix for direct
connections of the right input/output tile is defined by the functionδR such that

δR : (E×FR)→{0,1}. (7.21)

Thebottominput/output tile (see Figure 7.11(b)) consists of the same elements as
the right input/output tile, but the elements are mirrored. The tile has two sets of
input/output portsFB andGT , and the set of direct portsE. The ports in the setFB

connect to the system resources, while the ports in the setGT connect to the routing
resources of logic tiles via the setLB of the logic tile ports. The connectivity matrix
for direct connections of the bottom input/output tile is defined by the functionδB

such that

δB : (E×FB)→{0,1}. (7.22)

7.2.5 Level V – Array

The top level of a reconfigurable logic architecture is an array of logic tiles. The
total number of logic tiles and the aspect ratio of the array are parameters. The
logic tiles (lt) are, as shown in Figure 7.12, surrounded by the input/output tiles
with routing (iort) and the input/output tiles (iot). The iort and iot tiles have a
twofold function. Firstly, they are an interface between a reconfigurable logic
fabric and the system resources. Secondly, they complete the routing architecture.
The latter is required because the external routing channel created by the routing
resources of the logic tiles on the edge of the array is present only at the bottom
and at the right side of the array. Therefore, the input/output tiles with routing

7.3 Architecture modelling examples 167

.

.

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

.

.

.

. .
 .

. .

. .
 .

. .
array

cr
t

.

lt ltlt

lt lt lt

ltlt lt lt

lt

lt

ltltlt lt

iort

iot

iort iort iort
io

rt
io

rt
io

rt
io

rt

io
t

io
t

io
t

io
t

iotiotiot

crt

Figure 7.12. Array – a top-level view of a reconfigurable logic architecture.

(iort) are placed on the left and at the top side of the array, and simple input/output
tiles (iot) are placed at the right and at the bottom side of the array. Additionally,
a corner routing tile (crt) that closes the external routing channel is placed at the
left top corner of the array. The bold ring in Figure 7.12 shows a resultant routing
channel created in this way.

All tiles of the array are abutted via their routing or logic ports, as shown in Figure
7.12. Note also, that the connectivity matricesλ of each tile are defined identically.
Consequently, the right functioning of the switch blocks in the logic tiles at the
edge of the array and the input/output tiles with routing must be guaranteed by the
proper programming of the configuration memory. This means, for example, that
programmable switches of the right bottom logic tile are programmed such that no
routing connections to the bottom and to the right sides of this tile are possible.

7.3 Architecture modelling examples

In this section, the described architecture template is applied to model application-
domain-oriented reconfigurable logic architectures that have been presented in

168 Template-based methodology for reconfigurable logic design

Chapters 4–6. (Because of the example character of the routing structures that
have been proposed for each logic block architecture, we focus only on the first
three levels of hierarchy of the template, that is up to the logic block level.) We
also discuss some architectural implications of our template.

7.3.1 Template instances

Table 7.7 lists the values of the template parameters that characterise three
application-domain-oriented instances of the reconfigurable architecture template,
that is, the data-path-oriented instance (see Chapter 4), random-logic-oriented
instance (see Chapter 5) and memory-oriented instance (see Chapter 6). The
table also summarises other characteristics of the template instances (such as the
number of input and output ports at each hierarchy level), which are determined
by the template parameter values. Basic functionality at each level, defined as the
number of inputs of the largest Boolean, arithmetic, and memory functions that
can be mapped, is also mentioned.

Figures 7.13, 7.14 and 7.15 show the logic block structures of the three proposed
application-domain-oriented architectures that are modelled according to the tem-
plate rules. The instances are modelled as follows:

• Data-path-orientedinstance is built of one processing element (|M| = 1).
The processing element contains four logic elements (|N|= 4) of the ‘data-
path’ type (τ : data− path).

• Random-logic-orientedinstance is built of four processing elements (|M|=
4). Each processing element contains one logic element (|N| = 1) of the
‘random-logic’ type (τ : random− logic).

• Memory-orientedinstance is built of two processing elements (|M| = 2)
forming two separate clusters (|K| = 2). The processing element of
each cluster contains one logic element (|N| = 1) of the ‘memory’ type
(τ : memory).

7.3 Architecture modelling examples 169

Level of Instance type
hierarchy Data-path-oriented Random-logic-oriented Memory-oriented

Logic element TEMPLATE PARAMETERS

T : data-path T : random-logic T : memory
DERIVED PARAMETERS

|P|=2 |P|=4 |P|=6
|S|=3 |S|=0 |S|=1
|A|=1 |A|=1 |A|=2

FUNCTIONALITY

Boolean: 2-in Boolean: 4-in Boolean: 5-in
arithmetic: 1-bit arithmetic: 1-bit arithmetic: 2-bit

memory: – memory: – memory: 2-bit
Processing TEMPLATE PARAMETERS

element |N|=4 |N|=1 |N|=1
DERIVED PARAMETERS

|X|=8 |X|=4 |X|=6
|S|=3 |S|=0 |S|=1
|Y|=4 |Y|=1 |Y|=2

FUNCTIONALITY

Boolean: 4-in Boolean: 4-in Boolean: 5-in
arithmetic: 4-bit arithmetic: 1-bit arithmetic: 2-bit

memory: – memory: – memory: 2-bit
Logic block TEMPLATE PARAMETERS

|M|=1 |M|=4 |M|=2
|K|=1 |K|=1 |K|=2

DERIVED PARAMETERS

|I |=8 |I |=11 |I |=12
|T|=3 |T|=0 |T|=2
|O|=4 |O|=4 |O|=4

FUNCTIONALITY

Boolean: 4-in Boolean: 6-in Boolean: 6-in
arithmetic: 4-bit arithmetic: 4-bit arithmetic: 4-bit

memory: – memory: – memory: 4-bit
Logic tile shorted ports: shorted ports: shorted ports:

ci1 andt1 – ci1 andt1
ci2 andt2

Table 7.7. Modelling of the proposed application-domain-oriented architectures using the
template parameters. (For completeness’ sake, the ports that must be shorted at
the logic tile level to obtain correct instance structures are also mentioned.)

170 Template-based methodology for reconfigurable logic design

o1

o4

i 1

i 8

t 2

a1

t 1 t 3

le 1

o4

y1

y2

y3

y4

le 2

le 3

le 4

a1

a1

o1

Fl
ip

−f
lo

ps

In
pu

t s
el

ec
tio

n
bl

oc
k

M
ul

tip
le

xe
r b

lo
ck

O
ut

pu
t s

el
ec

tio
n

bl
oc

k. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

z

b

b

b

b

le
pe

lb

co

a1

1

Figure 7.13. Model of the data-path-oriented template instance.

a1
y1

x4

x1

o4

o1

i 1

i 11

1pe

1le

o1

o4

x1

x1

x1

x4

x4

x4

2le

3le

4le

a1

a1

a1

y1

y1

y1

2pe

3pe

4pe

b z

M
ul

tip
le

xe
r b

lo
ck

. .
 .

. .

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

. .
 .

. .

In
pu

t s
el

ec
tio

n
bl

oc
k

. .
 .

. .

. .
 .

. .

Fl
ip

−f
lo

ps

. .
 .

. .

ci 1

co1

z

z

z

b

b

b

pe
le

lb

Figure 7.14. Model of the random-logic-oriented template instance.

7.3 Architecture modelling examples 171

a1
y1

a2

a1
y1

a2

x1

x6

ci1

ci2

y2

y2

co1

o1

o4

ci2

i 12

i 1

1le

2le

1pe

o4

o1

x1

x6

co2co1

2pe

. .
 .

. .

b

b

M
ul

tip
le

xe
r b

lo
ck

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

Fl
ip

−f
lo

ps

. .
 .

. .

. .
 .

. .

. .
 .

. .

z

z
. .

 .
. .

lb
pe

le

In
pu

t s
el

ec
tio

n
bl

oc
k

Figure 7.15. Model of the memory-oriented template instance.

7.3.2 Discussion

Despite strict rules that govern each level of hierarchy of the proposed architecture
template, a careful selection of the template parameters is required to obtain a tem-
plate instance with desired characteristics. For example, Figure 7.16 shows two
logic block structures that are built of the same number of logic elements. Though
similar in structure, the logic blocks differ in the provided functionality. This is
because different template parameters are used to characterise both instances. The
logic block shown in Figure 7.16(a) has two processing elements (|M|= 2) , each
with two logic elements (|N| = 2). In contrast, the logic block shown in Figure
7.16(b) has only one processing element (|M|= 1), but which contains four logic
elements (|N|= 4). Therefore, while the first logic block can implement up to two
5-input Boolean functions, the second logic block allows an implementation of
four independent 4-input Boolean functions. The latter logic block instance offers
thus a higher degree of flexibility.

le 1

le 2

le 3

le 4

pe1

pe2
pe3

pe4

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

. .
 .

. .

Fl
ip

−f
lo

ps

le 1

le 2

le 3

le 4

pe1

pe2

. .
 .

. .

Fl
ip

−f
lo

ps

O
ut

pu
t s

el
ec

tio
n

bl
oc

k

(a)

. .
 .

. .
. .

 .
. .

. .
 .

. .

lb

In
pu

t s
el

ec
tio

n
bl

oc
k

(b)

. .
 .

. .

lb

In
pu

t s
el

ec
tio

n
bl

oc
k

. .
 .

. .

Figure 7.16. A modelling example: two logic blocks with an identical number of logic
elements but different functionality.

172 Template-based methodology for reconfigurable logic design

7.4 Template-based design

The above-discussed template is aconceptual modelof a reconfigurable logic ar-
chitecture. The same model can be easily translated into anexecutable model.
The executable model supports the design of application-domain-oriented recon-
figurable logic cores for the SoC integration. Three primary methods of applying
the proposed template include:

• architecture exploration,

• physical design,

• application mapping.

Below, each of the methods is briefly explained.

7.4.1 Architecture exploration

The template is used to model various application-domain-oriented reconfigurable
logic architectures. A given application domain is characterised by the parameters
of the application domain model according to the procedure discussed in Section
2.3. The parameters of the application domain model can be translated into the
parameters of the architecture template in the way shown in Table 7.8.

Application parameter Architecture template parameter
Type of processing τ: logic element type

Word-size |N| · |M|
|N|: number of logic elements

|M|: number of processing elements
Rent exponent λ: switching matrix

Table 7.8. The correspondence between the parameters of the application domain model
and the parameters of the reconfigurable architecture template.

The template parameters that are instantiated based on the results of the application
domain characterisation provide a starting point for the process of architecture
exploration. The use of the template improves the quality of an initial solution and
allows systematical experiments on a large set of potentially interesting solutions.

7.4.2 Physical design

Two phases of the physical design process clearly benefit from the proposed
architecture template. They are:

7.4 Template-based design 173

• netlist generation, and

• layout creation.

With a clearly defined set of rules describing each level of hierarchy of the recon-
figurable logic architecture template, the netlist of each template instance can be
generatedautomatically. Such a netlist can be used both for a functional verifica-
tion of the core (e.g. a netlist in a behavioural HDL) or for a VLSI implementation
of the core (e.g. a netlist in a synthetisable HDL). In the latter case, the netlist
is mapped onto a library of predefined components (cells) and is used as an in-
put to an automatic placement and routing tool5. Because the quality (in terms of
area) of the final layout may be unsatisfactory, more customised layout generation
techniques are also possible.

The modular layoutis one of such techniques. It describes a hierarchical layout
approach which allows the creation of the layout of a complete reconfigurable
logic core using the layouts of a limited number of basic building blocks called
tiles. As we showed in Section 7.2, the layouts of only six different blocks, that is
the logic tile, two versions of the input/output tile, two versions of the input/output
tile with routing, and the corner routing tile, are needed. The layouts of the tiles are
abutted and connected together via the tile ports. The layout of each tile may be of
a full-custom type (a hand-crafted layout) or a semi-custom type (an automatically
generated layout based on a library of basic cells).

7.4.3 Application mapping

The tools supporting an application mapping flow of the template-based recon-
figurable architectures can be maderetargetable. This means that by setting the
parameters, the functionality of the tools can be modified to reflect specific char-
acteristics of a target reconfigurable architecture. In the process of mapping an ap-
plication onto a reconfigurable logic fabric two main phases can be distinguished,
that is:

• logic synthesis with technology mapping, and

• placement and routing.

State-of-the-art retargetable mapping tools, such asFlowMap[32] andVPR[105],
prove the feasibility of applying architecture templates in the application map-
ping flow. Both tools cover only one of the above-mentioned application mapping
phases. For example, FlowMap, proposed at the University of California at Los
Angeles, addresses the technology mapping problem. FlowMap enables the map-
ping ontok-input LUTs, wherek is a parameter and can be set by a user. The tool
guarantees the delay-optimal mapping. VPR (Versatile Placement and Routing) is

5Such an approach is equivalent to a traditional standard-cell mapping.

174 Template-based methodology for reconfigurable logic design

a retargetable placement and routing tool. VPR accepts a description of an FPGA
architecture in a high-level format and automatically generates its routing struc-
ture. Because the placement and routing algorithms recognise the changes in the
underlying routing architecture and adopt to them, the mapping onto architectures
with considerably different routing structures is possible.

Figure 7.17 shows an example of a simple reconfigurable logic core (for the sake of
simplicity, the core with one logic tile only is shown), which has been generated in
the architecture generator calledArchimed. Archimed [33] has been implemented
according to the proposed architecture template. The tool allows an automatic
generation of high-level netlists that describe the structure of domain-oriented re-
configurable cores. The cores are built using four types of basic building blocks
(tiles) that have been described in Section 7.2.4.

Figure 7.17. An example of a simple reconfigurable logic core which has been generated
using the proposed architecture template. Four basic tiles (i.e. a logic tile,
input/output tile, input/output tile with routing, and a corner routing tile)
can be identified. The specification of the reconfigurable logic core that is
generated automatically in the architecture generator called Archimed is used
as an input to a retargetable placement and routing tool called Pythagor.

7.5 Conclusions 175

The architecture specification generated by Archimed is used in the retargetable
placement and routing tool called Pythagor [34]. Such a specification defines a
logic fabric on which applications are mapped. The template-based architecture
specification allows the introduction of changes into the routing (and logic) re-
sources of the architecture and analysis of their impact on the routability. The
screen-shot of Pythagor is shown in Figure 7.18.

Figure 7.18. Screen-shot of the retargetable placement and routing tool called Pythagor.

7.5 Conclusions

In this chapter, the template-based methodology for the reconfigurable logic de-
sign has been discussed. The methodology facilitates the architecture exploration,
physical design and application mapping for reconfigurable logic cores of different
types, shapes and sizes. The methodology helps to reduce design time and effort.
The parametrised architecture template, which is central for the proposed method-
ology, is used to create application-domain-oriented architecture instances. The
architecture instances are derived by setting the template parameters according to
the characteristics (parameters) of a target application domain.

The proposed architecture template has five levels of hierarchy. The levels are:
logic element, processing element, logic block, tile, and array. Each level of hierar-
chy has a strictly defined purpose. The logic element, for example, is a basic logic
component of a reconfigurable logic architecture. The type of the logic element,
and thus its functionality, depend on the type of processing in a target application
domain. At the next level, the processing element determines the size of Boolean

176 Template-based methodology for reconfigurable logic design

functions that can be implemented in a reconfigurable logic architecture. Such a
size is determined by the number of logic elements in the processing element. The
third level is defined by the logic block. The logic block consists of a single or
several parallel clusters of processing elements. The total number of processing
elements in all clusters, and thus the total number of logic elements, correspond
to the data word-size of a target application domain. The type of feedback con-
nections is also defined at the logic block level. At the fourth level, the logic tile
defines the routing resources of the logic block. Other tiles, that is input/output
tile, input/output tile with routing and corner routing tile, which are basic building
blocks of the architecture, are also defined at this level. Finally, at the array level,
the basic tiles are used to create the complete architecture of a reconfigurable logic
core.

Using examples of the domain-oriented reconfigurable architectures proposed in
Chapters 4–6, we showed how such architectures can be modelled using the tem-
plate parameters. We also briefly discussed the role of the template in the process
of designing domain-oriented reconfigurable logic cores.

Chapter 8

CASE STUDY: MEMORY-ORIENTED
EFPGA CORE

In this chapter, a VLSI implementation of the memory-oriented embedded FPGA
(eFPGA) core, the architecture of which has been described in Chapter 6, is pre-
sented. We discuss first implementation details of basic building blocks of the
architecture. Next, we discuss a silicon prototype of the eFPGA core which has
been implemented in a 0.13µmCMOS technology using the described blocks. Fi-
nally, we compare our eFPGA core with state-of-the-art commercial FPGAs. The
comparison is based on the logic tile area as the cost metric. By focusing on the
logic tile area, both the logic and routing resource costs of an FPGA are taken into
account.

8.1 VLSI implementation aspects

The discussion in this section is restricted to these aspects of the VLSI implemen-
tation that differentiate our approach from the implementation approaches that are
typical for state-of-the-art FPGAs. Consequently, we focus on the implementation
of the configuration memory, consisting of the LUT and control memories, and we
discuss the implementation of programmable interconnect.

8.1.1 Memory design

The configuration memory is an inherent part of a reconfigurable logic device.
By loading configuration data (program) to an uncommitted reconfigurable logic
device, its functionality is established. To distinguish between two roles that the
configuration memory plays typically in a reconfigurable device, we assume a di-
vision of the configuration memory into a LUT memory and a control memory
(see Section 6.6). The LUT memory defines a basic functionality of a reconfig-
urable logic device, and optionally can also be used as a data memory. The control
memory programs the routing resources (i.e multiplexers and switches in the in-
terconnect) as well as the elements that define an operating mode of the device.
In the memory-oriented reconfigurable logic architecture, the distinction between
the LUT and control memories is also implied by their different implementations.
This issue is addressed below.

178 Case study: memory-oriented eFPGA core

LUT memory

The logic block of the memory-oriented reconfigurable logic device contains two
4/2-LUTs. Such multi-output LUTs have a memory-like organisation. This means
that each LUT is built of a single read/write decoder and an array of memory
cells, rather than of independent (read) multiplexers and independent columns of
memory cells as in traditional implementations (see Section 6.1.2). The memory-
like implementation of the LUTs is area efficient and facilitates their use as data
memories.

Despite a clear resemblance of the 4/2-LUT structure to a traditional memory
structure, the LUT implementation differs from a typical memory implementa-
tion. First of all, memory columns of the 4/2-LUT are implemented with single
bit lines rather than dual bit-lines. Secondly, no precharging of memory bit-lines
is used. Although this results in slightly longer read delays, it helps to avoid the
problem of the synchronisation of the precharging operation with the clock signal
or the pulse from an address-transition-detection circuitry [70]. Finally, no special
sensing circuit is used, and read and write operations are controlled by a single
transistor.

(b)(a)

T1

in out

dec

copy_in

T2
in out

copy_out

dec

we

T5

T6

T7

T3

T4
T1

we

T5

T6

T3

T4

T7T2

Figure 8.1. Two version of the LUT memory cell: (a) the memory cell which state is
copied in the dual-port memory mode, (b) the memory cell which receives the
copied information.

The LUT memory cells for first (left) and second (right) 4/2-LUTs are shown in
Figures 8.1(a) and (b), respectively. The cells consist of seven transistors. Two
pairs of transistors, that is,T3−T4 andT5−T6, form cross-coupled inverters.
The transistorsT2−T7 are access transistors and are coupled to the row decoder
signaldec. Finally, the transistorsT1 in both memory cells determine their op-
erating modes, that is, writing ifwe= 1 or reading ifwe= 0. Both cells have a
single write portin and a single read portout. Furthermore, the memory cell of
the left LUT has an extra output portcopyout, and the memory cell of the right
LUT has an extra input portcopyin. These ports are coupled together via the copy
elements (see Figure 6.8(c)) if the LUTs are configured to implement a dual-port

8.1 VLSI implementation aspects 179

memory (see Section 6.4). Provided that the LUT decoders are controlled directly
by the write enable signalswe, a six-transistor LUT memory cell implementation
is also possible. The example layout of the (left) LUT memory cell implemented
according to the 0.13µmCMOS design rules is shown in Figure 8.2.

Figure 8.2. The layout of the memory cell in the left 4/2-LUT (the layout corresponds to
the circuitry shown in Figure 8.1(a)).

MC

MC

MC

16
copy_out1

. .
 .

. .

address

memory cell

copy_out1 copy_out2

signal regenerator

MC

MC

. .
 .

. .

MC

MC

MC

in1 we1 in2 we2

out1 out2

16
copy_out2

D
ec

od
er

Figure 8.3. The proposed 4/2-LUT implementation.

180 Case study: memory-oriented eFPGA core

The memory cells in the 4/2-LUT are organised into two columns of 16 cells. The
output portsout of the cells in each column are connected together. To overcome
the voltage drop during reading logic ‘1’ from the selected memory cell, a regen-
erative circuitry is placed at the output of each memory column. The regenerative
circuitry is implemented with a small feedback PMOS transistor [80], as shown in
Figure 8.3.

Control memory

As discussed in Section 6.6, the configuration memory of the memory-oriented
reconfigurable logic device is designed to support a partial reconfiguration. To
enable that, memory cells of the control memory are designed with six transistors
rather than five transistors as in a typical configuration memory cell implementa-
tion [114]. The extra transistor guarantees an independent selection of the memory
cells. The control memory cell designed in this way is shown in Figure 8.4(a), and
its layout according to the 0.13µm CMOS design rules is shown in Figure 8.5.
The role of the transistors in the schematic from Figure 8.4(a) is analogous to the
role they play in the LUT memory cell (see SectionLUT memory).

T1

T2
in

dec

(b)(a)

T1

T2

T3

T4

in out

dec

we

T5

T6

we

T5

T3

T4

T6

to wire segment 1

to wire segment 2

programmable switch

Figure 8.4. The implementation of the configuration memory cells: (a) proposed config-
uration memory cell, (b) configuration memory cell with the integrated dual
pass-gate programmable switch.

The control memory can be implemented either as a centralised memory or a dis-
tributed memory. Thecentralised control memoryis characterised by the abutted
control memory cells that form one memory block. On the one hand, this enables
a compact memory layout and the reduction of the size of the buffers that drive the
output signals of the decoder. On the other hand, this also puts constrains on the
size of transistors in the memory cells. The transistors must be made large enough
to provide sufficient strength for driving long wires that connect memory cells
with programmable switches. In contrast, thedistributed control memoryhas the
control memory cells located in a very close neighbourhood of the programmable
switches they control. Because of that, the memory cells can be implemented with

8.1 VLSI implementation aspects 181

Figure 8.5. The layout of the configuration memory cell (the layout corresponds to the
circuitry shown in Figure 8.4(a)).

minimum size transistors. This results in a very compact layout. An additional
advantage is a direct availability of the complementary value of the configuration
signal. Such signal is needed to control a complementary pass gate switch, for
example. In a very compact realisation, the control memory cell can be integrated
with a programmable switch, for example as it is shown in Figure 8.4(b). The
disadvantage of the distributed control memory is that it results in very long wires
between the address decoder and the control memory cells. The discussion on
the implications of the control memory organisation on the layout is continued in
Section 8.3.

8.1.2 Programmable interconnect design

The interconnect in a reconfigurable logic device is programmable. The intercon-
nect wires are partitioned into segments of different lengths, with pairs of segments
connected via programmable switches. The switches are controlled by the signals
from the control memory. The programming of the control memory allows a real-
isation of an arbitrary connection scheme.

Because of their small size, NMOS pass transistors have been used typically for
the implementation of programmable switches in FPGA devices. However, in
deep-submicron technologies the use of pass transistors is less beneficial. The rea-
son is aVT voltage drop1 in an NMOS transistor that accompanies a transfer of

1VT denotes a threshold voltage of an MOS transistor.

182 Case study: memory-oriented eFPGA core

a logical ‘1’ signal. This results in power dissipation in the logic circuitry that
follows the transistor [108]. To overcome this effect, in some commercial FPGA
devices the voltage on the gate of a pass transistor is boosted above the value of the
supply voltage [14]. Alternatively, transistors with different values of the threshold
voltage are used. Both methods require, however, adaptations of the standard man-
ufacturing process and are thus less attractive for embedded FPGAs that should be
fabricated in a standard CMOS process. Therefore, in today’s FPGAs the short-
distance interconnect is implemented typically with programmable multiplexers,
and the long-distance interconnect with 3-state buffers.

w
ir

e
se

gm
en

t 1

w
ir

e
se

gm
en

t 2

w
ir

e
se

gm
en

t 1

w
ir

e
se

gm
en

t 2

w
ir

e
se

gm
en

t 1

w
ir

e
se

gm
en

t 2

 configuration bit 2

 configuration bit 1(b)(a)

 configuration bit configuration bit

buffer buffered switch

Figure 8.6. Basic components of a programmable interconnect architecture implemented
using complementary pass gates: (a) programmable switches in two ver-
sions (for the centralised and distributed configuration memories), (b) pro-
grammable buffers.

To guarantee a high routing flexibility, the short-distance interconnect in the
memory-oriented architecture is implemented using both programmable switches
(for the length-1 interconnect segments) and multiplexers (for the direct intercon-
nect). The longer wires (the length-4 interconnect segments) are implemented
with bi-directional buffered switches. The programmable switches and buffered
switches are implemented with complementary pass gates [110], as shown in Fig-
ures 8.6(a) and (b), respectively. The complementary pass gates help to achieve a
better power-delay product than would be possible if single pass transistors were
used. This effect is illustrated in Figure 8.7, where the comparison between pro-
grammable switches realised using single pass transistors and complementary pass
gates is shown. The data in the figure have been obtained by modelling intercon-
nect segments of different lengths (from length-1 to length-12) as the 10th-order
RC networks with an appropriate load. For each segment length, the delay (in ns)
and power-delay product (in ns·µW) have been found. The factor of difference
in the power-delay product (for which the programmable interconnect was opti-
mised) between both types of switches differs from 1.87 (length-1 segments) to
2.0 (length-12 segments).

8.2 Prototype chip 183

Figure 8.7. Comparison of programmable switches implemented using pass transistors
and complementary pass-gates. The parameterL in the figure is the length of
the interconnect segment, andL = 1,2,4,8,16.

8.2 Prototype chip

The silicon prototype of the proposed memory-oriented reconfigurable logic ar-
chitecture has been implemented in the TSMC 0.13µm CMOS process. The test
chip (see Figure 8.8) includes a 4×4 array of the logic tiles that are surrounded by
the input/output tiles. A global configuration decoder and a programmable clock
generator are also included at the top level.

To reduce design effort, the layout of the chip was realised using a semi-custom
rather than a full-custom design approach. A standard cell library extended with
a few FPGA-specific cells, such as memory cells, dedicated multiplexers, pro-
grammable switches, was used. The layouts of the FPGA-specific cells were de-
signed to have the same height as standard cells. This allowed the use of a standard
ASIC design flow for the VLSI implementation of the chip.

The prototype chip was realised following the modular design concept. This means
it was assembled using four types of basic building blocks, that is, a logic tile, an
input/output tile, an input/output tile with routing and a corner tile. The netlists
of the tiles were created using the schematic entry of Cadence Virtuoso, and were
simulated on the transistor-level using Pstar simulator integrated in the Cadence
Affirma environment. The verified netlist of each tile was placed and routed us-
ing Cadence Silicon Ensamble. The top level layout of the core was implemented
in a hierarchical way using the layouts of basic tiles. The top-level connections
between tiles were also laid out using Cadence Silicon Ensamble. The top-level
layout of the reconfigurable logic core was integrated with the input/output (I/O)
pads connecting to the input/output pins of the core. In total, 76 pads were placed

184 Case study: memory-oriented eFPGA core

Figure 8.8. Layout of the test chip of the memory-oriented reconfigurable logic device.

on the chip: 32 I/O pads for data ports, 28 input pads for the configuration ports
(configuration signals, control signals and decoder signals), 8 power and ground
supply pads for the core, 8 power and ground supply pads for the I/O pads them-
selves2, and one output pad for testing the accuracy of the internally generated
clock signal.

Design 4×4 array, memory-oriented architecture
Technology TSMC 0.13µmCMOS
Interconnect 6 metal layers, copper
Power supply 1.2 V (core) + 3.3 V I/O pads

Logic block area 190× 111µm2

Logic block delay ∼ 1.5 ns
Logic tile area (original) 227× 134µm2

Logic tile area (improved) 175× 106µm2

Configuration bits/logic tile 317
Test chip area (inc. I/O pads) 2.0× 1.35 mm2

Table 8.1. The characteristics of the prototype chip. Two versions of the logic tile, that is,
an original and improved, are indicated.

The characteristics of the prototype chip are summarised in Table 8.1. The table
lists dimensions of two different versions of the logic tile: an original logic tile

2The I/O pads require a different supply voltage (i.e. 3.3 V) than the core itself.

8.2 Prototype chip 185

(see Figure 8.9(a)) that has been used in the prototype chip implementation, and
the improved logic tile (see Figure 8.9(b)) that has been realised later. The silicon
area of the improved logic tile has been reduced by a factor 1.6 compared to the
area of the original logic tile. This has been achieved with a little extra effort by:

• changing the centralised configuration memory (i.e. the LUT and control
memories) into the distributed configuration memory (see the discussion in
Section 8.1.1),

• integrating the layout of the switch block and connection blocks with the
logic tile layout,

• simple optimisations of the logic structure (e.g. replacing a chain of logic
gates by a simple gate of the equivalent functionality).

(a)

(b)

Figure 8.9. Two implementations of the logic tile: (a) original and (b) improved (dis-
tributed LUT and control memories, integrated switch block). The relative
dimensions of the tiles are not preserved.

186 Case study: memory-oriented eFPGA core

Figure 8.10. Schematic of the implemented logic block (the connection blocks are in-
cluded).

Figure 8.11. The logic block part (with connection blocks) of the original logic tile lay-
out (compare Figure 8.9(a)). The centralised layout of the LUT and control
memories implemented with standard cells is shown. For the sake of clarity,
the metal layers on top of the logic block have been hidden.

8.3 Cost comparison 187

8.3 Cost comparison

To determine the quality of the proposed memory-oriented reconfigurable logic ar-
chitecture, we compare it with the architectures of two state-of-the-art commercial
FPGAs, namely Xilinx Virtex-E [118] and Altera APEX 20KE [4]. The logic tile
area is chosen as the cost metric in our comparison since it captures the information
about the cost of logic and interconnect resources. Furthermore, as we explained
in Chapter 3, the dimensions of the logic tile influence other implementation pa-
rameters of the architecture, such as performance and power consumption.

The layout areasAT (in µm2) of the logic tiles in the Xilinx and Altera devices have
been obtained by die measurements, the results of which have been published in
[13]. The layout area of the logic tile in the proposed memory-oriented eFPGA
is the area of the improved logic tile, which dimensions are given in Table 8.1.
The information about the logic tile areas, the technology in which the tiles were
fabricated, the number of utilised metal layers (ML), and the implementation style
is provided in Table 8.2. For a fair comparison, different target technologies and
the different granularity of the compared logic tiles must be taken into account.
Therefore, Table 8.2 also lists the normalised areaATn of the logic tiles. The
normalised areaATn is the area of a given logic tile after its scaling to a 0.13
µm CMOS process, in which the logic tile of our eFPGA has been implemented.
The normalised areaATn is calculated based on Equation 8.1. The factorη in
Equation 8.1 is the granularity scaling factor, which expresses the granularity of
the logic tiles in commercial FPGAs in terms of the granularity of the logic tile in
our eFPGA. The granularity relates to the functional capacity of the FPGA logic
tile (logic block) and is given in the number of its 4-LUT equivalents. The values
of the factorη for the compared FPGA devices are listed in Table 8.2.

ATn =
(0.13

Technology

)2
·AT ·η, (8.1)

Logic tile AT Technology η ATn

type [µm2] [µm2]
Xilinx Virtex-E 35462 0.18µm, 8 ML, 1.0 18497

full-custom layout
Altera APEX 20KE† 63161 0.18µm, 8 ML, 0.4 13178

full-custom layout
Proposed eFPGA 18550 0.13µm, 6 ML, 1.0 18550

standard-cell layout

Table 8.2. Silicon area comparison of the logic tiles in two commercial FPGAs and the
proposed memory-oriented eFPGA. (†The logic tile of the Altera APEX 20KE
device has no memory mapping capabilities.)

The results from Table 8.2 show that the logic tile of the proposed memory-
oriented eFPGA is only 0.03% and 41% larger than the logic tiles of the Xilinx

188 Case study: memory-oriented eFPGA core

Virtex-E and Altera APEX 20KE FPGA devices, respectively. Three primary rea-
sons for such a difference are:

• a full-custom implementation of the commercial devices versus a standard-
cell-based implementation of the proposed device,

• the use of more metal layers in the commercial devices than in the proposed
device (i.e. eight metal layers versus six metal layers),

• the circuit-level optimised structures of the commercial devices versus a
straightforward implementation of the proposed device.

Note, that the relatively large area difference with respect to the Altera device is
caused by a limited functionality of this device, that is, no support for mapping
data memories in the logic block.

In [78], it has been shown that a standard-cell-based implementation of a FPGA
logic tile yields a 42% larger silicon area than its full-custom implementation.
Exploiting this fact and taking into account the above-mentioned aspects, we con-
clude that if a similar implementation method was used, the proposed memory-
oriented eFPGA device would be superior to the Xilinx Virtex-E and Altera APEX
20KE FPGA devices. This means that the logic tile of our eFPGA would provide
a similar functionality at thelower cost.

8.4 Conclusions

In this chapter we discussed the VLSI implementation of the memory-oriented
embedded FPGA. We focused first on the implementation aspects of the LUT
and control memories in such an FPGA. In particular, we explained differences
between the conventional LUT and SRAM implementations and our memory-
like LUT implementation. We also discussed the implementation of the pro-
grammable interconnect. We showed that the use of complementary pass gates
as programmable switches in deep-submicron FPGAs yields better energy-delay
product than is possible to achieve using single pass transistors. Finally, we pre-
sented the prototype chip of the memory-oriented eFPGA fabricated in a 0.13µm
CMOS process. We showed that after scaling to the same technology and tak-
ing into account the difference in the granularity, the current, standard-cell-based
implementation of our eFPGA logic tile is only 0.03% and 41% larger than the
full-custom implementations of the logic tiles in the Xilinx Virtex-E and Altera
APEX 20KE FPGA devices, respectively. We also mentioned the reasons that
make us convinced that if a similar implementation approach was followed, the
architecture of the proposed eFPGA would be superior to the architectures of the
compared commercial devices. That is, it would offer a similar functionality at the
lower cost.

Chapter 9

CONCLUSIONS

In this thesis, the problem of designing cost-efficient reconfigurable logic cores
for embedded systems-on-a-chip (SoC) has been considered. The purpose of the
on-chip integration of reconfigurable logic is the increase of the computational
efficiency and flexibility (programmability) of a target IC, and consequently the
improvement of the system characetristics and the extension of the life-time of
a final product. The cost aspect is crucial for embedded systems in consumer
electronics. Therefore, the intrinsic area, performance and power consumption
overhead of reconfigurable logic compared to the hard-wired logic of application-
specific ICs must be reduced to make the SoC integration attractive.

To understand the reasons for the high area overhead of reconfigurable logic sev-
eral generations of commercial FPGA devices were analysed. We explained that
the changes in their architectures were driven by the demand for increased effi-
ciency enabling an implementation of more complex functions. We discussed fun-
damental trade-offs in the architecture of FPGA devices and showed that different
types of logic impose partly conflicting requirements on the FPGA structure. Fi-
nally, we also showed that the high intrinsic cost of FPGAs, which is dominated
by the routing, is caused by their general-purpose character.

To solve this problem, we proposed the concept of application domain specialisa-
tion of reconfigurable logic. According to this concept, the cost reduction can be
achieved if a reconfigurable logic architecture is optimised towards requirements
of processing kernels from a target application domain instead of being made fully
general-purpose. We suggested three parameters for the characterisation of pro-
cessing kernels. They are: (dominant) type of processing, word-size and Rent
exponent. The first two parameters characterise logic requirements, while the lat-
ter characterises the interconnect requirements. Assuming the type of processing
as a primary characteristic and applying it to a reasonably large set of processing
kernels from different application domains, we classified such kernels as being ei-
ther data-path-oriented, random-logic-oriented, or memory-oriented. This leads to
three corresponding classes at the implementation level. We assumed that, though
being optimised to target application domains, domain-oriented architectures must
also allow the mapping of other types of functions.

190 Conclusions

The concept of application-domain-specialisation of reconfigurable logic was gen-
eralised in the template idea. The template is a parametrised model of a recon-
figurable logic core. The template facilitates architecture exploration, the VLSI
implementation of template instances (netlist and layout generation) and the im-
plementation of their mapping tools (architecture modelling for computer-aided-
design). In consequence, the template reduces the overall design complexity and
allows an easy creation of instances.

The proposed architecture template is hierarchical, with five levels of hierarchy
(in rising order): a logic element, a processing element, a logic block, a tile, and
an array. By setting the template parameters according to the application-domain-
specific values, domain-oriented architecture instances of the template can be de-
rived.

Three instances of the architecture template were described in detail. The first,
a data-path-oriented architecture targets applications with a substantial amount of
data-path logic. The reduction in cost was achieved by optimising the architecture
for arithmetic using the proposed inversion-based folding type I. As a result, a ba-
sic arithmetic operation, that is a 1-bit binary addition, could be implemented using
only a 2-input look-up table (2-LUT) enhanced with dedicated carry logic and a
controlled inversion element. The logic block of the data-path-oriented architec-
ture was built of four such LUTs and of a network of 2:1 multiplexers combining
LUT outputs. Two primary functional modes of the architecture were enabled in
this way. In the data-path mode, nibble-level (4-bit) processing is possible and the
logic block generates a multi-bit result. In the random logic mode, a Boolean func-
tion with up to four inputs can be implemented and a 1-bit result is produced. The
number of LUT memory bits that are needed to implement data-path functions is
four times lower than the number of LUT bits that are required in state-of-the-art
FPGA architectures. Although the logic block of the data-path-oriented architec-
ture requires more ports than a 4-LUT-based logic block of a typical FPGA archi-
tecture, we showed that both architectures have a similar cost of routing. This was
guaranteed by the specific realisation of the connection and selection blocks in our
architecture. Use was made of the fact that in the data-path mode more routing
tracks and lower connection flexibility, and in the random logic mode less routing
tracks but higher connection flexibility are required.

The data-path-oriented architecture could be optimised further by applying config-
uration bit sharing. This is possible because of the bit-sliced structure of data-paths
and the bus-like way of routing data signals. In the modified data-path-oriented ar-
chitecture, the reduction in the number of configuration bits of logic and routing
resources by a factor of four compared to the proposed data-path-oriented archi-
tecture, and by a factor of 16 compared to traditional FPGAs, was achieved.

The second, random-logic-oriented architecture was optimised for applications
dominated by random logic. The implementation cost of this architecture, com-
pared to the implementation cost of general-purpose FPGAs, was reduced by low-

191

ering the number of input ports of the logic block. Since each logic block port has
a fixed area contribution, this resulted in the reduction of the routing resource cost.
The lowered number of ports of the logic block has only a slight impact on the
mapping capabilities of the architecture, and was possible because a large percent-
age of Boolean functions usually share some of their inputs. The logic block of
the random-logic-oriented architecture was designed as a cluster of four 4-LUTs,
with each 4-LUT implemented by means of two 3-LUTs. Such an implementation
facilitates the mapping of both random logic and arithmetic circuits.

Finally, the third, memory-oriented architecture aims at the implementation of ap-
plications with storage requirements and some amount of data-path and random
logic. Similarly to the random-logic-oriented architecture, the routing resource
cost was reduced by lowering the number of input ports of the logic block. To
enable such a cost reduction while guaranteeing a sufficient degree of flexibility,
the logic block of the memory-oriented architecture was implemented using two
4/2-LUTs. The 4/2-LUT is a novel 4-input/2-output look-up table that is enhanced
with control logic to support the memory functionality, and with controlled in-
version elements at the inputs and outputs to support the arithmetic functionality.
The arithmetic functionality was implemented using the proposed inversion-based
folding type II. The key advantage of the 4/2-LUT is that it requires two times less
routing resources (because of the reduced port number) than the look-up tables
with similar functionality of state-of-the-art FPGAs. Furthermore, it also has two
times less LUT memory bits than state-of-the-art multi-output look-up tables with
memory mapping capabilities.

To evaluate the proposed ideas, three comparison methods were used. In the first
method, the mapping costMC of a given benchmark function, which is the total
area of the implementation, was assumed as the primary cost metric. The method
was used for a comparison of architectures of which the VLSI implementation
area was known and for which mapping tools were available. Consequently, we
applied this method to compare the proposed data-path-oriented architecture with
two commercial FPGAs, that is Xilinx Virtex-E and Altera APEX 20KE. Using a
set of 15 industrial designs of a different type and complexity we showed that a
standard-cell implementation of our data-path-oriented architecture and an unopti-
mised mapping flow allow on average a 17% reduction in cost compared to a full-
custom realisation of the Xilinx Virtex-E FPGA. When only data-path-dominated
designs are considered, our architecture enables a 34% reduction in cost. With
the same assumptions, our architecture results on average in a 8% cost overhead
compared to the Altera APEX 20KE FPGA, and allows a 37% reduction in cost if
only the data-path-dominated designs are considered.

The second comparison method was also based on the VLSI-implementation-
related cost metrics such as the data-path mapping costMCDP and random logic
mapping costMCRL. This method was applied, however, only to those architec-
tures for which dedicated mapping tools were not available. The standard-cell-
based implementation of the modified data-path-oriented architecture turned out

192 Conclusions

to have 1.36 times higher data-path mapping cost than the smallest data-path-
optimised and full-custom implemented FPGA from academia, that is CFPA.

In the third comparison method, a simple area model was used to estimate the
logic and routing cost of reconfigurable architectures. In this model, the logic cost
was estimated based on the number of LUT memory bitsNlmb, while the routing
cost was estimated using the weighted logic block pin numberPw. This compar-
ison method was applied to the proposed random-logic-oriented architecture, for
which neither implementation data nor dedicated mapping tools were available.
The architecture was compared with three state-of-the-art commercial FPGA de-
vices, that is Xilinx Virtex II, Altera Stratix, and Atmel AT40K. Using such a
comparison method we showed that at comparable logic cost, the routing cost of
commercial architectures is over 1.6 higher than the routing cost of the proposed
architecture.

The memory-oriented architecture was compared using the logic tile area obtained
from a prototype chip, which was implemented in a 0.13µmCMOS process. The
logic tile of the memory-oriented architecture was compared with the logic tile of a
Xilinx Virtex-E FPGA device. We showed that the functionality equivalent to that
of the full-custom implemented Xilinx Virtex-E FPGA can be achieved at compa-
rable cost in silicon area using a standard-cell-based implementation approach.

Future work

So far we proved that application domain specialisation allows a cost reduction of
reconfigurable logic. This fact makes embedded domain-oriented reconfigurable
logic a viable solution for designing cost-efficient system-on-chip ICs.

The gained knowledge and the obtained results were transfered to Philips Research
Eindhoven, The Netherlands and the initiated research is continued as part of the
Philips Research programme.

Still, a number of issues require further investigation. One of them is a full-custom
realisation of the domain-oriented architectures, which may show an even more
clear benefit of the proposed solution. Next, dedicated mapping tools that fully
exploit all properties of the proposed architectures should be developed to further
improve mapping results. Finally, the integration of our embedded reconfigurable
logic solutions in the context of a real system-on-a-chip must be considered to
evaluate their benefits as part of a commercial product.

Bibliography

[1] Actel Corporation.VariCoreTM Embedded Programmable Gate Array Core
(EPGATM) 0.18 µm Family. Data sheet, December 2001.

[2] M. Agarwala and P.T. Balsara. An Architecture for a DSP Field-
Programmable Gate Array.IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 3(1):136–141, March 1995.

[3] Elias Ahmed and Jonathan Rose. The Effect of LUT and Cluster Size on
Deep-Submicron FPGA Performance and Density. InProceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pages 3–12, February 2000.

[4] Altera. APEX Programmable Logic Device Family. Data sheet. Altera,
2000.

[5] Altera. FLEX 10KE Programmable Logic Device Family. Data sheet. Al-
tera, 2000.

[6] Altera. Stratix Programmable Logic Device Family. Data sheet. Altera,
2002.

[7] Altera Corporation. Excalibur Devices. Hardware Reference Manual,
November 2002.

[8] Atmel. 5K-50K Gate FPGA with DSP Optimized Core Cell and Distributed
FreeRAM. Summary. Data sheet. Atmel, 1999.

[9] Atmel Corporation. AT94 Series Field Programmable System Level Inte-
grated Circuit. Data sheet, June 2002.

[10] G. Baccarani, M. R. Wordeman, and R. H. Dennard. Generalized scal-
ing theory and its application to a 1/4 micrometer MOSFET design.IEEE
Transactions on Electronic Devices, ED-31:452–462, April 1984.

[11] Marc Baker. Design Migration from XC2000/XC3000 to XC5200. Appli-
cation Note XAPP 061, Version 2.1, Xilinx, September 1997.

194 BIBLIOGRAPHY

[12] Reinaldo A. Bergamaschi and John Cohn. The A to Z of SoCs. InPro-
ceedings of the IEEE/ACM International Conference on Computer Aided
Design, November 10–14 2002.

[13] Vaughn Betz and Jonathan Rose. Automatic Generation of FPGA Rout-
ing Architectures from High-Level Descriptions. InProceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays, February 2000.

[14] Vaughn Betz, Jonathan Rose, and Alexander Marquardt.Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[15] Jan C. Bioch and Toshihide Ibaraki. Decompositions of Positive Self-Dual
Boolean Functions.Discrete Mathematics, 140:23–46, 1995.

[16] Fred Boekhorst. Ambient intelligence, the next paradigm for consumer
electronics. How it will affect silicon? InProceedings of 2002 IEEE Inter-
national Solid-State Circuits Conference, volume 1, pages 28–31, February
2002.

[17] Ivo Bolsens. Challenges and Opportunities of FPGA Platforms. InProceed-
ings of the 12th International Conference on Field-Programmable Logic
and Applications, pages 391–392, September 2002.

[18] Frank M. Brown. Boolean Reasoning. The Logic of Boolean Equations.
Kluwer Academic Publishers, 1990.

[19] Stephen.D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G.
Vranesic. Field-Programmable Gate Arrays. Kluwer Academic Publish-
ers, 1992.

[20] Randal E. Bryant, Kwang-Ting Cheng, Andrew B. Khang, Kurt Kreutzer,
Wojciech Maly, Richard Newton, Lawrence Pileggi, Jan M. Rabaey, and
Alberto Sangiovanni-Vincentelli. Limitations and Challenges of Computer-
Aided Design Technology for CMOS VLSI.Proceedings of the IEEE,
89:341–365, March 2001.

[21] Cadence Design Systems.Envisia Silicon Ensemble Place and Route.
Training Manual, 5.3 edition, October 2000.

[22] Cadence Design Systems.HDL Modeling for BuildGates Synthesis. User
Guide, 5.0 edition, May 2002.

[23] Cadence Design Systems.Tutorial for Cadence BuildGates Synthesis and
Cadence PKS, 5.0 edition, May 2002.

BIBLIOGRAPHY 195

[24] William S. Carter, Khue Duong, Ross H. Freeman, Hung-Cheng Hsieh,
Jason Y. Ja, John E. Mahoney, Luan T. Ngo, and Shelly L. Sze. A User
Programmable Reconfigurable Logic Array. InIEEE 1986 Proceedings of
Custom Integrated Circuits Conference, pages 233–236, May 1986.

[25] Chameleon Systems.CS2112 Reconfigurable Communication Processor,
2001.

[26] Don Cherepacha and David Lewis. DP-FPGA: An FPGA Architecture Op-
timized for Datapaths.VLSI Design, 4(4):329–343, 1996.

[27] Peter Clarke. Keynoter presents an exercise in imagination. EE Times,
Semiconductor Business News, March 5, 2003.

[28] Theo A. C. M. Classen. High Speed: Not the Only Way to Exploit the
Intrinsic Computational Power of Silicon. InProceedings of the 1999 IEEE
International Solid-State Circuits Conference, pages 22–25, January 1999.

[29] K. Compton and S. Hauck. Totem: Custom Reconfigurable Array Gen-
eration. InProceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, April 2001.

[30] Katherine Compton and Scott Hauck. Automatic Design of Configurable
ASICs. submitted toIEEE Transactions on Very Large Scale Integration
Systems.

[31] Katherine Compton, Akshay Sharma, Shawn Philips, and Scott Hauck.
Flexible Routing Architecture Generation for Domain-Specific Reconfig-
urable Subsystems. InProceedings of the Field Programmable Logic and
Applications Conference, August 2002.

[32] Jason Cong and Yuzheng-Ding. FlowMap: An Optimal Technology Map-
ping Algorithm for Delay Optimization in Lookup-Table Based FPGA De-
signs.IEEE Transactions on Computer Aided Design, 13(1):1–12, January
1994.

[33] Alexander Danilin. Archimed. Philips Research internal reconfigurable
architecture generator for FPGAs, 2003.

[34] Alexander Danilin. Pythagor. Philips Research internal placement and rout-
ing tool for FPGAs, 2003.

[35] Hugo de Man. On Nanoscale Integration and Gigascale Complexity in the
Post.com World. Keynote speech,Design, Automation and Test in Europe
Conference, March 2002.

196 BIBLIOGRAPHY

[36] Bernardo de Oliveira Kastrup Pereira.Automatic Synthesis of Reconfig-
urable Instruction Set Accelerators. PhD thesis, Eindhoven University of
Technology, The Netherlands, May 2001.

[37] Andre DeHon.Reconfigurable Architectures for General-Purpose Comput-
ing. PhD thesis, MIT, Artificial Intelligence Laboratory, 1996.

[38] Andre DeHon. Balancing Interconnect and Computation in Reconfigurable
Array (or why you don’t really want 100% LUT utilization). InProceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 69–78, February 1999.

[39] Andre DeHon and John Wawrzynek. Reconfigurable Computing: What,
Why, and Implications for Design Automation. InProceedings of the 1999
Design Automation Conference, pages 610–615, June 1999.

[40] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, F. Bassous, and
A. R. LeBlanc. Design of ion-implanted MOSFETs with very small physi-
cal dimensions.IEEE Journal of Solid-State Circuits, SC-9:256–258, May
1974.

[41] Brian Dipert. Silicon Segementation.EDN, pages 57–65, September 2003.

[42] Carl Ebeling, D.C. Cronquist, and P. Franklin. RaPiD – Reconfigurable
Pipelined Datapath. InProceedings of the 6th Annual Workshop of Field
Programmable Logic and Applications, pages 126–135, August 1996.

[43] Elixent Ltd. Changing the electronic landscape. The Reconfigurable Algo-
rithm Processor. White paper, 2001.

[44] Alberto Ferrari and Alberto Sangiovanni-Vincentelli. System Design: Tra-
ditional Concepts and New Paradigms. InProceedings of the 1999 Interna-
tional Conference on Computer Design, October 1999.

[45] Brian Fuller. Moore’s Law takes it on the chin.EE Times, March 10, 2003.

[46] Daniel G. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong.Specification
and Design of Embedded Systems. PTR Printice Hall, 1994.

[47] Varghese George.Low Energy Field-Programmable Gate Array. PhD the-
sis, University of California, Berkeley, 2000.

[48] Richard Goering. Platform-based design: A choice, not a panacea.EE
Times, September 12, 2002.

[49] James Goodman and Anantha P. Chandrakasan. An Energy-Efficient Re-
configurable Public-Key Cryptography Processor.IEEE Journal of Solid-
State Circuits, 36(11):1808–1820, November 2001.

BIBLIOGRAPHY 197

[50] Paul Graham and Brent Nelson. FPGA-based Sonar Processing. In
Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 201–208, February 1998.

[51] Lars Hagen, Andrew Khang, Fadi J. Kurdahi, and Champaka Ramachan-
dran. On Intrinsic Rent Parameter and Spectra-Based Partitioning Methods.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(1):27–37, 1994.

[52] J. He and J. Rose. Advantages of Heterogeneous Logic Block Architec-
tures for FPGAs. InProceedings of the IEEE Custom Integrated Circuits
Conference. IEEE, May 1993.

[53] Brian Von Herzen. Signal Processing at 250 MHz Using High-Performance
FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 6(2):238–246, June 1998.

[54] Dwight Hill and Nam-Sung Woo. The Benefits of Flexibility in Look-up
Table FPGAs. InProceedings of the Oxford 1991 International Workshop
on Field Programmable Logic and Applications, pages 127–136, 1991.

[55] K. Hwang. Computer Arithmetic: Principles, Architecture, and Design.
John Wiley & Sons, 1979.

[56] ITRS. The International Technology Roadmap for Semiconductors: 1999.
Design, 1999.

[57] Hiroshi Iwai. CMOS Technology - Year 2010 and Beyond.IEEE Journal
of Solid-State Circuits, 43:357–366, March 1999.

[58] Frank Jennings. End of Moore’s law.
http://www.zdnetindia.com/techzone/trends/stories/381.html, August
25, 2000.

[59] Lech Jozwiak. Quality-driven design in the system-on-a-chip era: Why and
how? Journal of Systems Architecture, 47:201–224, 2001.

[60] Alireza Kaviani, Daniel Vranesic, and Stephen Brown. Computational Field
Programmable Architecture. InProceedings of the IEEE Custom Integrated
Circuits Conference, pages 261–264. IEEE, May 1999.

[61] Alireza S. Kaviani. Novel Architectures and Synthesis Methods for High
Capacity Field Programmable Devices. PhD thesis, University of Toronto,
Department of Electrical Engineering, January 1999.

[62] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto
Sangiovanni-Vincentelli. System-Level Design: Orthogonalization of Con-
cerns and Platform-Based Design.IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19:1523–1543, December 2000.

198 BIBLIOGRAPHY

[63] Hue-Sung Kim, Arun S. Somani, and Akhilesh Tyagi. A Reconfigurable
Multi-function Computing Cache Architecture. InProceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, February 2000.

[64] Bernard S. Landman and Roy L. Russo. On a Pin Versus Block Relation-
ship for Partitions of Logic Graphs.IEEE Transactions on Computers, C-
20(12):1469–1479, December 1971.

[65] Lattice Semiconductor Corporation.ORCA Series 3C and 3T FPGAs Data
Sheet, November 2003.

[66] Dave Lautzenheiser and Micke Wersall. Targeting the high ground between
ASICs and FPGAs.Electronic Engineering, pages 73–82, November 1999.

[67] Leopard Logic Inc.HyperBloxTM Field Programmable Embedded FPGA
Cores. Product Brief, 2002.

[68] George Leopold. Embedded FPGAs seen surging.EE Times, January 13,
2003.

[69] Alan Marshall, Tony Stansfield, Igor Kostarnov, Jean Vuillemin, and Brad
Hutchings. A Reconfigurable Arithmetic Array for Multimedia Applica-
tions. InProceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, February 1999.

[70] Ken Martin. Digital Integrated Circuit Design. Oxford University Press,
2000.

[71] Carver Mead and Lynn Conway.Introduction to VLSI Systems. Addison-
Wesley Longman Publishing Co., Inc., 1979.

[72] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, Inc., 1994.

[73] N.L. Miller and S.F. Quigley. A Novel Field Programmable Gate
Array Architecture for High Speed Processing. InProceedings of
Field-Programmable Logic and Applications Conference, pages 386–390,
September 1997.

[74] Gordon E. Moore. Progress in digital integrated circuits.IEDM Technology
Digest, page 11, December 1975.

[75] H. Ozaktas. Paradigms of Connectivity for Computer Circuits and Net-
works. Optical Engineering, 31:1563–1567, 1992.

[76] PACT Informationstechnologie GmbH.The XPP White Paper. A Technical
Perspective, March 2002.

BIBLIOGRAPHY 199

[77] Ketan Padalia, Ryan Fung, Marc Bourgeault, Aaron Egier, and Jonathan
Rose. Automatic Transistor and Physical Design for FPGA Tiles from an
Architectural Specification. InProceedings of the ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pages 164–173,
February 2003.

[78] Shawn Philips and Scott Hauck. Automatic Layout of Domain-Specific
Reconfigurable Subsystems for System-on-a-Chip. InProceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, February 2002.

[79] Philips Semiconductors.CMOS12 Library Technology Reference Manual,
revision 1.4 edition, September 2002.

[80] Jan Rabaey.Digital Integrated Circuits. A Design Perspective. Prentice
Hall, 1996.

[81] Jan Rabaey. Silicon Platforms for the Next Generation Wireless Systems
– What Role does Reconfigurable Hardware Play? InProceedings of the
International Field Programmable Logic and Application Conference, Lec-
ture Notes in Computer Science, August 2000.

[82] Jan M. Rabaey. Reconfigurable Computing: the Solution to Low Power
Programmable DSP. InProceedings of the 1997 International Conference
on Acoustics, Speech and Signal Processing, volume 1, pages 275–278,
April 1997.

[83] Jan. M. Rabaey. Wireless Beyond the Third Generation – Facing the Energy
Challenge. InProceedings of the ACM International Symposium on Low
Power Electronic Design, August 2001.

[84] Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva Jr., and Shad Roundy.
PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking. In
IEEE Computer Magazine, pages 42–48. IEEE, July 2000.

[85] A. Roopchansingh and J. Rose. Nearest Neighbour Interconnect Archi-
tecture in Deep-Submicron FPGAs. InProceedings of the IEEE Custom
Integrated Circuits Conference, pages 59–62, May 2002.

[86] J. Rose, R.J. Francis, P. Chow, and D. Lewis. The Effect of Logic Block
Complexity on Area of Programmable Gate Arrays. InProceedings of the
IEEE Custom Integrated Circuits Conference, pages 5.3.1–5.3.5, May 1989.

[87] Jonathan Rose, Robert J. Francis, David Lewis, and Paul Chow. Archi-
tecture of Field-Programmable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency.IEEE Journal of Solid-State Circuits,
25:1215–1225, October 1990.

200 BIBLIOGRAPHY

[88] Engel Roza. Systems-on-chip: what are the limits?IEE Electronics and
Communication Journal, pages 249–255, December 2001.

[89] Milan Saini. Platform FPGAs Take on ASICs SoCs.Xcell Journal, 3:70–
73, Summer 2002.

[90] Ellen M. Sentovitch, Kanwar J. Singh, Luciano Lavagno, Cho Moon, Ra-
jeev Murgai, Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K.
Brayton, and Alberto Sangiovanni-Vincentelli.SIS: A System for Sequential
Circuit Synthesis. Electronics Research Laboratory, University of Califor-
nia, Berkeley, May 1992. Memorandum No. UCB/ERL M92/41.

[91] ED&T/Analog Simulation.Pstar User Guide for Pstar 3.8. ED&T, Philips
Electronics N.V., Eindhoven, The Netherlands, December 1998.

[92] Amit Singh and Malgorzata Marek-Sadowska. Efficient Circuit Clustering
for Area and Power Reduction in FPGAs. InProceedings of ACM/SIGDA
Symposium on Field Programmable Gate Arrays, pages 59–65, February
2002.

[93] Amit Singh and Malgorzata Marek-Sadowska. FPGA Interconnect Plan-
ning. In Proceedings of the ACM Workshop on System Level Interconnect
Prediction, pages 23–30, April 2002.

[94] Satwant Singh, Jonathan Rose, Paul Chow, and Dawid Lewis. The Effect of
Logic Block Architecture on FPGA Performance.IEEE Journal of Solid-
State Circuits, 27:281–287, March 1992.

[95] Tony Stansfield. Wordlength as an Architectural Parameter for Reconfig-
urable Computing Devices. InProceedings of the Field-Programmable
Logic and Applications Conference, pages 667–676, September 2002.

[96] Dirk Stroobandt. A Priori Wire Length Estimates for Digital Design.
Kluwer Academic Publishers, 2001.

[97] Synplicity, Inc.Synplify Pro Reference Manual, October 2001.

[98] Systolix. Systolix PulseDSP core. www.systolix.co.uk/techintro.html.

[99] Taiwan Semiconductor Manufacturing Co., LTD.TSMC 0.13 µm Logic
1P8M Salicide 1.0V/2V/5V, 1.2V/2.5V, 1.0V/3.3V, 1.2V/3.3V Design Rule,
ta-10b2-4001, version 1.4 edition, June 2002.

[100] Anil Telikapalli. Virtex-II Pro FPGAs: The Platform for Programmable
Systems Has Arrived.Xcell journal, 1(42):10–13, Spring 2002.

[101] Tensilica Inc.Xtensa. Architecture and Performance. White paper, Septem-
ber 2002.

BIBLIOGRAPHY 201

[102] Triscend Corporation.Triscend A7S. 32-bit Field Configurable System-on-
Chip (CSoC). Report TCH305-0001-002, August 2002.

[103] Triscend Corporation.Triscend E5 Customizable Microcontroller Platform.
Report TCH300-0001-001, March 2003.

[104] Stephen H. Unger.The Essence of Logic Circuits. Prentice-Hall Interna-
tional Editions, 1989.

[105] University of Toronto, Canada.VPR and T-VPack User’s Manual (Version
4.30), March 2000.

[106] H. van Marck, Dirk Stroobandt, and Jan van Campenhout. Towards an
Extension of Rent’s Rule for Describing Local Variations in Interconnection
Complexity. InProceedings of the 4th International Conference for Young
Computer Scientists, pages 136–141, 1995.

[107] Jef L. van Meerbergen.Embedded Multimedia Systemen in Silicium. Tech-
nische Universiteit Eindhoven, 2000–2001. College dictaat.

[108] Harry J.M. Veendrick.Deep-Submicron CMOS ICs. From Basics to ASICs.
Kluwer BedrijfsInformati B. V., The Netherlands, 1 edition, 1998.

[109] Albert Wang. The Role of ASIP in Programmable Platforms . Presenta-
tion slides for Electronic Systems Design Seminar, UC Berkeley, November
2001.

[110] Neil H.E. Weste and Kamran Eshraghian.Principles of CMOS VLSI De-
sign: A Systems Perspective. Addison-Wesley Publishing Company, 1992.

[111] Stanley A. White. Application of Distributed Arithmetic to Digital Signal
Processing: A Tutorial Review.IEEE ASSP Magazine, 6(3):4–19, July
1989.

[112] Ron Wilson. Chip industry tackles escalating mask costs. EE Times, June
17, 2002.

[113] Xilinx. The Role of Distributed Arithmetic in FPGA-based Signal Process-
ing. www.xilinx.com.

[114] Xilinx. The Programmable Logic. Data Book. Xilinx, Inc., San Jose, CA,
September 1996.

[115] Xilinx. An Alternative Capacity Metric for LUT-Based FPGAs. Technical
report, Xilinx, February 1 1997.

[116] Xilinx. XC3000 Series Field Programmable Gate Arrays (XC3000A/L,
XC3100A/L), version 3.1 edition, November 1998.

202 BIBLIOGRAPHY

[117] Xilinx. XC4000E and XC4000X Series Field Programmable Gate Arrays.
Data sheet. Xilinx, 1999.

[118] Xilinx. Virtex-E 1.8V Field Programmable Gate Arrays. Data sheet. Xilinx,
2000.

[119] Xilinx. Virtex-II Pro Plaplatform FPGAs. Data sheet. Xilinx, 2002.

[120] Saeyang Yang.Logic Synthesis and Optimization Benchmarks User Guide.
Microelectronics Center of North Carolina, Research Triangle Park, NC
27709, USA, January 1991.

[121] Behrooz Zahiri. Structured ASICs: Opportunities and Challenges. InPro-
ceedings of the 21st International Conference on Computer Design, pages
404–409, October 2003.

[122] Payman Zarkesh-Ha, Jeffrey A. Davis, and James D. Meindl. Prediction
of Net-Length Distribution for Global Interconnects in a Heterogeneous
System-on-a-Chip. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(6):649–659, December 2000.

[123] Reto Zimmermann. Lecture Notes on Computer Arith-
metic: Principles, Architectures, and VLSI Design. Tech-
nical report, Swiss Federal Institute of Technology, Inte-
grated Systems Laboratory, Zurich, Switzerland, March 1999.
http://www.iis.ee.ethz.ch/zimmi/publications/comparith notes.ps.gz.

[124] Paul S. Zuchowski, Christopher B. Reynolds, Richard J. Grupp, Shelly G.
Davis, Brendan Cremen, and Bill Troxel. A Hybrid ASIC and FPGA Ar-
chitecture. InProceedings of the IEEE/ACM International Conference on
Computer Aided Design, pages 187–194, November 2002.

PERSONAL CONTRIBUTION

Publications:

• B. Kastrup, K. Nowak, J. van Meerbergen, ”Seeking (the Right) Prob-
lems for the Solutions of Reconfigurable Logic”, inProceedings of Field
Programmable Logic and Applications Conference, Glasgow, Scotland,
September 1999.

• K. Leijten-Nowak, J.L. van Meerbergen, ”Applying the Adder Inverting
Property in the Design of Cost-Efficient Reconfigurable Logic”, inPro-
ceedings of the 44the Midwest Symposium on Circuits and Systems, Dayton,
Ohio, USA, August 2001.

• P. Poplavko, K. Leijten-Nowak, J.L. van Meerbergen, ”Placement Algo-
rithms for Datapath-oriented FPGAs”, inProceedings of ProRISC 2001,
Veldhoven, The Netherlands, November 2001.

• K. Leijten-Nowak, J.L. van Meerbergen, ”Embedded Reconfigurable Logic
Core for DSP Applications”, inProceedings of Field Programmable Logic
and Applications Conference, Montpellier, France, September 2002.

• K. Leijten-Nowak, A. Katoch, ”Architecture and Implementation of an Em-
bedded Reconfigurable Logic Core in CMOS 0.13µm”, in Proceedings of
IEEE ASIC/SOC Conference, Rochester, New York, USA, September 2002.

• K. Leijten-Nowak and J.L. van Meerbergen, ”An FPGA Architecture with
Enhanced Datapath Functionality”, inProceedings of ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, Monterey, Califor-
nia, USA, February 2003.

• B. Mesman, Q. Zhao, N. Busa, K. Leijten-Nowak, ”Instruction Set Applica-
tion Tuning for DSP”,Journal for Circuits, Systems and Computers, 12(3),
June 2003.

204 Personal contribution

Philips patent applications:

• J.-P. Theis, K. Nowak, J. van Meerbergen, ”Programmable Logic Ma-
trix with Extended Connections”, PHNL000309, Invention Disclosure
ID603813 (”A Next Generation Reconfigurable Computing cell for FP-
GAs”), May 2000.

• K. Leijten-Nowak, ”Reconfigurable Logic Device”, PHNL010359, Inven-
tion Disclosure ID606907 (”Cost-efficiency Improvement for Look-up Ta-
ble”), April 2001.

• A. Augustijn, K. Leijten-Nowak, ”Control Word Hoisting”, PHNL020396,
Invention Disclosure ID607487 (”Control Word Hoisting”), June 2001.

• K. Leijten-Nowak, ”Configuration Memory Implementation for LUT-Based
Devices”, PHNL020211, Invention Disclosure ID609183 (”Configuration
Memory Implementation for LUT-Based Devices”), January 2002.

• K. Leijten-Nowak, ”Implementation of Wide Multiplexers in Reconfig-
urable Logic”, PHNL020212, Invention Disclosure ID609402 (”Implemen-
tation of Wide Multiplexers in Reconfigurable Logic”), February 2002.

• K. Leijten-Nowak and A. Katoch, ”IC with logic tiles and routing network”,
PHNL020590, Invention Disclosure ID609454 (”Modular Reconfigurable
Logic Architecture with Homogeneous Logic Tiles”), February 2002.

• K. Leijten-Nowak, ”Reconfigurable electronic device with dual port mem-
ory mode”, PHNL020827, Invention Disclosure ID609469 (”Distributed
Dual-Port Memory Architecture for Reconfigurable Logic Devices”), Febru-
ary 2002;

• K. Leijten-Nowak, merged with PHNL010359, Invention Disclosure
ID609539 (”Array Multiplier Implementation for Reconfigurable Logic
Devices”), February 2002.

• K. Leijten-Nowak, ”Electronic device having data storage device”,
PHNL020823, Invention Disclosure ID609559 (”Variable-Length Shift
Register Implementation for Reconfigurable Logic Devices”), March 2002;

• K. Leijten-Nowak, ”Electronic circuit with array of programmable cells”,
PHNL020632, Invention Disclosure ID609641 (”Mixed-Grain Reconfig-
urable Logic Cell for DSP Applications”), March 2002.

• K. Leijten-Nowak, ”Electronic circuit with array of programmable cells”,
PHNL030186, Invention Disclosure ID 613098 (”Bit Sharing”), February
2003.

205

• K. Leijten-Nowak, ”Electronic circuit with array of programmable cells”,
PHNL030188, Invention Disclosure ID 613099 (”Flexible Multiplexing”),
February 2003.

• K. Leijten-Nowak, ”Electronic circuit with array of programmable cells”,
PHNL030187, Invention Disclosure ID 613100 (”Carry dependance”),
February 2003.

• K. Leijten-Nowak, ”Template-based Domain-specific Reconfigurable
Logic”, PHNL031466, Invention disclosure ID 697975 (”Template-based
Domain-specific Reconfigurable Logic”), December 2003.

206 Personal contribution

SUMMARY

The rapid increase in the design time and manufacturing costs of integrated
circuits (ICs) and the constant demand for higher computational efficiency (in
MOPS/W) make traditional implementation methods based on application-specific
logic and programmable processors no longer sufficient. Embedded reconfig-
urable logic appears an interesting alternative in the system-on-a-chip context.
Unlike application-specific logic, it allows an implementation of system compo-
nents which functionality can be changed after a device is fabricated, and which
are characterised by a higher computational efficiency than programmable proces-
sors. This is achieved, however, at the cost of larger area, lower performance and
higher power consumption compared to application-specific ICs.

This thesis concerns itself with the design of cost-efficient embedded recon-
figurable logic using the concept of a template. The template is a generic,
parametrised model of a reconfigurable logic core. The use of the template enables
a fast architecture exploration, simplifies the process of the VLSI implementation
of template instances, and supports the creation of retargetable mapping tools for
them.

The architecture instances that are derived from the proposed template are
application-domain-specific rather than general-purpose. The application do-
main specialisation means that both logic and interconnect of a reconfigurable
logic architecture are tuned to the requirements of processing kernels from a
target application domain. This reduces the cost overhead yet still guarantees the
required degree of flexibility.

A method of characterising processing kernels from different application domains
to find a suitable architecture template instance is proposed. Three parameters,
that is (dominant) type of processing, word-size and Rent exponent, are proposed
as main characteristics of processing kernels. Using a large set of kernels from
different applications, three basic classes of reconfigurable logic architectures are
derived. They are: data-path-oriented architectures, random-logic-oriented archi-
tectures and memory-oriented architectures. Three template instances that corre-
spond to the derived architecture classes are described in detail. For each recon-
figurable architecture instance, the implementation details of the logic block and

208 Summary

the programmable interconnect are given. Two methods of an efficient LUT-based
implementation of binary addition are proposed and applied to the design of basic
building blocks of two proposed template instances. A comparison of the pro-
posed reconfigurable architectures with state-of-the-art Field Programmable Gate
Arrays (FPGAs) is also presented. Using implementation-based and model-based
comparison methods it is shown that the proposed domain-oriented reconfigurable
logic is superior to the compared general-purpose commercial FPGA devices.

The VLSI implementation aspects and silicon prototype of a memory-oriented
reconfigurable logic core are described in detail. The core was implemented using
the proposed template-based modular design concept. It is shown that embedded
reconfigurable logic with a functionality similar to that of commercial, full-custom
implemented Xilinx Virtex-E FPGAs can be achieved using a standard-cell-based
implementation at comparable cost in silicon area.

SAMENVATTING

De snelle toename in de ontwerptijd en produktiekosten van geı̈ntegreerde schake-
lingen (ICs) en de constante vraag naar hogere rekenefficiëntie (in miljoen op-
eraties per seconde per Watt, i.e. MOPS/W) maakt dat traditionele implemen-
tatiemethoden, gebaseerd op applicatie-specifieke logica and programmeerbare
processoren niet langer afdoende zijn. Ingebedde herconfigureerde logica blijkt
een interessant alternatief in de context van systemen op chip. In tegenstelling
tot applicatie-specifieke logica, staat het implementaties van systeemcomponen-
ten toe, waarvan de functionaliteit veranderd kan worden nadat een chip gefab-
riceerd is, en welke gekarakteriseerd worden door een hogere rekenefficiëntie dan
programmeerbare processoren. Dit wordt echter bereikt tegen hogere oppervlak-
tekosten, een kleinere rekenkracht en een hoger vermogensverbruik vergeleken
met applicatie-specifieke ICs.

Dit proefschrift behandelt het ontwerp van kosten-efficiënte ingebedde hercon-
figureerbare logica, gebruikmakend van het concept van een architectuursjabloon.
Dit sjabloon is een generiek, parametriseerbaar model van een herconfigureerbare-
logica kern. Het gebruik van het sjabloon maakt een snelle architectuurexploratie
mogelijk, het vereenvoudigt het VLSI implementatieproces van sjablooninstanties
en het ondersteunt de creatie van flexibele gereedschappen voor de afbeelding van
applicaties op deze instanties.

De architectuurinstanties die worden afgeleid van het voorgestelde sjabloon zijn
applicatie-domein-specifiek in plaats van gericht op volledig generieke toepassing.
Specialisatie voor een bepaald applicatie domein betekent dat zowel logica als
verbindingen van een herconfigureerbare logica architectuur afgestemd worden
op de eisen van rekenintensieve algorithmen uit het applicatiedomein waarop men
zich richt. Dit verlaagt de kosten, maar garandeert toch de vereiste graad van
flexibiliteit.

Een methode wordt voorgesteld om algorithmen uit verschillende appli-
catiedomeinen te karakteriseren ten behoeve van het vinden van geschikte
sjablooninstanties voor deze domeinen. Drie parameters, te weten het (dom-
inante) type rekenkundige bewerkingen, de woordbreedte en Rent exponent,
worden voorgesteld als de belangrijkste karakteristieken van rekenkundige algo-

210 Samenvatting

rithmen. Gebruikmakend van een grote verzameling algorithmen uit verschillende
applicaties worden drie basisklassen van herconfigureerbare logica architec-
turen afgeleid. Dit zijn: datapad-georiënteerde architecturen, willekeurige-
logica-georïenteerde architecturen en geheugen-georiënteerde architecturen. Drie
sjablooninstanties die overeenkomen met de afgeleide architectuurklassen wor-
den in detail beschreven. Voor elk van deze instanties worden details van
het logica blok en de programmeerbare verbindingen gegeven. Twee metho-
den voor een efficiënte LUT-gebaseerde implementatie van binaire optelling
worden voorgesteld en toegepast op het ontwerp van basisbouwblokken van
twee van de voorgestelde sjablooninstanties. Tevens wordt een vergelijking
tussen de voorgestelde herconfigureerbare-logica-architectuur met ‘state-of-the-
art’ Field Programmable Gate Arrays gepresenteerd. Met gebruikmaking van
implementatie-gebaseerde en model-gebaseerde vergelijkingsmethoden wordt
aangetoond dat de voorgestelde domein-georienteerde herconfigureerbare logica
superieur is ten opzichte van de beschouwde generiek toepasbare FPGAs.

VLSI implementatie-aspecten en een silicium prototype van een memory-
georïenteerde herconfigureerbare kern worden in detail beschreven. De kern
werd gëımplementeerd met gebruikmaking van het sjabloon-gebaseerde modu-
laire ontwerpconcept. Er wordt aangetoond dat met een standaard-cell-gebaseerde
implementatie van ingebedde herconfigureerbare logica een functionaliteit kan
worden bereikt die vergelijkbaar is met die van commerciële, volledig geop-
timaliseerde implementaties van Xilinx Virtex-E FPGAs, tegen vergelijkbare
kosten in silicium oppervlak.

CURRICULUM VITAE

Katarzyna Leijten-Nowak was born on November 20, 1973 in Wrocław, Poland.
From 1988 till 1993 she was attending the Technical Secondary School in Tarnów,
Poland. She graduatedSumma Cum Laudein 1993 receiving specialisation in
computers and digital systems. In 1990 she was awarded an annual studentship of
the Polish Ministry of Education and in 1991 a half-year studentship of the Polish
Foundation for Young Talents.

In the period 1993–1998 she studied Electronics and Telecommunication at the
Wrocław University of Technology, Wrocław, Poland. She graduated in October
1998 receiving specialisation in signal processing systems. Her graduation project
on the low-power implementation of the FFT processor for OFDM systems was
realised at Delft University of Technology, Delft, The Netherlands as part of the
TEMPUS project. The work was carried out in cooperation with Philips Research
Eindhoven. The implementation of a CORDIC processor developed during the
project was used in Philips’ Digital Audio Broadcasting (DAB) chip.

In autumn 1998, Katarzyna joined the Information and Communication Systems
Group of Eindhoven University of Technology, Eindhoven, The Netherlands. In
February 1999 she started her Ph.D. research. From June 1999 till April 2003,
she carried out her research at the Embedded Systems Architectures on Silicon
Group of Philips Research Eindhoven as part of the ARCADE cluster project. The
work was supervised by prof.dr.ir. Jef L. van Meerbergen, prof.dr.ir. Ralph H.J.M.
Otten and prof.Dr.-Ing. Jochen A.G. Jess. The results of the ARCADE project
are currently used in the embedded FPGA project as part of the Philips research
programme.

Since June 2003, Katarzyna is working at Philips Research Laboratories in Eind-
hoven, The Netherlands as a research scientist. She is a member of the Deep-
Submicron Circuit Design Cluster of the Digital Design and Test Group. Her
present research area covers embedded reconfigurable computing, ultra-low power
design and statistical design.

212 Curriculum Vitae

NOTES

NOTES

Stellingen

behorende bij het proefschrift

Template-Based Embedded Reconfigurable Computing

van

Katarzyna Leijten-Nowak

1. Reconfigurable computing is a viable implementation approach for applications
in which the required degree of flexibility and performance justify extra silicon
area.

2. The intrinsic cost of reconfigurable logic can be reduced if a reconfigurable logic
architecture is tuned to the requirements of a target application domain.

3. The 4-LUT, which is the basic computing element in commercial FPGAs, is a
factor of four oversized for the implementation of word-level arithmetic compu-
tations.

4. The term ‘layout’ is ambiguous in the context of programmable logic devices.
It refers both to the VLSI implementation of a programmable logic device and
to the way in which an application is mapped onto such a device.

5. Progress in technology is as much determined by innovation as it is by legacy.

6. Ambient intelligence is artificial.

7. Denying the existence of extraterrestrial life is egocentric.

8. Competing in endurance events, such as Ironman triathlons and ultra-marathons,
says more about the mental than about the physical condition of the participants.

9. The concept of so-called ‘eco-products’ offered at premium prices makes
healthy food a privilege of those who can afford it.

10. A woman’s memory is like a DRAM – it requires continuous refreshing. The
memory of a man is like a hard disc – it often crashes completely.

11. We are the first generation that influences the climate, and the last generation to
escape the consequences.

[prof. Olav Orheim, Norwegian Glacier Museum]

	Preface
	Contents
	1 Introduction
	2 Application domain specialisation
	3 Basic concepts
	4 Data-path-oriented reconfigurable architecture
	5 Random-logic-oriented
	6 Memory-oriented reconfigurable architecture
	7 Template-based methodology for reconfigurable logic design
	8 Case study: memory-oriented EFPGA core
	9 Conclusions
	Bibliography
	Personal contribution
	Summary
	Samenvatting
	Curriculum Vitae
	Stellingen

