

DEMOCRITUS UNIVERSITY OF THRACE

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

VLSI DESIGN SYSTEMS AND TESTING
CENTER

XANTHI, 67100, GREECE

Survey of FPGA reconfigurable
Systems: Hardware platforms and

Software

Edited by: Dimitrios Soudris,
Democritus University of Thrace

Supported by AMDREL: Architectures and Methodologies for
Dynamic Reconfigurable Logic, IST-2001-34379

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 2

1. Abstract
This document contains both an introduction to FPGA technology that includes architecture,
power consumption and configuration models, and a comprehensive survey of the existing
fine-grain reconfigurable architectures that have emerged from both academia and industry.
All aspects of the architectures, including logic block structure, interconnect, and
configuration methods are presented in detail. Comparisons in terms of testability,
technology portability, design flow completeness and configuration type are shown.

Additionally, the implementation techniques and CAD tools (synthesizers, LUT-mapping tools
and placement and routing tools) that have been developed to facilitate the implementation
of a system in reconfigurable hardware by the industry (both by the FPGA manufacturers and
third-party EDA tool vendors) and academia are described.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 3

2. List of Abbreviations

AMDREL Architectures and Methodologies for Dynamic Reconfigurable Logic
ALU Aritmetic Logic Unit
ASIC Application Specific Integrated Circuit
BEST Behavioural Extracting Synthesis Technology
BLE Basic Logic Element
BUFT 3-State Buffer
CCCU Configuration Control and Caching Unit
CLB Configurable Logic Block
CLE Configurable Logic Element
CMOS Complementary Metal Oxide Semiconductor
CPLD Complex Programmable Logic Device
CSE Configurable Sequential Element
DCT Direct Cosine Transform
DSP Digital Signal Processor
EBR Embedded Block RAM
ECU Execution Control Unit
EDA Electronic Design Automation
EPGA Embedded Programmable Gate Array
ESB Embedded System Block
F/F Flip-Flop
FFT Fast Fourier Transform
FIFO First Input First Output
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
GRM General Routing Matrix
GUI Graphic User Interface
HDL Hardware Description Language
I/O Input/Output
IBD Interface Based Design
IDE Integrated Design Environment
IIR Infinite Impulse Response
IP Intellectual Property
ISP In-System Programmable
LAB Logic Array Block
LC Logic Cell
LCA Logic Cell Arrays
LDG Logic Description Generator
LE Logic Element
LIFO Last Input First Output
LUT Look-Up Table
ML Memory Layer
NMOS Negative Metal Oxide Semiconductor
PFU Programmable Function Unit
PLA Programmable Logic Array
PPL Phase Locked Loop
RA Reconfigurable Array
RFU Reconfigurable Functional Unit
RL Routing Layer
RLB Routing and Logic Block
ROM Read Only Memory

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 4

RTL Register Transfer Level
SoC System on Chip
SoPC System on Programmable Chip
SRAM Static Random Access Memory
SRF Shadow Register File
TOPS Total Optimization Physical Synthesis
VLI Variable Length Interconnect

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 5

3. List of Tables
Table 1: Chip Characteristics ..29
Table 2: Contribution of different components to the total area...34
Table 3: Execution Energy Per Data Token in pJ ..35
Table 4: Comparisons of fine-grain academic architectures ..38
Table 5: Products of the HyperBlox FP family..79
Table 6: Function Capability of ispXPGA PFU ...80
Table 7: Comparison between some the most well-known FPGAs ..84
Table 8: Lattice Software ...92
Table 9: Quartus II Verification Solutions ..97

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 6

4. List of Figures
Figure 1: FPGA Model ...11
Figure 2: Island style architecture ..12
Figure 3: Row-based architecture ..12
Figure 4: Sea-of-Gates Architecture ..13
Figure 5: Hierarchical architecture ...13
Figure 6: One-dimensional structure..14
Figure 7: Mesh (left) and partial crossbar (right) interconnect topologies for multi-FPGA systems.15
Figure 8: Types of programmable switch used in SRAM-based FPGAs..17
Figure 9: Power Breakdown in an XC4003 FPGA ...18
Figure 10: Static Reconfiguration ...19
Figure 11: Dynamic Reconfiguration..19
Figure 12: (a) The DECPeRLe-1 System Architecture, (b) The Central Matrix...24
Figure 13: Basic Garp block diagram ..25
Figure 14: Overview of the Chimaera Architecture..26
Figure 15: DISC Architecture ..27
Figure 16: Heterogeneous Reconfigurable Processor Architecture..28
Figure 17: Heterogeneous Reconfigurable Processor Chip Microphotograph ..29
Figure 18: Routing and Logic Block (RLB)..30
Figure 19: General architecture of UTFPGA1 ..31
Figure 20: Logic Block Architecture ...32
Figure 21: Nearest neighbor connection ...33
Figure 22: Level-2 connections...33
Figure 23: The LP_PGAII layout of a single tile ...34
Figure 24: Energy as a Function of Path Length..35
Figure 25: Block diagram of the 3-D FPGA ..36
Figure 26: Internal Structure of the functional unit ...37
Figure 27: Spartan/XL Simplified CLB Logic Diagram ..39
Figure 28: Spartan-II CLB Slice ..41
Figure 29: Virtex architecture overview ...42
Figure 30: A 2-Slice Virtex CLB ..43
Figure 31: Virtex-E Architecture Overview ..45
Figure 32: Virtex-II Architecture Overview ..46
Figure 33: Startix Logic Element ..49
Figure 34: Apex_II Logic Element ..51
Figure 35: Mercury Logic Element ...54
Figure 36: FLEX 10K Logic Element..56
Figure 37: Flex 6000 Logic Element ..60
Figure 38: The Actel’s eX family logic modules - (a) R-Cell, and (b) C-Cell ..62
Figure 39: Core Logic Tile for ProASIC 500K Family..64
Figure 40: 40MX Logic Module ...68
Figure 41: VariCore SRAM Architecture – A 4x4 array...70
Figure 42: The EPGA Logic Unit ..70
Figure 43: The AT6000 Series Cell Structure...73
Figure 44: (a) Eclipse SuperCell, (b) pASIC 1 Internal Logic Cell, and (c) pASIC 3 Family Logic Cell .74
Figure 45: The ispXPGA architecture ..80
Figure 46: Traditional Design Synthesis Approach and the Modeling Approach85
Figure 47: The CAD flow with the VPR tool ..89
Figure 48: Framework with power model ..89

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 7

5. Table of contents

1. Abstract ..2

2. List of Abbreviations ...3

3. List of Tables..5

4. List of Figures ..6

5. Table of contents ...7

6. Introduction to FPGAs ..10

6.1. Interconnect Architecture (Routing Resources) ...11
6.1.1. Island Style Architecture ..11
6.1.2. Row-Based Architecture ..12
6.1.3. Sea-of-Gates Architecture ...13
6.1.4. Hierarchical Architecture..13
6.1.5. One-Dimensional Structures..14
6.1.6. Multi-FPGA Systems..14

6.2. Logic Block Architecture ...15
6.2.1. Logic Block Granularity ..15
6.2.2. Studies on the CLB Structure ..16

6.3. Programming Technology...16
6.3.1. SRAM...16
6.3.2. Antifuse ..17
6.3.3. EPROM, EEPROM, and FLASH..17

6.4. Power Dissipation ...17
6.4.1. Components of Power ...18
6.4.2. Interconnect Energy...18
6.4.3. Clock Energy..18

6.5. Reconfigurable Models ...19
6.5.1. Statically Reconfigurable ...19
6.5.2. Dynamically Reconfigurable ..19
6.5.3. Single Context..19
6.5.4. Multi-Context ..20
6.5.5. Partially Reconfigurable ...20
6.5.6. Pipeline Reconfigurable ...20

6.6. Runtime Reconfiguration Categories..21
6.6.1. Algorithmic Reconfiguration ...21
6.6.2. Architectural Reconfiguration...21
6.6.3. Functional Reconfiguration ..21

6.7. Fast Configuration ..21
6.7.1. Configuration Prefetching ..21
6.7.2. Configuration Compression ...22
6.7.3. Relocation and Defragmentation in Partially Reconfigurable Systems22
6.7.4. Configuration Caching ...22

7. Academic fine-grain Reconfigurable platforms..23

7.1. Platforms that are based on fine-grain reconfigurable devices ..23
7.1.1. Splash ..23
7.1.2. Splash 2 ...23
7.1.3. DECPeRLe-1 ...23
7.1.4. GARP ...24
7.1.5. OneChip ...25
7.1.6. Chimaera..26
7.1.7. DISC...27
7.1.8. Pleiades ...27

7.2. Stand alone fine-grain reconfigurable devices ...29
7.2.1. DPGA ...29
7.2.2. Triptych ..30

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 8

7.2.3. Montage ...30
7.2.4. UTFPGA1...30
7.2.5. LP_PGA ...31
7.2.6. LP_PGA II ..31
11.2.6.3 Interconnect Architecture...32
11.2.6.4 Tile Layout ...34
11.2.6.6 Configuration Architecture ...35
7.2.7. 3D-FPGA..36
7.2.8. LEGO ...37

7.3. Summary ..37

8. Commercial fine-grain Reconfigurable platforms..38

8.1. Xilinx ...38
8.1.1. Spartan and Spartan-XL Families FPGAs ...38
8.1.2. Spartan-II Array..40
8.1.3. Virtex ..42
12.1.4 Virtex-E ..44
12.1.5 Virtex-II ...46

8.2. ALTERA..48
8.2.1. Startix ...48
8.2.2. Apex_II ...50
8.2.3. APEX 20KC..52
8.2.4. Mercury ..53
8.2.5. FLEX 10K...55
8.2.6. ACEX 1K ..57
8.2.7. FLEX 6000 ...59

8.3. ACTEL ..60
8.3.1. Axcelerator Family ...60
8.3.2. eX Family FPGAs...62
8.3.3. ProASIC 500K Family ..63
8.3.4. ProASICPLUS Family Flash FPGAs..64
8.3.5. SX-A Family FPGAs ..65
8.3.6. 40MX and 42MX FPGA Families ...68
8.3.7. VariCore ...69

8.4. ATMEL..71
8.4.1. AT40K/AT40KLV FPGA family ..71
8.4.2. AT6000 FPGA Family ..72

8.5. QUICKLOGIC ...73
8.5.1. Eclipse Family ..73
8.5.2. pASIC 1 Family ..75
8.5.3. pASIC2...75
8.5.4. pASIC 3..76
8.5.5. QuickRam ..77

8.6. Leopard Logic ...79
8.6.1. HyperBlock FP ...79

8.7. Lattice ...79
8.7.1. ispXPGA...79
8.7.2. ORCA 2..81
8.7.3. ORCA 3..81
8.7.4. ORCA 4..83

8.8. Summary ..84

9. Academic Software tools for designing fine-grain platforms ...84

9.1. Introduction ...84
9.1.1. Design Entry...85
9.1.2. Design Implementation ..85
9.1.3. Verification ...86

9.2. Public Domain Tools...86
9.2.1. Tools from UCLA..86
9.2.2. Tools from Toronto FPGA Research Group ..87

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 9

10. Commercial Software tools for designing fine-grain platforms ...90

10.1. Actel..90
10.1.1. Development Software...90
10.1.2. Programming..90
10.1.3. Verification and Debug...91
10.1.4. Device Support...91

10.2. Cadence ...91
10.2.1. Signal Processing Worksystem (SPW)..91
10.2.2. Cadence FPGA Verification ...91
10.2.3. ORCAD Capture ..91
10.2.4. Cadence Verilog Desktop ..91

10.3. Lattice ...92
10.3.1. ispLEVER v2.0 ...92

10.4. Mentor Graphics...92
10.4.1. Integrated FPGA Design Flow ...92
10.4.2. HDL Design..93
10.4.3. Synthesis..93
10.4.4. Simulation ..94

10.5. QuickLogic Development Software ..94
10.6. Synplicity ..94
10.7. Synopsys ..95
10.8. Quartus II..95

10.8.1. LogicLock Block-Based Design ...95
10.8.2. Quartus II Synthesis...96
10.8.3. Place & Route ..96
10.8.4. Quartus II Verification & Simulation ...96
10.8.5. Quartus II Web Edition Software..97

10.9. Xilinx ISE ..98
10.9.1. Design Entry...98
10.9.2. Synthesis..98
10.9.3. Implementation & Configuration...98
10.9.4. Verification ...98
10.9.5. Advanced Design Techniques ...99
10.9.6. Board Level Integration..99

11. Conclusions ...99

12. References..101

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 10

6. Introduction to FPGAs
The Field Programmable Gate Array (FPGA) is an important technology, which allows circuit
designers to produce application-specific chips around the time-consuming fabrication
process. When FPGAs were first introduced in the mid 1980s they were viewed as a
technology for replacing standard gate arrays for some applications. In these first-generation
systems, a single configuration is created for the FPGA, and this configuration is the only one
loaded into the FPGA. A second generation soon followed, with FPGAs that could use
multiple configurations, but reconfiguration was done relatively infrequently. In such systems,
the time to reconfigure the FPGA was of little concern. Nowadays, the applications demand
short time for reconfiguration and so a new generation of FPGAs was developed that could
support many types of reconfiguration methods, depending to the application specific needs.
Those types of reconfiguration are described also briefly this survey.

The first part of this report describes the Field Programmable Gate Arrays (FPGA) at the field
of the existing interconnect architectures, the architecture of the logic block, the existing
programming technologies, the power dissipation and the reconfigurable models. Next
follows a description of the available commercial and academic fine-grain reconfigurable
architectures. The third part of this document presents the available CAD tools, used for
programming FPGAs. Those tools are separated in commercial ones and those that are
public domain and referred as academic. Finally, there is a conclusion where remarkable
results are exhibited.

An FPGA can be programmed to solve a problem at hand in a spatial fashion. The goal of
reconfigurable architectures is to achieve implementation efficiency approaching that of
specialized logic, while providing the silicon reusability of general-purpose processors.

The main characteristics of an FPGA that will be described below are:

• The interconnect architecture
• The logic block architecture
• The programming technology
• The power dissipation
• The existing reconfigurable models

FPGA can be visualized as a programmable logic embedded in programmable interconnect.
All FPGAs are composed of three fundamental components: logic blocks, I/O blocks and
programmable routing. A circuit is implemented in an FPGA by programming each logic
block to implement a small portion of the logic required by the circuit, and each of the I/O
blocks to act as either an input pad or an output pad, as required by the circuit. The
programmable routing is configured to make all the necessary connections between logic
blocks and from logic blocks to I/O blocks. The functional complexity of logic blocks can vary
from simple two-input Boolean operations to larger, complex, multi-bit arithmetic operations.
The choice of the logic block granularity is dependent on the target application domain. The
programming technology determines the method of storing the configuration information, and
comes in different flavors. It has a strong impact on the area and performance of the array.
The main programming technologies are: Static Random Access Memory (SRAM) [1],
antifuse [2], and non-volatile technologies. The choice of the programming technology is
based on the computation environment in which the FPGA is used.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 11

Figure 1: FPGA Model

The general model of an FPGA is shown in Figure 1. The logic cell usually consists of lookup
tables (LUTs), carry logic, flip-flops, and programmable multiplexers. The multiplexers are
utilized to form data-paths inside the logic cell and to connect the logic cells with the
interconnection resources.

6.1. Interconnect Architecture (Routing Resources)
The interconnect architecture is realized using switches that can be programmed to realize
different connections. The method of providing the connectivity between the logic blocks has
a strong impact on the characteristics of the FPGA architecture. The arrangement of the logic
and interconnect resources can be broadly classified into six groups:

• Island style
• Row-based
• Sea-of-gates
• Hierarchical
• One-dimensional structures
• Multi-FPGA systems

Commercial FPGAs can be classified into three groups, based on their routing architecture.
The FPGAs of Xilinx, Lucent and Vantis are island-style FPGAs, while Actel’s FPGAs are
row-based, and Altera’s FPGAs are hierarchical.

6.1.1. Island Style Architecture
The island style architecture consists of an array of programmable logic blocks with vertical
and horizontal programmable routing channels. The basic architecture is illustrated in Figure
2. The number of segments in the channel determines the resources available for routing.
This is quantified in terms of the channel width. The pins of the logic block can access the
routing channel through the connection box. The XC4000 and XC3000 series from Xilinx [3]
are examples of this kind of architecture.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 12

Figure 2: Island style architecture

6.1.2. Row-Based Architecture
As the name implies, this architecture has logic blocks arranged in rows with horizontal
routing channel between successive rows. The row-based architecture is shown in Figure 3.
The routing tracks within the channel are divided into one or more segments. The length of
the segments can vary from the width of a module pair to the full length of the channel. The
segments can be connected at the ends using programmable switches to increase their
length. Other tracks run vertically through the logic blocks. They provide connections
between the horizontal routing channel and the vertical routing segments. The length of the
wiring segments in the channel is determined by tradeoffs involving the number of tracks, the
resistance of the routing switches, and the capacitance of the segments. The ACT3 family of
FPGAs from Actel [4] is an example of this architecture.

Figure 3: Row-based architecture

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 13

6.1.3. Sea-of-Gates Architecture
The sea-of-gates architecture, as shown in Figure 4, unlike the previous architectures, is not
an array of logic blocks embedded in a general routing structure. The architecture consists of
fine-grain logic blocks covering the entire floor of the device. Connectivity is realized using
dedicated neighbor-to-neighbor routes that are usually faster than general routing resources.
Usually the architecture also uses some general routes to realize longer connections. The
SX family of FPGAs from Actel [5] is an example of this class of architecture.

Figure 4: Sea-of-Gates Architecture

6.1.4. Hierarchical Architecture
Most logic designs exhibit locality of connections, which imply a hierarchy in the placement
and routing of the connections between the logic blocks. The hierarchical FPGA architecture
tries to exploit this feature to provide smaller routing delays and a more predictable timing
behavior. This architecture is created by connecting logic blocks into clusters. These clusters
are recursively connected to form a hierarchical structure. Figure 5 illustrates a possible
architecture. The speed of the network is determined by the number of routing switches it
has to pass through. The hierarchical structure reduces the number of switches in series for
long connections and can hence potentially run at a higher speed.

Figure 5: Hierarchical architecture

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 14

6.1.5. One-Dimensional Structures
Most current FPGAs are of the two-dimensional variety. This allows for a great deal of
flexibility, as any signal can be routed on a nearly arbitrary path. However, providing this
level of routing, flexibility requires a great deal of routing area. Also complicates the
placement and routing software, as the software must consider a very large number of
possibilities. One solution is to use a more one-dimensional style of architecture, as shown in
Figure 6. Here placement is restricted along one axis. With a more limited set of choices, the
placement can be performed much more quickly. Routing is also simplified, because it is
generally along a single dimension as well, with the other dimension generally only used for
calculations requiring a shift operation. One drawback of the one-dimensional routing is that
if there are not enough routing resources for a specific area of a mapped circuit, then the
routing of the whole circuit becomes actually more difficult than on a two-dimensional array
that provides more alternatives. A number of reconfigurable systems have been designed by
this manner, like Garp [31], Chimaera [20] [33] and NAPA [22].

Figure 6: One-dimensional structure

6.1.6. Multi-FPGA Systems
Reconfigurable systems that are composed of multiple FPGA chips interconnected on a
single processing board have additional hardware concerns over a single-chip system. In
particular, there is a need for an efficient connection scheme between the chips, as well as to
external memory and the system bus. This is to provide for circuits that are too large to fit
within a single FPGA, but may be partitioned over the multiple FPGAs available. A number of
different interconnect schemes have been explored [6] [7] [8] [9] including meshes and
crossbars, as shown in Figure 7. A mesh connects the nearest-neighbors in the array of
FPGA chips. This allows for efficient communication between the neighbors, but may require
that some signals pass through an FPGA simply to create a connection between non-
neighbors. Although this can be done, and is quite possible, it uses valuable I/O resources
on the FPGA that forms the routing bridge. A crossbar attempts to remove this problem by
using special routing-only chips to connect each FPGA potentially to any other FPGA. The
inter-chip delays are more uniform, given that a signal travels the exact same “distance” to
get from one FPGA to another, regardless of where those FPGAs are located. However, a
crossbar interconnect does not scale easily with an increase in the number of FPGAs. The
crossbar pattern of the chips is fixed at fabrication of the multi-FPGA board. For multi-FPGA
systems, because of the need for efficient communication between the FPGAs, determining
the inter-chip routing topology is a very important step in the design process.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 15

Figure 7: Mesh (left) and partial crossbar (right) interconnect topologies for multi-FPGA
systems.

6.2. Logic Block Architecture
The logic block, which is also known as configurable logic block (CLB), is responsible for
implementing the gate level functionality required for each application. The logic block is
defined by its internal structure and the granularity. The structure defines the different kinds
of logic that can be implemented in the block, while the granularity defines the size of the
function that can be implemented. The functionality of the logic block is obtained by
controlling the connectivity of some basic logic gates or by using LUTs and has a direct
impact on the routing resources. As the functional capability increases, the amount of logic
that can be packed into it increases. This reduces the amount of external routing resources.
On the other hand, as the logic block size increases, it is also quite possible that the block
can not be fully utilized, resulting in wastage. Based on this tradeoff, there are numerous
logic block structures trying to optimize the area and speed of the FPGA [41].

A collection of CLBs, which could be called as logic cluster, is described with the following
four parameters:

• The size of (number of inputs to) a LUT.
• The number of CLBs in a cluster.
• The number of inputs to the cluster for use as inputs by the LUTs.
• The number of clock inputs to a cluster (for use by the registers).

The advantage of using a k-input LUT (k-LUT) is that it can realize any combinational logic
with k inputs. Previous work [10] that evaluated the effect of the logic block on the FPGA
architecture used a k-input LUT with a single output as the logic block. This structure is better
for implementing random logic functions than for datapath-like bit-slice operations.

6.2.1. Logic Block Granularity
The logic blocks vary in complexity from a very small and simple block that can calculate a
function of only three inputs, to a structure that is essentially a 4-bit ALU. The size and
complexity of the basic computing blocks is referred to as the block’s granularity. In other
words, the granularity criterion reflects to the smallest block of which a reconfigurable device
is made. The choice in the logic block granularity is influenced by the application space
envisioned for the FPGA, and it has a potential effect on the reconfiguration time of the
device. This is an important issue especially for run-time reconfiguration systems.

All the reconfigurable platforms based on their granularity are distinguished into two groups,
the fine-grain and coarse-grain systems. In fine-grained architectures, the basic programmed
building block consists of a combinatorial network and a few flip-flops. A fine-grain array has
many configuration points to perform very small computations, and thus requires more data
bits during configuration. The fine-grain programmability is more amenable to control

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 16

functions, while the coarser grain blocks with arithmetic capability are more useful for
datapath operations.

All the reconfigurable architectures that are described in this report are characterized as fine-
grain reconfigurable architectures. This term is traditionally used when the hardware
architecture implements bit-level functions. Nowadays, where the need for high speed
calculations is critical, many of the existing reconfigurable hardware use more than one bit
for the functions that they implement. Even though this hardware can be characterized as
coarse-grain, we believe, we propose to describe hardware platforms that are based on one
or two-bit functions as fine-grain architectures, while all the others are supposed to be
coarse-grain ones.

6.2.2. Studies on the CLB Structure
Studies on the CLB structure have shown that the best number of inputs to use in order to
improve area is between 3 and 4 [10]. Also it is possible to improve the functionality by
including a D flip-flop. Moreover, for multiple output LUTs, the use of 4-input LUT could
minimize the area [10], while the 5 and 6 inputs LUT minimize the delay [13]. The use of
heterogeneous logic blocks that have combination of 4 and 6 inputs LUTs shown that it has
the same area as the 4-inputs LUTs, but it has improved the speed by 25% [14]. Finally, the
use of clusters with 4-inputs LUT instead of one 4-input LUT, results in a decrease of 10% at
area [15].

6.3. Programming Technology
The logic and routing resources of an FPGA are uncommitted, and must be programmed to
realize the required behavior. The contents of the logic block can be programmed to control
the functionality of the logic block, while the routing switches can be programmed to control
the connections between the logic blocks. There are a number of different methods to store
this program information, ranging from the volatile SRAM method to the irreversible antifuse
technology. The area of an FPGA is dominated by the area of the programmable
components. Hence, the choice of the programming technology can also affect the area of
the FPGA. Another factor that has to be considered is the number of times the FPGA has to
be programmed. The antifuse-based FPGA can be programmed only once, while the SRAM-
based FPGA does not limit the number of times the array can be reprogrammed.

6.3.1. SRAM
In this method of programming, the configuration is stored in SRAM cells. When the
interconnect network is implemented using pass-transistors, the SRAM cells control whether
the transistor is on or off. In the case of the lookup tables used in the logic block, the logic is
stored in the SRAM cells. This method suffers from the fact that the storage is volatile and
the configuration has to be written into the FPGA each time on power-up. For systems using
SRAM-based FPGAs, an external permanent storage device is usually used. This technology
requires at least five transistors per cell. Due to the relatively large size of the memory cells,
the area of the FPGA is dominated by configuration storage. The SRAM method of
programming offers the convenience of reusing a single device for implementing different
applications by loading different configurations. This characteristic has made SRAM-based
FPGAs popular in reconfigurable platforms, which strive to obtain performance gains by
customizing the implementation of functions to the specific application. Figure 8 shows these
SRAM-based switches, where the pass gates are implemented with nMOS pass transistors,
rather than complementary transmission gates, as this results in better speed due to the
higher carrier mobility in nMOS transistors.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 17

Figure 8: Types of programmable switch used in SRAM-based FPGAs

6.3.2. Antifuse
In the SRAM programming method, the information is stored by controlling the state of the
memory cell. The antifuse programming method [84] uses a programmable connection
whose impedance changes on the application of a high voltage. In the un-programmed state,
the impedance of the connection is of the order of a few giga-ohms, and can be treated as an
open circuit. By applying a high voltage, a physical change called fusing occurs. This result in
an impedance of a few ohms though the device, establishing a connection. This method has
the advantage that the area of the programming element is of the order of the size of a Via,
and therefore can achieve a significant reduction in area compared to the SRAM-
programmed FPGA. The resistance through the element is of the order of a few ohms and is
much smaller than the resistance of a pass-transistor that is used as the routing switch in the
SRAM method. This programming technique is non-volatile, and does not require external
configuration storage on power-down. Unlike the SRAM based technology, errors in the
design cannot be corrected, since the programming process is irreversible.

6.3.3. EPROM, EEPROM, and FLASH
This class of non-volatile programming technology uses the same techniques as EPROM,
EEPROM and Flash memory technologies. This method is based on a special transistor with
two gates: a floating gate and a select gate. When a large current flows through the
transistor, a charge is trapped in the floating gate that increases the threshold voltage of the
transistor. Under normal operation, the programmed transistors may act as open circuits,
while the other transistors can be controlled using the select gates. The charge under the
floating gate will persist during power-down. The floating charge can be removed by
exposing the gate to the ultraviolet light in the case of EPROMs, and by electrical means in
the case of EEPROMs and Flash. These techniques straddle the middle ground between the
SRAM and antifuse techniques. They provide the non-volatility of antifuse with the
reprogrammability of SRAM. The resistance of the routing switches is larger than that of the
antifuse, while the programming is more complex and time consuming than that of the SRAM
technique.

6.4. Power Dissipation
Today’s reconfigurable systems have become more complex, and can take advantage of the
programmability offered by the Field-Programmable Gate Arrays. This environment places
stress on the energy efficiency of FPGAs, which has not been solved in existing commercial
architectures. Another factor that has gained importance is the power density of the
integrated circuits. With the reduction in feature size the transistor count per die have
increased. This has resulted in an increase of power density, and the overall power
dissipation per chip. Recently, some academic research attempts concern the issue of power
dissipation reduction [41]. This trend will continue, and has implications on the economics
and technology of packaging these devices.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 18

6.4.1. Components of Power
A dramatic improvement in energy efficiency of FPGAs is required. An understanding of the
energy breakdown in an FPGA is required to enable an efficient redesign process. Figure 9
gives the energy breakdown of an XC4003 FPGA over a set of benchmark netlists [16].

In te rco n n e ct
65%

Clo ck
21%

IO
9%

Lo g ic
5%

Figure 9: Power Breakdown in an XC4003 FPGA

The majority of the power is dissipated in the interconnection. The next major component is
the clock network, while the logic block consumes only 5% of the total energy. This
breakdown is not specific to the Xilinx FPGA, but is representative of most of the commercial
FPGA architectures.

6.4.2. Interconnect Energy
The term “interconnect” include all the resources required to realize a connection between
two logic blocks. The physical realization of the connection involves metal tracks and
programmable switches that have to be activated. The capacitance on the line comes from
the metal track spanning one logic block, and from the diffusion capacitances of the pass
transistors connected to this metal track. This can be reduced by either decreasing the
number of switches accessing the line, or by making the transistors smaller. The number of
switches can be decreased by reducing the flexibility of the switch box and the connection
box, and by reducing the width of the routing channel. Any modification of the flexibility has to
be accompanied by an evaluation of the routing efficiency of the entire architecture. The
interconnect path in an FPGA can be modeled as an RC chain. The resistance of the series
transistors contributes to the R, while the diffusion capacitance of the nMOS transistors in the
path contributes to the C. By reducing the width of the switch, the R of the series path
increases, reducing the speed performance.

6.4.3. Clock Energy
The next major contributor to the total energy is the clock. Typically in all FPGAs, flip-flops
are provided in each logic block to register the output. The availability of flip-flops in each
logic block improves the utilization of the array, and leads to a better area efficiency. A side
effect to this architectural decision is that the clock has to be distributed over the entire array
to supply the sparse distribution of flip-flops. This results in a relatively large cost for the
clock distribution network. For the clock energy, the dominant component is actually the
distribution network, and not the load presented by the flip-flops. Hence, the distribution
network has to be targeted first to reduce the clock energy.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 19

6.5. Reconfigurable Models
Traditional FPGA structures have been implemented to function in a single context, only
allowing one full-chip configuration to be loaded at a time. This style of reconfiguration is too
limited or slow to efficiently implement run-time reconfiguration. The most well-known
reconfiguration models, which could be used in order to program an FPGA, will be described
in next paragraphs.

6.5.1. Statically Reconfigurable
Static reconfiguration, which often referred as compile time reconfiguration, is the simplest
and most common approach for implementing applications with reconfigurable logic. Static
reconfiguration involves hardware changes at a relatively slow rate: hours, days, or weeks.
At this strategy, each application consists of one configuration. Many of the existing
reconfigurable systems are statically reconfigurable. In order to reconfigure such a system, it
has to be halted while the reconfiguration is in progress and then restarted with the new
program. This reconfiguration model is depicted in Figure 10.

Figure 10: Static Reconfiguration

6.5.2. Dynamically Reconfigurable
On the other hand, dynamic reconfiguration [18], which also called as run-time
reconfiguration, uses a dynamic allocation scheme that re-allocates hardware at run-time.
With this technique there is a trade-off between time and space. It can increase system
performance by using highly-optimized circuits that are loaded and unloaded dynamically
during the operation of the system, as shown in Figure 11. Dynamic reconfiguration is based
on the concept of virtual hardware, which is similar to idea of virtual memory. Here, the
physical hardware is much smaller than the sum of the resources required by all the
configurations. Therefore, instead of reducing the number of configurations that are mapped,
we prefer to swap them in and out of the actual hardware, as they are needed.

Figure 11: Dynamic Reconfiguration

6.5.3. Single Context
The single context FPGAs have only one configuration every time and can be programmed
using a serial stream of configuration information. Because only sequential access is
supported, any change to a configuration on this type of FPGA requires a complete
reprogramming of the entire chip. Although this does simplify the reconfiguration hardware, it
does incur a high overhead when only a small part of the configuration memory needs to be
changed. Many commercial FPGAs are of this style, including the Xilinx 4000 series and the
Altera Flex10K series. This type of FPGA is therefore more suited for applications that can
benefit from reconfigurable computing without run-time reconfiguration. In order to implement
run-time reconfiguration onto a single context FPGA, the configurations must be grouped into
contexts, and each full context is swapped in and out of the FPGA as needed. Because each
of these swap operations involve reconfiguring the entire FPGA, a good partitioning of the
configurations between contexts is essential in order to minimize the total reconfiguration
delay [11]. If all the configurations used within a certain time period are present in the same

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 20

context, no reconfiguration will be necessary. However, if a number of successive
configurations are each partitioned into different contexts, several reconfigurations will be
needed, slowing the operation of the run-time reconfigurable system.

6.5.4. Multi-Context
A multi-context FPGA includes multiple memory bits for each programming bit location [19].
These memory bits can be thought of as multiple planes of configuration information, each of
which can be active at a given moment, but the device can quickly switch between different
planes, or contexts, of already-programmed configurations. A multi-context device can be
considered as a multiplexed set of single context devices, which requires that a context be
fully reprogrammed to perform any modification. This system does allow for the background
loading of a context, where one plane is active and in execution while an inactive place is the
process of being programmed. Fast switching between contexts makes the grouping of the
configurations into contexts slightly less critical, because if a configuration is on a different
context than the one that is currently active, it can be activated within an order of
nanoseconds, as opposed to milliseconds or longer. However, it is likely that the number of
contexts within a given program is larger than the number of contexts available in the
hardware. In this case, the partitioning again becomes important to ensure that
configurations occurring in close temporal proximity are in a set of contexts that are loaded
into the multi-contexts device at the same time.

6.5.5. Partially Reconfigurable
In some cases, configurations do not occupy the full reconfigurable hardware, or only a part
of a configuration requires modification. In both of these situations, a partial reconfiguration
of the array is required, rather than the full reconfiguration required by a single-context or
multi-context device. In a partially reconfigurable FPGA, the underlying programming bit layer
operates like a RAM device. Using addresses to specify the target location of the
configuration data allows for selective reconfiguration of the array. Frequently, the
undisturbed portions of the array may continue execution, allowing the overlap of
computation with reconfiguration. This has the benefit of potentially hiding some of the
reconfiguration latency. When configurations do not require the entire area available within
the array, a number of different configurations may be loaded into unused areas of the
hardware at different times. Since only part of the array is reconfigured at a given point in
time, the entire array does not require reprogramming. Additionally, some applications
require the updating of only a portion of a mapped circuit, while the rest should remain intact.
Using this selective reconfiguration can greatly reduce the amount of configuration data that
must be transferred to the FPGA. Several run-time reconfigurable systems are based upon a
partially reconfigurable design, including Chimaera [20] [33], PipeRench [21], NAPA [22], and
the Xilinx 6200 and Virtex FPGAs [23] [24].Unfortunately, since address information must be
supplied with configuration data, the total amount of information transferred to the
reconfigurable hardware may be greater than what is required with a single context design.
This makes the full reconfiguration of the entire array slower than the single context version.
However, a partially reconfigurable design is intended for applications in which the size of the
configurations is small enough that more than one can fit on the available hardware
simultaneously.

6.5.6. Pipeline Reconfigurable
A modification of the partially reconfigurable FPGA design is one in which the partial
reconfiguration occurs in increments of pipeline [11] stages. Each stage is configured as a
whole. This is primarily used in datapath style computations, where more pipeline stages are
used than can be fitted simultaneously on available hardware. In a pipeline reconfigurable
FPGA, there are two primary execution possibilities. Either the available number of hardware
pipeline stages is greater than or equal to the number of pipeline stages of the designed

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 21

circuit (virtual pipeline stages), or the number of virtual pipeline stages will exceed the
number of hardware pipeline stages. The first case is straightforward: the circuit is simply
mapped to the array, and some hardware stages may go unused. The second case is more
complex and is the one that requires runtime reconfiguration. The pipeline stages are
configured one by one, from the start of the pipeline, through the end of the available
hardware stages. After each stage is programmed, it begins computation. In this manner, the
configuration of a stage is exactly one step ahead of the flow of data. Once the hardware
pipeline has been completely filled, reuse of the hardware pipeline stages begins.

6.6. Runtime Reconfiguration Categories
The challenges associated with runtime reconfiguration are closely linked with the goal of
reconfiguration. Therefore, it is important to consider the motivation and the different
scenarios of runtime reconfiguration, which are algorithmic, architectural and functional
reconfiguration. They are briefly described below.

6.6.1. Algorithmic Reconfiguration
The goal in algorithmic reconfiguration is to reconfigure the system with a different
computational algorithm that implements the same functionality, but with different
performance, accuracy, power, or resource requirements. The need for such reconfiguration
arises when either the dynamics of the environment or the operational requirements change.

6.6.2. Architectural Reconfiguration
The goal in architectural reconfiguration is to modify the hardware topology and computation
topology by reallocating resources to computations. The need for this type of reconfiguration
arises in situations where some resources become unavailable either due to a fault or due to
reallocation to a higher priority job, or due to a shutdown in order to minimize the power
usage. For the system to keep functioning in spite of the fault the hardware topology need to
be modified and the computational tasks need to be reassigned.

6.6.3. Functional Reconfiguration
The goal in functional reconfiguration is to execute different function on the same resources.
The need for this type of reconfiguration arises in situations where a large number of different
functions are to be performed on a very limited resource envelope. In such situations the
resources must be time-shared across different computational tasks to maximize resource
utilization and minimize redundancy.

6.7. Fast Configuration
Because run-time reconfigurable systems involve reconfiguration during program execution,
the reconfiguration must be done as efficiently and as quickly as possible. This is in order to
ensure that the overhead of the reconfiguration does not eclipse the benefit gained by
hardware acceleration. Stalling execution of either the host processor or the reconfigurable
hardware because of configuration is clearly undesirable. There are a number of different
tactics for reducing the configuration overhead, and they will be described below.

6.7.1. Configuration Prefetching
By loading a configuration into the reconfigurable logic in advance of when it is needed, it is
possible to overlap the reconfiguration with useful computation. This results in a significant
decrease in the reconfiguration overhead for these applications. Specifically, in systems with
multiple contexts, partial run-time reconfigurability, or tightly coupled processors it is possible
to load a configuration into all or part of the FPGA while other parts of the system continue
computing. In this way, the reconfiguration latency is overlapped with useful computations,
hiding the reconfiguration overhead. The challenge in configuration prefetching [25] is

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 22

determining far enough in advance which configuration will be required next. Many
computations (especially those found in general-purpose computations) can have very
complex control flows, with multiple execution paths branching off from any point in the
computation, each potentially leading to a different next configuration.

6.7.2. Configuration Compression
When multiple contexts or configurations have to be loaded in quick succession then the
system’s performance may not be satisfactory. In such a case, the delay incurred is
minimized when the amount of data transferred from the processor to the reconfigurable
hardware is minimized. A technique that could be used in order to compact this configuration
information is the configuration compression [26]. In addition to that, a new configuration
might reuse configuration information that is already present on the hardware, such that only
the areas differing in configuration values must be reprogrammed. Moreover, by creating
larger configurations out of groups of smaller configurations, the configuration overhead is
reduced. This happens due to the fact that more operations can be present on chip
simultaneously. On the other hand, a disadvantage of this method is that it has some area
and execution penalties.

6.7.3. Relocation and Defragmentation in Partially Reconfigurable Systems
Partially reconfigurable systems have advantages over single context systems, but problem
might occur if two partial configurations are supposed to be located at overlapping physical
locations on the FPGA. A solution to this problem is to allow the final placement of the
configurations to occur at run-time, allowing for run-time relocation of those configurations.
By using this technique, the new configuration could be placed onto the reconfigurable
hardware where it will cause minimum conflict with other needed configurations already
present on the hardware. A number of systems use the run-time relocation [27], among them
are the Chimaera [20] [33], PipeRench [21] and Garp [31]. Over time, as a partially
reconfigurable device loads and unloads configurations, the location of the unoccupied area
on the array is likely to become fragmented, similar to what occurs in memory systems when
RAM is allocated and deallocated. A configuration normally requires continues region of the
chip, so it would have to overwrite a portion of the valid configuration in order to be placed
onto the reconfigurable hardware. A system that incorporates the ability to perform
defragmentation [27] of the reconfigurable array, however, would be able to consolidate the
unused area by moving valid configurations to new locations.

6.7.4. Configuration Caching
Caching configurations [28] on an FPGA, which is similar to caching instructions or data in a
general memory, is to retain the configurations on the chip so the amount of the data that
needs to be transferred to the chip can be reduced. In a general-purpose computational
system, caching is an important approach to hide memory latency by taking advantage of
two types of locality, spatial and temporal locality. These two localities also apply to the
caching of configurations on the FPGA in coupled processor-FPGA systems. The challenge
in configuration caching is to determine which configurations should remain on the chip and
which should be replaced when a reconfiguration occurs. An incorrect decision will fail to
reduce the reconfiguration overhead and lead to a much higher reconfiguration overhead
than a correct decision. The non-uniform configuration latency and the small number of
configurations that reside simultaneously on the chip increase the complexity of this decision.
Both frequency and latency factors of configurations need to be considered to assure the
best reconfiguration overhead reduction. Specifically, in certain situations retaining
configurations with high latency is better than keeping frequently required configurations that
have lower latency. In other situations, keeping configurations with high latency and ignoring
the frequency factor will result switching between other frequently required configurations
because they cannot fit in the remaining area. The switching causes reconfiguration

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 23

overhead in this case that will not occur if the configurations with high latency but low
frequency are unloaded.

7. Academic fine-grain Reconfigurable platforms
Some of the existing well-known academic fine-grain reconfigurable platforms are described
in the next paragraphs. The first part of this section is about platforms that are based on fine-
grain reconfigurable devices, while the second one is for stand alone reconfigurable devices.
All of those architectures use one or two bits for their functions, and so they could be
characterized as fine-grain. At the end of this section is a summary table, where many of the
previous referred systems are compared with criteria like the programmability, the
reconfiguration method, the interface and the possible application domain.

7.1. Platforms that are based on fine-grain reconfigurable devices
At this part of the document will be described the Splash, Splash2, DECPeRLe-1, OneChip,
Chimaera, DISC, Garp, and Morphosys systems that are platforms based on fine-grain
reconfigurable devices.

7.1.1. Splash
The Splash [29] is an attached processor board designed at the Supercomputing Research
center to provide very high performance for a range of bit-processing problems. The Splash,
a single multiwire board that could be plugged into the VMEbus of a Sun Worksation, was
initially designed to be a test-bed for Systolic Algorithms. The board contains 32 Xilinx 3090
FPGA chips as processing elements. These FPGAs are connected in a linear array by a 32-
bit-wide path. The board is connected via 2 buses: one for data transfer and other for
configurations. The Splash environment consists of several development tools like the Logic
Description Generator (LDG) the output of which is mapped to the Xilinx chips. It also
consists of a LISP language for manipulating templates describing logic functions. In addition
to these tools it also has a debugger called Trigger and some C routines for directly
accessing Splash platform from C programs. The main drawback of Splash was that it was
implemented as a linear array. The software tools were rudimentary and required knowledge
of FPGA architecture.

7.1.2. Splash 2
The Splash2 system [29] has been developed to improve certain aspects of the Splash1
system, like the scalability, the I/O bandwidth and the programmability. It uses a SPARC 2 as
a host over a Sbus. The I/O rate of Splash2 is 8 to 10 times faster than Splash1. The
Splash2 has 17 Xilinx XC4010 chips on aboard. The major differences between 3090 and
4010 are that the latter has 400 CLBs as compared to 320 in the former, each CLB has 9
input lines instead of 5 and maximum speed is 40 MHz as compared to 32 MHz. In addition
to these it has a fast carry internal to the CLBs to make the computations faster and reduces
amount of programming and CLBs. The new chip also allows the use of CLBs as a 32-bit
RAM and can be configured as either 32 x 1 bit or 16 x 2 bits. The Splash2 in addition to the
linear connection of the Xilinx chips it has broadcast to multiple Splash boards, memory
connection to host and interchip connections on the board itself. There is an interface board,
which handles the FIFOs and preconditioning of data. The memory chips on the board are
directly connected to a single Xilinx chip and the 128K x 8 bit RAMs have been replaced
256K x 16 bit RAMs and these changes make the memory more accessible to the Xilinx
chips.

7.1.3. DECPeRLe-1
The DECPeRLe–1 [30] system is a programmable hardware accelerator based on a matrix
of Xilinx FPGAs attached to a DECStation 5000 Ultrix workstation. Figure 12 outlines the

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 24

architecture of the system. The central matrix consists of 16 Xilinx XC3090 Logic Cell Arrays
(LCAs), connected to four 64 bit buses, shown as the North (N), South (S), East (E) and
West (W) matrix buses. These buses are connected to the N, S, E and W data switches,
which are also XC3090 LCAs. Each switch is also connected to a bank of 32 bit by 256K
word high speed SRAM. The N and E switches are linked by another 32 bit bus, as are the S
and W switches. Each of these buses connects to a 5th switch LCA, known as the FIFO
Switch, which communicates to the host workstation via 32–bit FIFOs connected to a
TurboChannel expansion slot. Finally, 2 more LCAs are included to control the N and E
memories (Controller NE) and the S and W memories (Controller SW). The XC3090 LCA
consists of a 16x20 array of configurable logic blocks (CLBs), where each CLB has 2 flip–
flops and a 5 input programmable logic array. The central matrix of LCAs thus forms a
160x64 array of bit programmable logic elements.

Figure 12: (a) The DECPeRLe-1 System Architecture, (b) The Central Matrix

The system is programmed using C++ as a hardware description language. A C++ library is
provided which contains low level primitives for describing designs. Logical nets are
described using Boolean variables, while the Boolean equations are described using the
standard C syntax for bitwise operators. Additional primitives are supplied to assign specific
CLB pins to specific nets and declare the usage of tri–state buffers and clocks. A special
operator to assign the placement of nets to CLBs is also provided. Hierarchical designs are
constructed using C functions and C++ class declarations, and a standard template file is
used to map a design into the board architecture.

7.1.4. GARP
Garp [31] was developed at University of California Berkeley. It belongs to the family of
Reconfigurable Coprocessors as it integrates a reconfigurable array that has access to the
processor’s memory hierarchy. The reconfigurable array may be partially reconfigured as it is
organized in rows. Configuration bits are included and linked as constants with ordinary C
compiled programs.

At the Garp architecture, the FPGA is recast as a slave computational unit located on the
same die as the processor. The reconfigurable hardware is used to speed up what it can,
while the main processor takes care of all other computations. Figure 13 shows the
organization of the machine at the highest level. Garp’s reconfigurable hardware goes by the
name of the reconfigurable array. It has been designed to fit into an ordinary processing

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 25

environment, one that includes structured programs, libraries, context switches, virtual
memory, and multiple users. The main thread of control through a program is managed by
the processor and in fact programs never need to use the reconfigurable hardware. It is
expected, however, that for certain loops or subroutines, programs will switch temporarily to
the reconfigurable array to obtain a speedup. With Garp, the loading and execution of
configurations on the reconfigurable array is always under the control of a program running
on the main processor.

The Garp makes external storage accessible to the reconfigurable array by giving the array
access to the standard memory hierarchy of the main processor. This also provides
immediate memory consistency between array and processor. Furthermore, Garp has been
defined to support strict binary compatibility among implementations, even for its
reconfigurable hardware.

Garp’s reconfigurable array is composed of entities called blocks. One block on each row is
known as a control block. The rest of the blocks in the array are logic blocks, which
correspond roughly to the CLBs of the Xilinx 4000 series. The Garp Architecture fixes the
number of columns of blocks at 24, while the number of rows is implementation-specific, but
can be expected to be at least 32. The architecture is defined so that the number of rows can
grow in an upward-compatible fashion.

Figure 13: Basic Garp block diagram

The basic “quantum” of data within the array is 2 bits. Logic blocks operate on values as 2-bit
units, and all wires are arranged in pairs to transmit 2-bit quantities. Operations on data wider
than 2 bits can be formed by adjoining logic blocks along a row. Construction of multi-bit
adders, shifters, and other major functions is aided by hardware invoked through special
logic block modes.

Compared to typical FPGAs, Garp expends more hardware on accelerating operations like
additions and variable shifts. In fact, each row of Garp’s array approximates a conventional
ALU. However, with most of the array die area typically going to inter-block wiring and
configuration storage, the incremental area cost of including this special hardware is not
necessarily as high as one might think. The cost can be paid back when a configuration that
uses the special modes is faster and/or needs fewer logic blocks as a result.

7.1.5. OneChip
The OneChip [32] architecture combines a fixed-logic processor core with reconfigurable
logic resources. Typically, the OneChip is useful for two types of applications. The first one is
the embedded controller type problems requiring custom glue logic interfaces, while the other
one is for application specific accelerators utilizing customized computation hardware. Using
the programmable components of this architecture, the performance of speed-critical
applications can be improved by customizing OneChip’s execution units, or flexibility can be
added to the glue logic interfaces of embedded controller applications. OneChip eliminates
the shortcomings of other custom compute machines by tightly integrating its reconfigurable

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 26

resources into a MIPS-like processor. Speedups of close to 50 over strict software
implementations on a MIPS R4400 are achievable for computing the DCT.

7.1.6. Chimaera
Chimaera [20] [33] prototype system integrates a small and fast reconfigurable functional unit
(RFU) into the pipeline of an aggressive, dynamically-scheduled superscalar processor. The
RFU is a small and fast field programmable gate array like devices that can implement
application specific operations. The Chimaera system is capable of collapsing a set of
instructions into RFU operations, converting control-flow into RFU operations, and supporting
a more powerful fine-grain data-parallel model than that supported by current multimedia
extension instruction sets (for integer operations). The RFU is capable of performing
computations that use up to 9 input registers and produce a single register result and it is
tightly integrated with the processor core to allow fast operation (in contrast to typical FPGAs
which are build as discrete components and that are relatively slow).

Chimaera has the following potential advantages:
• The RFU may reduce the execution time of dependent operations. By tailoring its

datapath for specific operations, the RFU may perform several dependent operations in
less time than it takes to execute each of the operations individually.

• The RFU may reduce dynamic branch count by collapsing code containing control flow
into an RFU operation. In this case the RFU speculatively executes all branch paths and
internally selects the appropriate one.

• The RFU may exploit sub-word parallelism. Using the bit-level flexibility of the RFU,
several sub-word operations can be performed in parallel. While this is similar to what
typical multimedia instruction set extensions do, the RFU-based approach is more
general. Not only the operations that can be combined are not fixed in the ISA definition,
but also, they do not have to be the same. For example, an RFU operation could
combine 2-byte additions and 2-byte subtracts. Moreover, it could combine 4-byte wide
conditional moves.

• Finally the RFU may reduce resource contention as several instructions are replaced by
a single one. These resources include instruction issue bandwidth, write-back bandwidth,
reservation stations and functional units.

Figure 14: Overview of the Chimaera Architecture

The Chimaera architecture, shown in Figure 14, comprises the following components: the
reconfigurable array (RA), the shadow register file (SRF), the execution control unit (ECU),
and the configuration control and caching unit (CCCU). The RA is where operations are

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 27

executed. The ECU decodes the incoming instruction stream and directs execution. The
ECU communicates with the control logic of the host processor for coordinating execution of
RFU operations. The CCCU is responsible for loading and caching configuration data.
Finally, the SRF provides input data to the RA for manipulation.

In the core of the RFU lies the RA. The RA is a collection of programmable logic blocks
organized as interconnected rows. Each row contains a number of logic blocks, one per bit in
the largest supported register data type. The logic block can be configured as a 4-LUT, two
3-LUTs, or a 3-LUT and a carry computation. Across a single row, all logic blocks share a
fast-carry logic that is used to implement fast addition and subtraction operations. By using
this organization, arithmetic operations such as addition, subtraction, comparison, and parity
can be supported very efficiently. The routing structure of Chimaera is also optimized for
such operations.

7.1.7. DISC
The DISC [34] architecture implements relocatable hardware with the linear hardware model
on a single National Semiconductor CLAy31 FPGA coupled to an external RAM. The
CLAy31 provides a 56x56 array of fine-grain logic cells allowing 56 complete rows in the
linear hardware space. A complete processor is made by coupling a global controller to a
library of custom instruction circuit modules.

Figure 15: DISC Architecture

The DISC processor, as shown in Figure 15, was implemented on a PC-ISA custom board
made exclusively for the study. The board includes static bus interface circuitry, two CLAy31
FPGAs, and memory. A configuration controller is implemented on the first FPGA to monitor
the processor execution and request instructions from the host. DISC is implemented on the
second FPGA and the application program memory is stored in the adjacent memory. The
board operates under a UNIX-based operating system and is controlled by a host device
driver.

7.1.8. Pleiades
The Pleiades processor [86] combines an on-chip microprocessor with an on-chip
microprocessor with an array of heterogeneous programmable computational units of
different granularities, which are called satellite processors, connected by a reconfigurable
interconnect network, as shown in Figure 16. The microprocessor supports the control-
intensive components of the applications as well as the reconfiguration, while repetitive and
regular data-intensive loops are directly mapped on the array of satellites by configuring the
satellite parameters and the interconnections between them. The synchronization between
the satellite processors is accomplished by a data-driven communication protocol in
accordance with the data-flow nature of the computations performed in the regular data-
intensive loops.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 28

Figure 16: Heterogeneous Reconfigurable Processor Architecture

The Maia processor combines an ARM8 core with 21 satellite processors. Those processors
are two MACs, two ALUs, eight address generators, eight embedded memories (4 512x16
bit, 4 1Kx16 bit), and an embedded low-energy FPGA array [40]. The embedded ARM8 is
optimized for low-energy operation. Both the dual-stage pipelined MAC and the ALU can be
configured to handle a range of operations. The address generators and embedded
memories are distributed to supply multiple parallel data streams to the computational
elements. The embedded FPGA supports a 4x8 array of 5-input 3-output CLBs, optimized for
arithmetic operations and data-flow control functions. It contains 3 levels of interconnect
hierarchy, superimposing nearest-neighbor, mesh and tree architectures. The chip is shown
in Figure 17.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 29

Figure 17: Heterogeneous Reconfigurable Processor Chip Microphotograph

The overall chip characteristics are summarized in Table 1.

Technology 0.25 �m 6-level metal
CMOS

Main Supply Voltage 1 V
Additional Voltages 0.4 V, 1.5 V
Die Size 5.2 mm x 6.7 mm
Transistor Count 1.2 Million transistors
Average Cycle Speed 40 MHz
Average Power
Dissipation

1.5 – 2 mW

Table 1: Chip Characteristics

7.2. Stand alone fine-grain reconfigurable devices
Here are described the academic systems that could be characterized as stand alone fine-
grain reconfigurable devices. Those are DPGA, Triptych, Montage, UTFPGA-1, LP_PGA,
LP_PGA II, 3D-FPGA, LEGO.

7.2.1. DPGA
Dynamically Programmable Gate Arrays (DPGAs) [35] differ from traditional FPGAs by
providing on-chip memory for multiple array personalities. The configuration memory
resources are replicated to contain several configurations for the fixed computing and
interconnect resources. In effect, the DPGA contains an on-chip cache of array
configurations and exploits high, local on-chip bandwidth to allow reconfiguration to occur
rapidly, on the order of nanoseconds instead of milliseconds. Loading a new configuration
from off-chip is still limited by low off-chip bandwidth. However, the multiple contexts on the
DPGA allow the array to operate on one context while other contexts are being reloaded.

The DPGA architecture consists of array elements. Each array element is a conventional 4-
input LUT. Small collections of array elements are grouped together into subarrays, and
these subarrays are then tiled to compose the entire array. Crossbars between the subarrays

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 30

serve as inter-subarray routing connections. A single, 2-bit, global context identifier is
distributed throughout the array to select the configuration for use. Additionally, programming
lines are distributed to read and write configurations to memories.

The basic memory primitive is a 4x32 bit DRAM array that provides four context
configurations for both the LUT and interconnect network.

7.2.2. Triptych
Triptych FPGA [36], [37] matches the physical structure of the routing architecture to the fan-
in/fan-out nature of the structure of digital logic by using short connections to the nearest
neighbors. Segmented routing channels are used between the columns to provide for nets
with fan-out greater than one. This routing architecture does not allow the arbitrary point-to-
point routing available in general FPGA structures. The logic block implements logical
functions using a multiplexer-based three-input lookup table followed by a master-slave D-
latch and can also be used for routing. Initial results show potential implementation
efficiencies in terms of area using this structure.

7.2.3. Montage
The Montage FPGA [37] [38] is a version of the Triptych architecture, which is modified to
support asynchronous circuits and interfacing separately clocked synchronous circuits. This
is achieved by the addition of an arbiter unit and a clocking scheme that allows two possible
clocks or makes the latches transparent.

Figure 18: Routing and Logic Block (RLB)

Triptych and Montage are FPGAs designed with integrated routing and logic, and achieve
higher densities than current commercial FPGAs. Both FPGAs share the same overall
routing structure. The Routing and Logic Block (RLB), as shown in Figure 18 consists of 3
multiplexers for the inputs, a functional unit, 3 multiplexers for the outputs, and tri-state
drivers for the segmented channels. In Triptych, the functional unit is a 3-input LUT, with an
optional D-latch on its output.

7.2.4. UTFPGA1
The work at the University of Toronto resulted in the implementation of an architecture
(UTFPGA1) using three cascaded four-input logic blocks and segmented routing. UTFPGA1
[39] used information from previous architectural studies, but there was very little transistor-
level optimization (for speed), and little time was spent on layout optimization. This was a first
attempt that provided some insight into the problems faced in the design and layout of an
FPGA.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 31

Figure 19: General architecture of UTFPGA1

The general architecture of UTFPGA1 is shown in Figure 19. The logic block (L) contains the
functionality of the circuit while the connection boxes (C) connect the logic block pins into the
neighboring channel. The switch box (S) makes connections between adjacent horizontal
and vertical channel segments. Connections to the I/O pads are done through I/O blocks (I),
which connect to the routing channels. Configuration is done by programming static memory
configured as shift registers. They have designed a single tile that contains one logic block,
two connection boxes and one switch box. This tile can then be arrayed to any size. The
logic block contains three cascaded four-to-one lookup tables. This configuration was chosen
because results [31] have shown that significant gains in optimizing for delay can be
achieved by having some hardwired connections between logic blocks. The block also
contains a resettable D flip-flop. The routing architecture has tracks segmented into lengths
of one, two, and three tiles. Such architecture provides fast paths for longer connections,
improving FPGA performance.

7.2.5. LP_PGA
LP_PGA [40] is an energy efficient FPGA architecture. Significant reduction in the energy
consumption is achieved by tackling both circuit design and architecture optimization issues
concurrently. A hybrid interconnect structure incorporating Nearest Neighbor Connections,
Symmetric Mesh Architecture, and Hierarchical connectivity is used. The interconnect energy
is also reduced by employing low-swing circuit techniques. These techniques have been
employed to design and fabricate an FPGA. Preliminary analysis shows energy improvement
of more than an order of magnitude when compared to existing commercial architectures.

7.2.6. LP_PGA II
The LP_PGA II [41], is a stand-alone FPGA of 256 logic blocks with an equivalent logic
capacity of 512 4-input LUTs. At this paragraph the implementation is described at the
different components of the FPGA (logic block, connection boxes, interconnect levels, and
the configuration architecture). The LP_PGA II was designed in a 0.25�m CMOS process
from STMicroelectronics.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 32

11.2.6.1 Logic Block
Based to previous research [10], it is shown that logic blocks that is capable to implement a
5-input random logic function or a 2-bit arithmetic function, is optimal for energy efficiency.
This functionality is made possible by implementing the logic block as a cluster of 3-input
LUTs. This clustering technique makes it possible to combine the results of the four 3-input
LUTs in various ways to simultaneously realize up to three different functions in a logic block.
The combination of the results of the 3-input LUTs is realized using multiplexers that can be
programmed at time of configuration. All the outputs of the logic block can be registered if
required. The flip-flops use double-edge-triggered clocks to reduce the clock activity on the
clock distribution network for a given data-throughput. The CLB is illustrated in Figure 20.

Figure 20: Logic Block Architecture

11.2.6.2 Look-Up Table
The 3-input LUT that is used in the logic block is implement using a multiplexer. The control
signals of the multiplexer are the inputs to the LUT. The inputs to the multiplexer are stored
in memory cells, while the functionality of the LUT is controlled by programming the contents
of the memory cells based on the truth table of the required function.

11.2.6.3 Interconnect Architecture
All the three levels of interconnect hierarchy are implemented in the LP_PGA II. The
realization of the interconnect primitives is dependent on the exact implementation of the
interconnect architecture. At this system it is used three interconnect levels, the nearest
neighbor connection (Level-0), the mesh architecture (Level-1), and the inverse clustered
tree (Level-2).

The Level-0 connections provide connections between adjacent logic blocks, as it is shown
in Figure 21. Each output pin connects to one input pin of the eight immediate neighbors.
The routing overhead of having eight separate lines to each input pin from the output pins of

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 33

the neighbors is quite high. The overhead can be reduced if multiple pins share the same
interconnect line.

Figure 21: Nearest neighbor connection

The mesh architecture (Level-1) is realized with a channel width of five. The pins of the logic
block are uniformly distributed on all sides of the logic block. The pins of the logic block can
access all tracks in the corresponding routing channel. The switch box allows connections
between each routing segment in a given channel and the corresponding segments in the
other three routing channels.

The Level-2 network provides connection between logic blocks that are farther apart on the
array. The long connection can be accessed through the Mesh structure. Two tracks in each
routing channel are connected using the Level-2 network. This is illustrated in Figure 22. The
routing through the different levels of the Level-2 network is realized using the 3-transistor
routing switch.

Figure 22: Level-2 connections

During the physical implementation, the Level-2 network contributes a significant amount to
the area. Area minimization can be achieved by recognizing that the higher levels of the
network can be discarded without any significant penalty to the routability.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 34

11.2.6.4 Tile Layout
The logic block, connection boxes, and the switch box have been combined to form a single
tile. The dimensions of a single tile are 241�m x 219�m in a 0.25�m process. The layout of a
single tile [41] is shown in Figure 23.

Figure 23: The LP_PGAII layout of a single tile

The contribution of the different components to the total area is given in Table 2 [41]. The
routing resources account for approximately 49% of the total area. As the size of the array
increases, the fraction of the total area used by the routing will also increase. This is because
the increase in the array size necessitates an increase in the routing resources required for
each tile to ensure successful routing. The logic block contributes only 9% to the total tile
area.

Component Percent of Total Area
Logic Block 9 %
Connection Box 18 %
Switch Box 10 %
Hierarchical Routing 21 %
Local Configuration Distribution and Address Decode 5 %
Global Configuration Distribution 13 %
Miscellaneous Routing 24 %

Table 2: Contribution of different components to the total area

11.2.6.5 Energy
The energy of the FPGA is reported in two ways: the energy consumed in the interconnect
as a function of length and the energy for implementing different applications. The Figure 24
[41] compares the energy dissipated in the interconnect for different path lengths for the
XC4000XV and LP_PGA II FPGAs. The logic blocks from these FPGAs have similar logic
capacity and the path lengths can be measured in terms of Manhattan distance between the
logic blocks.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 35

���

�

��

���

� � � � �� �� �� �� �� �� �� ��

���� ���	��
��������� �
�������

�
�
�
��
�
�	

�

�	
�	�� �	
�	��

Figure 24: Energy as a Function of Path Length

In order to explore in more detail the overall energy consumption in the FPGA, a number of
applications are mapped onto the array and the energy is measured. The applications are
described at the Register Transfer Level, while the mapping to each FPGA is done based on
component library for the architecture. The applications are executed with the same data
throughput and input data streams. The energy is reported for processing one data token,
and it is given in Table 3 [41]. The reported energy is five to sixteen times lower than that of
the commercial architecture.

Application XC4000XV LP_PGAII
Single FF driving 9 segments 107 3.8
1K Array of 16-bit counters 16667 750
Theta Function 183 20
Barrel Shifter 992 199
Accumulator 156 10
Viterbi Accelerator 1380 131

Table 3: Execution Energy Per Data Token in pJ

In addition to that, in the same research [41], a comparison of the configuration overhead for
programming the Xilinx FPGA and the LP_PGA II is performed. The difference in the
configuration energy between the two FPGAs is dramatic, a reduction by three to six orders
of magnitude. At the LP_PGAII the energy is a function of the utilization of the array, while
the energy is constant for the Xilinx FPGA. The low configuration cost of LP_PGA II makes it
a more attractive choice as a performance accelerator.

Finally, there is a study of the energy and delay tradeoff. One of the main goals of the
LP_PGA II is to minimize the energy while maintaining acceptable speed performance. This
resulting in using a 1.5V/0.8V power supply to achieve a maximum toggle frequency of
125MHz. It is possible to run this design at a higher voltage to improve the speed
performance. Probably, this improved speed can only be obtained at the cost of higher
energy consumption.

11.2.6.6 Configuration Architecture
The configuration method used in the low-energy FPGA is that of a random access
technique. This makes it possible to selectively program the resources in the FPGA, without
having to program the entire array each time.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 36

11.2.6.7 LP_PGAII Implementation
Three prototype FPGAs were built. The first prototype, LP_PGA II, was an array of sixty-four
logic blocks. The purpose of this chip was to verify the architectural and circuit techniques
aimed at reducing the execution energy. The second prototype was an embedded version of
LP_PGA II. The array was used as an accelerator in a digital signal processor for voice band
processing. Data obtained from the embedded FPGA verified the applicability of an FPGA in
an energy-sensitive platform. This implementation also brought into focus the overhead
associated with frequent reconfiguration of the FPGA. The last prototype, LP_PGA II
incorporated the improvements to reduce the configuration energy. Measured data from the
prototypes demonstrate five times to twenty-two times improvement in execution energy over
comparable commercial architectures.

7.2.7. 3D-FPGA
3D-FPGA [42] is a dynamically reconfigurable field programmable gate array (FPGA). The
architecture was developed using a methodology that examines different architectural
parameters and how they affect different performance criteria such as speed, area, and
reconfiguration time. The block diagram of the 3-D FPGA is shown in Figure 25. The
resulting architecture has high performance while the requirement of balancing the areas of
its constituent layers is satisfied.

Figure 25: Block diagram of the 3-D FPGA

The architecture consists of three layers: the routing and logic block (RLB) layer, the routing
layer (RL), and the memory layer (ML). The RLB layer is responsible for implementing logic
functions and for performing limited routing. Since it is well known that, for practical
applications, most nets are short, it is decided to implement in the RLB layer the portion of
the routing structure that will be used for routing short nets. The remaining part of the routing
structure is implemented in the RL that is formed by connecting multiple switch boxes in a
mesh array structure. The memory layer is used to store configuration bits for both the RLB
and routing layers. The number of configuration bits stored in this layer is determined by the
size of the RLB and routing layers. The main goal is to achieve a balance between the
FPGAs constituent layers. Figure 26 presents the internal structure of the functional unit.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 37

Figure 26: Internal Structure of the functional unit

A dynamically reconfigurable FPGA must provide a mean of communicating intermediate
results between different configuration instantiations. The proposed FPGA allows direct
communication between any two configuration instantiations. The SaveS register is provided
in order to allow the present state to be saved for subsequent processing. The current state
can be loaded into the register when the SaveState signal is enabled. The value of the
SaveS register can be retrieved by any configuration instantiation by appropriately setting the
value of the RestoreState signal without disturbing the operation of the RLB during the
intermediate configuration instantiations. The restored value can be used as one of the
inputs into the LUT. The RLBs are organized into clusters. A cluster is formed by a square
array of RLBs. The size of the cluster will be determined in Section V-B. Each cluster is
associated with a cluster memory block and a switch box in the routing layer. The cluster
memory block can be used to store either input data or intermediate results. The size of this
cluster memory is dependent upon the mismatch between the areas of the FPGA
constituent’s layers.

7.2.8. LEGO
The LEGO [43], [44] (Logic that’s Erasable and Greatly Optimized) FPGA basic block is a
four-input LUT. The designers’ objective was focused on achieving a high-speed design,
while keeping in mind the area tradeoffs. The most critical issues are the design of the
switches and minimizing the capacitance of the routing network. The results have shown that
the LEGO design compares favorably with existing commercial FPGA’s. Also all the
commercial FPGA designs are done using full-custom hand layout to obtain absolute
minimum die sizes. This is both labor and time intensive. Here is proposed a design style
with a minitile that contains a portion of the components in the logic tile, resulting in less full-
custom effort. The minitile is replicated in a 4x4 array to create a macro tile. The minitile is
optimized for layout density and speed, and is customized in the array by adding appropriate
vias. This technique also permits easy changing of the hard-wired connections in the logic
block architecture and the segmentation length distribution in the routing architecture.

7.3. Summary
Table 4 provides the main features for some of the above described fine-grain reconfigurable
architectures in terms of their programmability, the reconfiguration method, the interface and
the possible application domain.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 38

Table 4: Comparisons of fine-grain academic architectures

8. Commercial fine-grain Reconfigurable platforms
This part of the report referred to commercial fine-grain reconfigurable architectures. The
best known of them are the FPGAs that various vendors produce. Many FPGA families are
described below with figures that show the CLB.

8.1. Xilinx
At this part of the document will be described the Spartan, Spartan-XL, Spartan-II, Virtex,
Virtex II, and Virtex E family FPGAs.

8.1.1. Spartan and Spartan-XL Families FPGAs
The Spartan and the Spartan-XL families [45] are a high-volume production FPGA solution
that delivers all the key requirements for ASIC replacement up to 40,000 gates. These
requirements include high performance, on-chip RAM, core solutions and prices that, in high
volume, approach and in many cases are equivalent to mask programmed ASIC devices.

12.1.1.1 General Overview
Spartan series FPGAs are implemented with a regular, flexible, programmable architecture
of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile
routing resources (routing channels), and surrounded by a perimeter of programmable
Input/Output Blocks (IOBs). They have generous routing resources to accommodate the
most complex interconnect patterns. The devices are customized by loading configuration
data into internal static memory cells. Re-programming is possible an unlimited number of

System Granularity Program-
mability

Reconfi-
guration

Interface Computing
Model

Application
Domain

Splash

Splash2

Fine-grain Multiple
Context (for
interconnect)

Static Remote Uniprocessor Complex bit-
oriented
computations

DECPeRLe-1 Fine-grain Single
Context

Static Remote Uniprocessor Complex bit-
oriented
computations

Garp Fine-grain Multiple
Context

Static Local Uniprocessor Bit-level
image
processing,
cryptography

OneChip Fine-grain Single
Context

Static Local Uniprocessor Embedded
controllers,
application
accelerators

Chimaera Fine-grain Single
Context

Static Local Uniprocessor Bit-level
computations

DISC Fine-grain Single
Context

Dynamic Local Uniprocessor General
purpose

DPGA Fine-grain Multiple
Context

Dynamic Remote Uniprocessor Bit-level
computations

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 39

times. The values stored in these memory cells determine the logic functions and
interconnections implemented in the FPGA. The FPGA can either actively read its
configuration data from an external serial PROM (Master Serial mode), or the configuration
data can be written into the FPGA from an external device (Slave Serial mode). Spartan
series FPGAs can be used where hardware must be adapted to different user applications.

12.1.1.2 Configurable Logic Blocks (CLBs)
The Spartan and Spartan-XL CLB elements are composed of three look-up tables (LUT) are
used as logic function generators, two flip-flops and two groups of signal steering
multiplexers and is shown in Figure 27. Two 16x1 memory look-up table (F-LUT and G-LUT)
are used to implement 4-input function generators, each offering unrestricted logic
implementation of any Boolean function of up to four independent input signals. Using
memory LUT the propagation delay is independent of the function implemented. A third 3-
input function generator (H-LUT) can implement any Boolean function of three inputs. The
CLB can therefore, implement certain functions of up to nine inputs, like parity checking. The
three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of
five inputs.

Figure 27: Spartan/XL Simplified CLB Logic Diagram

12.1.1.3 Routing Channel Description
All internal routing channels are composed of metal segments with programmable switching
points and switching matrices to implement the desired routing. A structured, hierarchical
matrix of routing channels is provided to achieve efficient automated routing.

12.1.1.4 Advanced Features Description
• Distributed RAM
Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used
as Random Access Memory (RAM). Read and write operations are significantly faster for this
on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively
short signal propagation delays within the FPGA.
• Fast Carry Logic
Each CLB F-LUT and G-LUT contains dedicated arithmetic logic for the fast generation of
carry and borrow signals. This extra output is passed on to the function generator in the
adjacent CLB. The carry chain is independent of normal routing resources. Dedicated fast
carry logic greatly increases the efficiency and performance of adders, subtractors,
accumulators, comparators and counters. It also opens the door to many new applications

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 40

involving arithmetic operation, where the previous generations of FPGAs were not fast
enough or too inefficient. High-speed address offset calculations in microprocessor or
graphics systems, and high-speed addition in digital signal processing, are two typical
applications.

• 3-State Long Line Drivers
A pair of 3-state buffers is associated with each CLB in the array. These 3-state buffers
(BUFT) can be used to drive signals onto the nearest horizontal longlines above and below
the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the
horizontal longlines, saving logic resources.
• On-Chip Oscillator
Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on
time-out, for configuration memory clearing, and as the source of CCLK in Master
configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with
process, VCC, and temperature. The output frequency falls between 4 MHz and 10 MHz.

12.1.1.5 Configuration
Spartan/XL devices use several hundred bits of configuration data per CLB and its
associated interconnects. Each configuration bit defines the state of a static memory cell that
controls either a function LUT bit, a multiplexer input, or an interconnect pass transistor.

8.1.2. Spartan-II Array
The Spartan-II [46] user-programmable gate array is composed of five major configurable
elements:

• IOBs provide the interface between the package pins and the internal logic
• CLBs provide the functional elements for constructing most logic
• Dedicated block RAM memories of 4096 bits each
• Clock DLLs for clock-distribution delay compensation and clock domain control
• Versatile multi-level interconnect structure

The CLBs form the central logic structure with easy access to all support and routing
structures. The IOBs are located around all the logic and memory elements for easy and
quick routing of signals on and off the chip. Values stored in static memory cells control all
the configurable logic elements and interconnect resources. These values load into the
memory cells on power-up, and can reload if necessary to change the function of the device.
Each of these elements will be discussed in detail in the following sections.

12.1.2.1 Configurable Logic Block
The basic building block of the Spartan-II CLB is the logic cell (LC). An LC includes a 4-input
function generator, carry logic, and storage element. Output from the function generator in
each LC drives the CLB output and the D input of the flip-flop. Each Spartan-II CLB contains
four LCs, organized in two similar slices. In addition to the four basic LCs, the Spartan-II CLB
contains logic that combines function generators to provide functions of five or six inputs.
Figure 28 shows the identical slices that are placed in each CLB.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 41

Figure 28: Spartan-II CLB Slice

12.1.2.2 Look-Up Tables
Spartan-II function generators are implemented as 4-input LUTs. In addition to operating as a
function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the
two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous
RAM, or a 16 x 1-bit dual-port synchronous RAM. The Spartan-II LUT can also provide a 16-
bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also
be used to store data in applications such as DSP.

12.1.2.3 Storage Elements
Storage elements in the Spartan-II slice can be configured either as edge-triggered D-type
flip-flops or as level-sensitive latches. The D inputs can be driven either by function
generators within the slice or directly from slice inputs, bypassing the function generators.

12.1.2.4 Arithmetic Logic
Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic
functions. The Spartan-II CLB supports two separate carry chains, one per slice. The height
of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows
a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate
improves the efficiency of multiplier implementation. The dedicated carry path can also be
used to cascade function generators for implementing wide logic functions.

12.1.2.5 Block RAM
Spartan-II FPGAs incorporate several large block RAM memories. These complement the
distributed RAM LUTs that provide shallow memory structures implemented in CLBs. Block
RAM memory blocks are organized in columns. All Spartan-II devices contain two such
columns, one along each vertical edge. These columns extend the full height of the chip.
Each memory block is four CLBs high, and consequently, a Spartan-II device eight CLBs
high will contain two memory blocks per column, and a total of four blocks.

12.1.2.6 Programmable Routing Matrix
It is the longest delay path that limits the speed of any worst-case design. Consequently, the
Spartan-II routing architecture and its place-and-route software were defined in a single
optimization process. This joint optimization minimizes long-path delays, and consequently,

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 42

yields the best system performance. The joint optimization also reduces design compilation
times because the architecture is software-friendly. Design cycles are correspondingly
reduced due to shorter design iteration times.

12.1.2.7 Configuration
Spartan-II devices are configured by sequentially loading frames of data that have been
concatenated into a configuration file. It is important to note that, while a PROM is commonly
used to store configuration data before loading them into the FPGA, it is by no means
required. Any of a number of different kinds of under populated nonvolatile storage already
available either on or off the board (i.e., hard drives, FLASH cards, etc.) can be used.

8.1.3. Virtex
The Virtex [47] user-programmable gate array, shown in Figure 29, comprises two major
configurable elements: the configurable logic blocks (CLBs) which provide the functional
elements for constructing logic and input/output blocks (IOBs) that provide the interface
between the package pins and the CLBs. The CLBs are interconnected through a general
routing matrix (GRM). The GRM comprises an array of routing switches located at the
intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock
that also provides local routing resources to connect the CLB to the GRM. The VersaRing I/O
interface provides additional routing resources around the periphery of the device. This
routing improves I/O routability and facilitates pin locking. The Virtex architecture also
includes the following circuits that connect to the GRM.

• Dedicated block memories of 4096 bits each.
• Clock DLLs for clock-distribution delay compensation and clock domain control.
• 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable

horizontal routing resources.

Values stored in static memory cells control the configurable logic elements and interconnect
resources. These values load into the memory cells on power-up, and can reload if
necessary to change the function of the device.

Figure 29: Virtex architecture overview

12.1.3.1 Configurable Logic Block
The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input
function generator, carry logic, and a storage element. The output from the function
generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex
CLB contains four LCs, organized in two similar slices, as shown in Figure 30.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 43

Figure 30: A 2-Slice Virtex CLB

In addition to the four basic LCs, the Virtex CLB contains logic that combines function
generators to provide functions of five or six inputs. Consequently, when estimating the
number of system gates provided by a given device, each CLB counts as 4.5 LCs.

12.1.3.2 Look-Up Tables
Virtex function generators are implemented as 4-input LUTs. In addition to operating as a
function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the
two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous
RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit
shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be
used to store data in applications such as Digital Signal Processing.

12.1.3.3 Storage Elements
The storage elements in the Virtex slice can be configured either as edge-triggered D-type
flip-flops or as level-sensitive latches. The D inputs can be driven either by the function
generators within the slice or directly from slice inputs, bypassing the function generators. In
addition to Clock and Clock Enable signals, each Slice has synchronous set and reset
signals (SR and BY). SR forces a storage element into the initialization state specified for it in
the configuration. The BY forces it into the opposite state. Alternatively, these signals can be
configured to operate asynchronously. All of the control signals are independently invertible,
and are shared by the two flip-flops within the slice.

12.1.3.4 Arithmetic Logic
Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic
functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of
the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a
1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves
the efficiency of multiplier implementation. The dedicated carry path can also be used to
cascade function generators for implementing wide logic functions.

12.1.3.5 Block SelectRAM
Virtex FPGAs incorporate several large Block SelectRAM memories. These complement the
distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. The
SelectRAM memory blocks are organized in columns. All Virtex devices contain two such
columns, one along each vertical edge. These columns extend the full height of the chip.
Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high
contains 16 memory blocks per column, and a total of 32 blocks. The Virtex Block

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 44

SelectRAM also includes dedicated routing to provide an efficient interface with both CLBs
and other Block SelectRAMs.

12.1.3.6 Programmable Routing Matrix
It is the longest delay path that limits the speed of any worst-case design. Consequently, the
Virtex routing architecture and its place-and-route software were defined in a single
optimization process. This joint optimization minimizes long-path delays, and consequently,
yields the best system performance. The joint optimization also reduces design compilation
times because the architecture is software-friendly. Design cycles are correspondingly
reduced due to shorter design iteration times.

12.1.3.7 Configuration
Virtex devices are configured by loading configuration data into the internal configuration
memory. Some of the pins used for this are dedicated configuration pins, while others can be
re-used as general-purpose inputs and outputs once configuration is complete. Multiple
FPGAs can be daisy-chained for configuration from a single source.

12.1.4 Virtex-E
The Virtex-E FPGA family [93] delivers high-performance, high-capacity programmable logic
solutions. Dramatic increases in silicon efficiency result from optimizing the new architecture
for place-and-route efficiency and exploiting an aggressive 6-����� ����� 	
�� ��
���
process. These advances make Virtex-E FPGAs powerful and flexible alternatives to mask-
programmed gate arrays. The Virtex-E family includes the nine members. Combining a wide
variety of programmable system features, a rich hierarchy of fast, flexible interconnect
resources, and advanced process technology, the Virtex-E family delivers a high-speed and
high-capacity programmable logic solution that enhances design flexibility while reducing
time-to-market.

12.1.4.1 Architecture
Virtex-E devices feature a flexible, regular architecture that comprises an array of
configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all
interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of
routing resources permits the Virtex-E family to accommodate even the largest and most
complex designs. Virtex-E FPGAs are SRAM-based, and are customized by loading
configuration data into internal memory cells.

12.1.4.2 Virtex-E Array
The Virtex-E user-programmable gate array, shown in Figure 31, comprises two major
configurable elements: configurable logic blocks (CLBs) which provide the functional
elements for constructing logic, and input/output blocks (IOBs) that provide the interface
between the package pins and the CLBs. The CLBs are interconnected through a general
routing matrix (GRM), which comprises an array of routing switches located at the
intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock
that also provides local routing resources to connect the CLB to the GRM.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 45

Figure 31: Virtex-E Architecture Overview

The VersaRing I/O interface provides additional routing resources around the periphery of
the device. This routing improves I/O routability and facilitates pin locking. The Virtex-E
architecture also includes the following circuits that connect to the GRM:

• Dedicated block memories of 4096 bits each.
• Clock DLLs for clock-distribution delay compensation and clock domain control.
• 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable

horizontal routing resources.

Values stored in static memory cells control the configurable logic elements and interconnect
resources. These values load into the memory cells on power-up, and can reload if
necessary to change the function of the device.

12.1.4.3 Configurable Logic Blocks
The basic building block of the Virtex-E CLB is the logic cell (LC). An LC includes a 4-input
function generator, carry logic, and a storage element. The output from the function
generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex-
E CLB contains four LCs, organized in two similar slices, as have been shown in Figure 30.
In addition to the four basic LCs, the Virtex-E CLB contains logic that combines function
generators to provide functions of five or six inputs. Consequently, when estimating the
number of system gates provided by a given device, each CLB counts as 4.5 LCs.

12.1.4.4 Look-Up Tables
Virtex-E function generators are implemented as 4-input LUTs. In addition to operating as a
function generator, each LUT can provide a 16x1-bit synchronous RAM. Furthermore, the
two LUTs within a slice can be combined to create a 16x2-bit or 32x1-bit synchronous RAM,
or a 16x1-bit dual-port synchronous RAM. The Virtex-E LUT can also provide a 16-bit shift
register that is ideal for capturing high-speed or burst-mode data. This mode can also be
used to store data in applications such as Digital Signal Processing.

12.1.4.5 Virtex-E Compared to Virtex Devices
The Virtex-E family offers up to 43,200 logic cells in devices up to 30% faster than the Virtex
family. I/O performance is increased to 622 Mb/s using Source Synchronous data
transmission architectures and synchronous system performance up to 240 MHz using
singled-ended SelectI/O technology. Additional I/O standards are supported, notably
LVPECL, LVDS, and BLVDS, which use two pins per signal. Almost all signal pins can be
used for these new standards.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 46

Virtex-E devices have up to 640 Kb of faster (250 MHz) block SelectRAM, but the individual
RAMs are the same size and structure as in the Virtex family. They also have eight DLLs
instead of the four in Virtex devices. Each individual DLL is slightly improved with easier
clock mirroring and 4x frequency multiplication. The supply voltage for the internal logic and
memory, is 1.8 V, instead of 2.5 V for Virtex devices. Advanced processin� ��� 	
�� ��
design rules have resulted in smaller dice, faster speed, and lower power consumption.

The Virtex-E family is not bitstream-compatible with the Virtex family, but Virtex designs can
be compiled into equivalent Virtex-E devices. The same device in the same package for the
Virtex-E and Virtex families are pin-compatible with some minor exceptions.

12.1.5 Virtex-II
The Virtex-II family [94] is a platform FPGA developed for high performance from low-density
to high-density designs that are based on IP cores and customized modules. The family
delivers complete solutions for telecommunication, wireless, networking, video, and DSP
applications, including PCI, LVDS, and DDR interfaces.

The leading-edge 0.15 µm / 0.12 µm CMOS 8-layer metal process and the Virtex-II
architecture are optimized for high speed with low power consumption. Combining a wide
variety of flexible features and a large range of densities up to 10 million system gates, the
Virtex-II family enhances programmable logic design capabilities and is a powerful alternative
to mask-programmed gates arrays. The Virtex-II family comprises 11 members, ranging from
40K to 8M system gates.

12.1.5.1 Array Architecture Overview
Virtex-II devices are user-programmable gate arrays with various configurable elements. As
shown in Figure 32, the programmable device is comprised of input/output blocks (IOBs) and
internal configurable logic blocks (CLBs).

Figure 32: Virtex-II Architecture Overview

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 47

The internal configurable logic includes four major elements organized in a regular array.
Those are:

• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and
synchronous logic, including basic storage elements. BUFTs (3-state buffers)
associated with each CLB element drive dedicated segmentable horizontal routing
resources.

• Block SelectRAM memory modules provide large 18 Kbit storage elements of dual-
port RAM.

• Multiplier blocks are 18-bit x 18-bit dedicated multipliers.
• DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for

clock distribution delay compensation, clock multiplication and division, coarse- and
fine-grained clock phase shifting.

12.1.5.2 Configurable Logic Blocks
The Virtex-II configurable logic blocks (CLB) are organized in an array and are used to build
combinatorial and synchronous logic designs. The CLB resources include four slices and two
3-state buffers. Each slice is equivalent and contains:

• Two function generators (F & G)
• Two storage elements
• Arithmetic logic gates
• Large multiplexers
• Wide function capability
• Fast carry look-ahead chain
• Horizontal cascade chain (OR gate)

The function generators F & G are configurable as 4-input LUTs, as 16-bit shift registers, or
as 16-bit distributed SelectRAM memory. In addition, the two storage elements are either
edge-triggered D-type flip-flops or level-sensitive latches. Each CLB has internal fast
interconnect and connects to a switch matrix to access general routing resources.

12.1.5.3 Slice Description
Each slice includes two 4-input function generators, carry logic, arithmetic logic gates, wide
function multiplexers and two storage elements. Each 4-input function generator is
programmable as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit
variable- tap shift register element, and each of them are capable of implementing any
arbitrarily defined Boolean function of four inputs.. The output from the function generator in
each slice drives both the slice output and the D input of the storage element.

12.1.5.4 Configuration
Virtex-II devices are configured by loading application specific configuration data into the
internal configuration memory. Configuration is carried out using a subset of the device pins,
some of which are dedicated, while others can be re-used as general purpose inputs and
outputs once configuration is complete.

One of the major advantages of Virtex-II devices is their ability for the partial reconfiguration.
With this technique, instead of resetting the chip and doing a full configuration, new data is
loaded into a specified area of the chip, while the rest of the chip remains in operation. Data
is loaded on a column basis, with the smallest load unit being a configuration “frame” of the
bitstream (device size dependent). Partial reconfiguration is useful for applications that
require different designs to be loaded into the same area of a chip, or that require the ability
to change portions of a design without having to reset or reconfigure the entire chip.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 48

8.2. ALTERA
The Startix, Apex_II, APEX 20KC, Mercury, FLEX 10KC, ACEX 1K, and FLEX 6000 FPGA
families are described at this part of the document.

8.2.1. Startix
The Stratix family [48] of programmable logic devices (PLDs) is based on a 1.5-V, 0.13-µm,
all-layer copper SRAM process, with densities up to 114,140 logic elements (LEs) and up to
10 Mbits of RAM. Stratix devices offer up to 28 digital signal processing (DSP) blocks with up
to 224 (9-bit x ��-bit) embedded multipliers, optimized for DSP applications that enable
efficient implementation of high-performance filters and multipliers. Stratix devices support
various I/O standards and also offer a complete clock management solution with its
hierarchical clock structure with up to 420-MHz performance and up to 12 phase-locked
loops (PLLs).

12.2.1.1 Functional Description
Stratix devices contain a two-dimensional row- and column-based architecture to implement
custom logic. A series of column and row interconnects of varying length and speed provides
signal interconnection between logic array blocks (LABs), memory block structures, and DSP
blocks. The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is
a small unit of logic providing efficient implementation of user logic functions. LABs are
grouped into rows and columns across the device. M512 RAM blocks are simple dual-port
memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple
dual-port or single-port memory up to 18-bits wide at up to 312 MHz. M512 blocks are
grouped into columns across the device in between certain LABs.

12.2.1.2 Logic Array Blocks
Each LAB consists of 10 LEs, LE carry chains, LAB control signals, local interconnect, LUT
chain, and register chain connection lines. The local interconnect transfers signals between
LEs in the same LAB. LUT chain connections transfer the output of one LE’s LUT to the
adjacent LE for fast sequential LUT connections within the same LAB. Register chain
connections transfer the output of one LE’s register to the adjacent LE’s register within an
LAB. The Quartus II Compiler places associated logic within an LAB or adjacent LABs,
allowing the use of local, LUT chain, and register chain connections for performance and
area efficiency.

12.2.1.3 LAB Interconnects
The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is
driven by column and row interconnects and LE outputs within the same LAB. Neighboring
LABs, M512 RAM blocks, M4K RAM blocks, or DSP blocks from the left and right can also
drive an LAB’s local interconnect through the direct link connection. The direct link
connection feature minimizes the use of row and column interconnects, providing higher
performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link
interconnects.

12.2.1.4 Logic Elements
The smallest unit of logic in the Stratix architecture, the LE, is compact and provides
advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is
a function generator that can implement any function of four variables. In addition, each LE
contains a programmable register and carry chain with carry select capability. A single LE
also supports dynamic single bit addition or subtraction mode selectable by an LAB-wide
control signal. Each LE drives all types of interconnects: local, row, column, LUT chain,
register chain, and direct link interconnects. The Startix logic element schematic is shown in
Figure 33.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 49

Figure 33: Startix Logic Element

Each LE has three outputs that drive the local, row, and column routing resources. The LUT
or register output can drive these three outputs independently. Two LE outputs drive column
or row and direct link routing connections and one drives local interconnect resources. This
allows the LUT to drive one output while the register drives another output. This feature,
called register packing, improves device utilization because the device can use the register
and the LUT for unrelated functions. Another special packing mode allows the register output
to feed back into the LUT of the same LE so that the register is packed with its own fan-out
LUT. This provides another mechanism for improved fitting. The LE can also drive out
registered and unregistered versions of the LUT output.

12.2.1.5 MultiTrack Interconnect
In the Stratix architecture, connections between LEs, TriMatrix memory, DSP blocks, and
device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive
technology. The MultiTrack interconnect consists of continuous, performance-optimized
routing lines of different lengths and speeds used for inter- and intra-design block
connectivity. The Quartus II Compiler automatically places critical design paths on faster
interconnects to improve design performance.

12.2.1.6 TriMatrix Memory
TriMatrix memory consists of three types of RAM blocks: M512, M4K, and MegaRAM blocks.
Although these memory blocks are different, they can all implement various types of memory
with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM,
and FIFO buffers.

12.2.1.7 Digital Signal Processing Block
The most commonly used DSP functions are finite impulse response (FIR) filters, complex
FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct
cosine transform (DCT) functions, and correlators. All of these blocks have the same
fundamental building block: the multiplier. Additionally, some applications need specialized
operations such as multiply-add and multiply-accumulate operations. Stratix devices provide

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 50

DSP blocks to meet the arithmetic requirements of these functions. Each Stratix device has
two columns of DSP blocks to efficiently implement DSP functions faster than LE-based
implementations. Larger Stratix devices have more DSP blocks per column.

12.2.1.8 Configuration
The logic, circuitry, and interconnects in the Stratix architecture are configured with CMOS
SRAM elements. Stratix devices can be configured on the board for the specific functionality
required. In addition to that, they can be configured at system power-up with data stored in
an Altera serial configuration device or provided by a system controller. The Stratix device’s
optimized interface allows microprocessors to configure it serially or in parallel, and
synchronously or asynchronously. The interface also enables microprocessors to treat Stratix
devices as memory and configure them by writing to a virtual memory location, making
reconfiguration easy. After a Stratix device has been configured, it can be reconfigured in-
circuit by resetting the device and loading new data. Real-time changes can be made during
system operation, enabling innovative reconfigurable computing applications.

12.2.1.9 Software
Stratix devices are supported by the Altera Quartus II design software, which provides a
comprehensive environment for system-on-programmable-chip (SOPC) design. The Quartus
II software includes HDL and schematic design entry, compilation and logic synthesis, full
simulation and advanced timing analysis, SignalTap logic analysis, and device configuration.

8.2.2. Apex_II
APEX II devices [49] incorporate LUT-based logic, product-term-based logic, memory, and
high-speed I/O standards into one device. Signal interconnections within APEX II devices (as
well as to and from device pins) are provided by the FastTrack interconnect, which is a series
of fast, continuous row and column channels that run the entire length and width of the
device.

12.2.2.1 MegaLAB Structure
APEX II devices are constructed from a series of MegaLAB structures. Each MegaLAB
structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB
interconnect, which routes signals within the MegaLAB structure. Signals are routed between
MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, the edge LABs
can be driven by I/O pins through the local interconnect.

12.2.2.2 Logic Array Block
Each LAB consists of 10 LEs, the LEs’ associated carry and cascade chains, LAB control
signals, and the local interconnect. The local interconnect transfers signals between LEs in
the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic
within a LAB or adjacent LABs, allowing the use of a fast local interconnect for high
performance. APEX II devices use an interleaved LAB structure, so that each LAB can drive
two local interconnect areas. Every other LE drives to either the left or right local interconnect
area, alternating by LE. The local interconnect can drive LEs within the same LAB or
adjacent LABs. This feature minimizes the use of the row and column interconnects,
providing higher performance and flexibility. Each LAB structure can drive 30 LEs through
fast local interconnects.

12.2.2.3 Logic Element
The LE is the smallest unit of logic in the APEX II architecture. Each LE contains a four-input
LUT, which is a function generator that can quickly implement any function of four variables.
In addition, each LE contains a programmable register and carry and cascade chains. Each
LE drives the local interconnect, MegaLAB interconnect, and FastTrack interconnect routing
structures. The Figure 34 shows the logic element of Apex_II, which is similar to Startix
FPGA.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 51

Figure 34: Apex_II Logic Element

Each LE’s programmable register can be configured for D, T, JK, or SR operation. The
register’s clock and clear control signals can be driven by global signals, general-purpose I/O
pins, or any internal logic. For combinatorial functions, the register is bypassed and the
output of the LUT drives the outputs of the LE.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack interconnect routing
structure. Each output can be driven independently by the LUT’s or register’s output. This
feature, called register packing, improves device utilization because the register and the LUT
can be used for unrelated functions. The LE can also drive out registered and unregistered
versions of the LUT output. The APEX II architecture provides two types of dedicated high-
speed data paths that connect adjacent LEs without using local interconnect paths: carry
chains and cascade chains. A carry chain supports high-speed arithmetic functions such as
counters and adders, while a cascade chain implements wide-input functions such as
equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through
10 in an LAB and all LABs in the same MegaLAB structure.

12.2.2.4 Carry Chain
The carry chain provides a fast carry-forward function between LEs. The carry-in signal from
a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into
both the LUT and the next portion of the carry chain. This feature allows the APEX II
architecture to implement high-speed counters, adders, and comparators of arbitrary width.
The Quartus II Compiler can create carry chain logic automatically during the design
process, or the designer can create it manually during design entry.

The Quartus II Compiler creates carry chains longer than 10 LEs by linking LABs together
automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB
structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the
next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 52

12.2.2.5 Cascade Chain
With the cascade chain, the APEX II architecture can implement functions with a very wide
fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain
serially connects the intermediate values. The cascade chain can use a logical AND or
logical OR to connect the outputs of adjacent LEs. Each additional LE provides four more
inputs to the effective width of a function, with a short cascade delay. The Quartus II
Compiler can create cascade chain logic automatically during the design process, or the
designer can create it manually during design entry. Cascade chains longer than 10 LEs are
implemented automatically by linking LABs together. For enhanced fitting, a long cascade
chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB
skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-
numbered LAB to the next odd-numbered LAB.

12.2.2.6 FastTrack Interconnect
In the APEX II architecture, connections between LEs, ESBs, and I/O pins are provided by
the FastTrack interconnect. The FastTrack interconnect is a series of continuous horizontal
and vertical routing channels that traverse the device. This global routing structure provides
predictable performance, even in complex designs. In contrast, the segmented routing in
FPGAs requires switch matrices to connect a variable number of routing paths, increasing
the delays between logic resources and reducing performance.

12.2.2.7 Software
APEX II devices are supported by the Altera Quartus II development system: a single,
integrated package that offers hardware description language (HDL) and schematic design
entry, compilation and logic synthesis, full simulation and worst-case timing analysis,
SignalTap logic analysis, and device configuration. The Quartus II software includes the
LogicLock incremental design feature. The LogicLock feature allows the designer to make
pin and timing assignments, verify functionality and performance, and then set constraints to
lock down the placement and performance of a specific block of logic using LogicLock
constraints.

12.2.2.8 Configuration
The logic, circuitry, and interconnects in the APEX II architecture are configured with CMOS
SRAM elements. APEX II devices are configured at system power-up with data either stored
in an Altera configuration device or provided by a system controller. Altera offers in-system
programmability (ISP)-capable configuration devices, which configure APEX II devices via a
serial data stream. Moreover, APEX II devices contain an optimized interface that permits
microprocessors to configure APEX II devices serially or in parallel, synchronously or
asynchronously. This interface also enables microprocessors to treat APEX II devices as
memory and to configure the device by writing to a virtual memory location, simplifying
reconfiguration.

8.2.3. APEX 20KC
Similar to APEX 20K and APEX 20KE devices, APEX 20KC devices [50] offer the MultiCore
architecture, which combines the strengths of LUT-based and product-term-based devices
with an enhanced memory structure. LUT-based logic provides optimized performance and
efficiency for datapath, register-intensive, mathematical, or digital signal processing (DSP)
designs. Product-term-based logic is optimized for complex combinatorial paths, such as
complex state machines.

12.2.3.1 Functional Description
APEX 20KC devices incorporate LUT-based logic, product-term-based logic, and memory
into one device on an all-copper technology process. Signal interconnections within APEX
20KC devices (as well as to and from device pins) are provided by the FastTrack

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 53

interconnect, which is a series of fast, continuous row and column channels that run the
entire length and width of the device.

12.2.3.2 MegaLAB Structure
APEX 20KC devices are constructed from a series of MegaLAB structures. Each MegaLAB
structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect,
which routes signals within the MegaLAB structure. In EP20K1000C devices, MegaLAB
structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins
via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the
local interconnect.

12.2.3.3 Logic Array Block
Each LAB consists of 10 LEs, the LEs’ associated carry and cascade chains, LAB control
signals, and the local interconnect. The local interconnect transfers signals between LEs in
the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic
within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high
performance. APEX 20KC devices use an interleaved LAB structure. This structure allows
each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and
FastTrack interconnect and providing higher performance and flexibility. Each LE can drive
29 other LEs through the fast local interconnect.

12.2.3.4 Logic Element
The LE, the smallest unit of logic in the APEX 20KC architecture, is compact and provides
efficient logic usage. Each LE contains a four-input LUT, which is a function generator that
can quickly implement any function of four variables. In addition, each LE contains a
programmable register and carry and cascade chains. The CLB element is similar to Startix
FPGA and it has been shown in Figure 33.

Each LE’s programmable register can be configured for D, T, JK, or SR operation. The
register’s clock and clear control signals can be driven by global signals, general-purpose I/O
pins, or any internal logic. For combinatorial functions, the register is bypassed and the
output of the LUT drives the outputs of the LE. Every LE has two outputs that drive the local,
MegaLAB, or FastTrack interconnect routing structure. Each output can be driven
independently by the LUT’s or register’s output. This feature, called register packing,
improves device utilization because the register and the LUT can be used for unrelated
functions. The LE can also drive out registered and unregistered versions of the LUT output.

8.2.4. Mercury
The Mercury architecture [51] contains a row-based logic array to implement general logic
and a row-based embedded system array to implement memory and specialized logic
functions. Signal interconnections within Mercury devices are provided by a series of row and
column interconnects with varying lengths and speeds. The priority FastTrack Interconnect
structure is faster than other interconnects.

12.2.4.1 Logic and Interconnect
Mercury device logic is implemented in LEs. LE resources are used differently according to
specific operating modes and the type of logic function being implemented. LEs are grouped
into LABs in a row-based architecture. The multi-level FastTrack Interconnect structure
provides the routing connection between LEs, ESBs, and IOEs.

12.2.4.2 Logic Array Block
Each Logic Array Block (LAB) consists of 10 LEs, LE carry chains, multiplier circuitry, LAB
control signals, local interconnect, and FastLUT connection lines. The local interconnect
transfers signals between LEs within the same or adjacent LABs. FastLUT connections
transfer the output of one LE to the adjacent LE for ultra-fast sequential LE connections

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 54

within the same LAB. The Quartus II Compiler places associated logic within a LAB or
adjacent LABs, allowing the use of fast local and FastLUT connections for high performance.
Mercury devices use an interleaved LAB structure, which allows each LAB to drive two local
interconnect areas. Every other LE drives to either the left or right local interconnect area,
alternating by LE. The local interconnect can drive LEs within the same LAB or adjacent
LABs. This feature minimizes use of the row and column interconnects, providing higher
performance and flexibility. Each LAB structure can drive 30 LEs through fast local
interconnects.

12.2.4.3 Logic Element
The LE, the smallest unit of logic in the Mercury architecture, is compact and provides
efficient logic usage and it is shown in Figure 35. Each LE contains a 4-input LUT, which is a
function generator that can quickly implement any function of four variables. In addition, each
LE contains a programmable register and carry chain with carry select look ahead capability.
Each LE also has the ability to drive its combinatorial output directly to the next LE in the
LAB. The LE’s programmable register can be configured for D, T, JK, or SR operation.

Figure 35: Mercury Logic Element

12.2.4.4 FastLUT Interconnect
Mercury devices include an enhanced interconnect structure within LABs for faster routing of
LE output to LE input connections. The FastLUT connection allows the combinatorial output
of an LE to directly drive the fast input of the LE directly below it, bypassing the local
interconnect. This resource can be used as a high speed connection for wide fan-in functions
from LE 1 to LE 10 in the same LAB.

12.2.4.5 Configuration
The logic, circuitry, and interconnects in the Mercury architecture are configured with CMOS
SRAM elements. Mercury devices are reconfigurable and as a result, test vectors do not
have to be generated for fault coverage purposes. Instead, the designer can focus on
simulation and design verification. Mercury devices can be configured on the board for the
specific functionality required. They are configured at system power-up with data stored in an
Altera serial configuration device or provided by a system controller. Altera offers in-system
programmability (ISP)-capable configuration devices, which configure Mercury devices via a

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 55

serial data stream. Mercury devices contain an optimized interface that permits
microprocessors to configure devices serially or in parallel, synchronously or
asynchronously. This interface also enables microprocessors to treat Mercury devices as
memory and to configure the device by writing to a virtual memory location, simplifying
reconfiguration. After a Mercury device has been configured, it can be reconfigured in-circuit
by resetting the device and loading new data. Real-time changes can be made during
system operation, enabling innovative reconfigurable computing applications.

8.2.5. FLEX 10K
Altera’s FLEX 10K devices [52] are based on reconfigurable CMOS SRAM elements, the
Flexible Logic Element MatriX (FLEX) architecture incorporates all features necessary to
implement common gate array mega-functions. With up to 250,000 gates, the FLEX 10K
family provides the density, speed, and features to integrate entire systems, including
multiple 32-bit buses, into a single device.

12.2.5.1 Architecture
The FLEX 10K architecture is similar to that of embedded gate arrays. As with standard gate
arrays, embedded gate arrays implement general logic in a conventional “sea-of-gates”
architecture. In addition, embedded gate arrays have dedicated die areas for implementing
large, specialized functions. By embedding functions in silicon, embedded gate arrays
provide reduced die area and increased speed compared to standard gate arrays. However,
embedded mega-functions typically cannot be customized, limiting the designer’s options. In
contrast, FLEX 10K devices are programmable, providing the designer with full control over
embedded mega-functions and general logic while facilitating iterative design changes during
debugging.

Each FLEX 10K device contains an embedded array and a logic array. The embedded array
is used to implement a variety of memory functions or complex logic functions, such as digital
signal processing (DSP), microcontroller, wide-data-path manipulation, and data-
transformation functions. The logic array performs the same function as the sea-of-gates in
the gate array: it is used to implement general logic, such as counters, adders, state
machines, and multiplexers. The combination of embedded and logic arrays provides the
high performance and high density of embedded gate arrays, enabling designers to
implement an entire system on a single device.

12.2.5.2 Functional Description
Each FLEX 10K device contains an embedded array to implement memory and specialized
logic functions, and a logic array to implement general logic. The embedded array consists of
a series of EABs. When implementing memory functions, each EAB provides 2,048 bits,
which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions.
When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic
functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs
can be used independently, or multiple EABs can be combined to implement larger functions.
The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a
local interconnect. An LE consists of a 4-input LUT, a programmable flip-flop, and dedicated
signal paths for carry and cascade functions. The eight LEs can be used to create medium-
sized blocks of logic or combined across LABs to create larger logic blocks. Each LAB
represents about 96 usable gates of logic.

12.2.5.3 Embedded Array Block
The Embedded Array Block (EAB) is a flexible block of RAM with registers on the input and
output ports, and is used to implement common gate array mega-functions. The EAB is also
suitable for functions such as multipliers, vector scalars, and error correction circuits,
because it is large and flexible. These functions can be combined in applications such as
digital filters and microcontrollers. Logic functions are implemented by programming the EAB

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 56

with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial
functions are implemented by looking up the results, rather than by computing them. This
implementation of combinatorial functions can be faster than using algorithms implemented
in general logic, a performance advantage that is further enhanced by the fast access times
of EABs. The large capacity of EABs enables designers to implement complex functions in
one logic level without the routing delays associated with linked LEs or FPGA RAM blocks.

The EAB provides advantages over FPGAs, which implement on-board RAM as arrays of
small, distributed RAM blocks. These FPGA RAM blocks contain delays that are less
predictable as the size of the RAM increases. In addition, FPGA RAM blocks are prone to
routing problems because small blocks of RAM must be connected together to make larger
blocks. In contrast, EABs can be used to implement large, dedicated blocks of RAM that
eliminate these timing and routing concerns.

12.2.5.4 Logic Array Block
Each LAB consists of eight LEs, their associated carry and cascade chains, LAB control
signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to
the FLEX 10K architecture, facilitating efficient routing with optimum device utilization and
high performance.

12.2.5.5 Logic Element
The LE, the smallest unit of logic in the FLEX 10K architecture, has a compact size that
provides efficient logic utilization. Each LE contains a four-input LUT, which is a function
generator that can quickly compute any function of four variables. In addition, each LE
contains a programmable flip-flop with a synchronous enable, a carry chain, and a cascade
chain. Each LE drives both the local and the FastTrack Interconnect. See Figure 36.

Figure 36: FLEX 10K Logic Element

The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. The
clock, clear, and preset control signals on the flip-flop can be driven by global signals,
general-purpose I/O pins, or any internal logic. For combinatorial functions, the flip-flop is
bypassed and the output of the LUT drives the output of the LE. The LE has two outputs that
drive the interconnect; one drives the local interconnect and the other drives either the row or
column FastTrack Interconnect. The two outputs can be controlled independently. This
feature, called register packing, can improve LE utilization because the register and the LUT

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 57

can be used for unrelated functions. The FLEX 10K architecture provides two types of
dedicated high-speed data paths that connect adjacent LEs without using local interconnect
paths: carry chains and cascade chains. The carry chain supports high-speed counters and
adders; the cascade chain implements wide-input functions with minimum delay. Carry and
cascade chains connect all LEs in an LAB and all LABs in the same row. Intensive use of
carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains
should be limited to speed-critical portions of a design.

12.2.5.6 FastTrack Interconnect
In the FLEX 10K architecture, connections between LEs and device I/O pins are provided by
the FastTrack Interconnect, which is a series of continuous horizontal and vertical routing
channels that traverse the device. This global routing structure provides predictable
performance, even in complex designs. In contrast, the segmented routing in FPGAs
requires switch matrices to connect a variable number of routing paths, increasing the delays
between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the
entire device. Each row of LABs is served by a dedicated row interconnect. The row
interconnect can drive I/O pins and feed other LABs in the device. The column interconnect
routes signals between rows and can drive I/O pins. A row channel can be driven by an LE or
by one of three column channels. These four signals feed dual 4-to-1 multiplexers that
connect to two specific row channels. These multiplexers, which are connected to each LE,
allow column channels to drive row channels even when all eight LEs in an LAB drive the
row interconnect.

12.2.5.7 Configuration
FLEX 10K devices are configured at system power-up with data stored in an Altera serial
configuration device or provided by a system controller. Configuration data can also be
downloaded from system RAM or from Altera’s BitBlaster serial download cable or
ByteBlasterMV parallel port download cable. After a FLEX 10K device has been configured,
it can be reconfigured in-circuit by resetting the device and loading new data. Because
reconfiguration requires less than 320 ms, real-time changes can be made during system
operation. FLEX 10K devices contain an optimized interface that permits microprocessors to
configure FLEX 10K devices serially or in parallel, and synchronously or asynchronously.
The interface also enables microprocessors to treat a FLEX 10K device as memory and
configure the device by writing to a virtual memory location, making it very easy for the
designer to reconfigure the device.

8.2.6. ACEX 1K
ACEX 1K devices [52] provide a die-efficient, low-cost architecture by combining LUT
architecture with EABs. LUT-based logic provides optimized performance and efficiency for
data-path, register intensive, mathematical, or DSP designs, while EABs implement RAM,
ROM, dual-port RAM, or FIFO functions. These elements make ACEX 1K suitable for
complex logic functions and memory functions such as digital signal processing, wide data-
path manipulation, data transformation and microcontrollers, as required in high-performance
communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX
1K architecture incorporates all features necessary to implement common gate array mega-
functions, along with a high pin count to enable an effective interface with system
components.

Each ACEX 1K device contains an embedded array and a logic array. The embedded array
is used to implement a variety of memory functions or complex logic functions, such as digital
signal processing (DSP), wide data-path manipulation, microcontroller applications, and data
transformation functions. The logic array performs the same function as the sea-of-gates in
the gate array and is used to implement general logic such as counters, adders, state

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 58

machines, and multiplexers. The combination of embedded and logic arrays provides the
high performance and high density of embedded gate arrays, enabling designers to
implement an entire system on a single device.

12.2.6.1 Functional Description
Each ACEX 1K device contains an enhanced embedded array that implements memory and
specialized logic functions, and a logic array that implements general logic. The embedded
array consists of a series of EABs. When implementing memory functions, each EAB
provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or FIFO
functions. When implementing logic, each EAB can contribute 100 to 600 gates towards
complex logic functions such as multipliers, microcontrollers, state machines, and DSP
functions. EABs can be used independently, or multiple EABs can be combined to implement
larger functions. The logic array consists of logic array blocks (LABs). Each LAB contains
eight LEs and a local interconnect. An LE consists of a 4-input LUT, a programmable flip-
flop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used
to create medium-sized blocks of logic or combined across LABs to create larger logic
blocks. Each LAB represents about 96 usable logic gates. Signal interconnections within
ACEX 1K devices (as well as to and from device pins) are provided by the FastTrack
Interconnect routing structure, which is a series of fast, continuous row and column channels
that run the entire length and width of the device.

12.2.6.2 Embedded Array Block
The EAB is a flexible block of RAM, with registers on the input and output ports, that is used
to implement common gate array mega-functions. Because it is large and flexible, the EAB is
suitable for functions such as multipliers, vector scalars, and error correction circuits. These
functions can be combined in applications such as digital filters and microcontrollers. Logic
functions are implemented by programming the EAB with a read-only pattern during
configuration, thereby creating a large LUT. With LUTs, combinatorial functions are
implemented by looking up the results rather than by computing them. This implementation
of combinatorial functions can be faster than using algorithms implemented in general logic,
a performance advantage that is further enhanced by the fast access times of EABs. The
large capacity of EABs enables designers to implement complex functions in a single logic
level without the routing delays associated with linked LEs or FPGA RAM blocks. For
example, a single EAB can implement any function with 8 inputs and 16 outputs. The ACEX
1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers
with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks.

12.2.6.3 Logic Array Block
An LAB consists of eight LEs, their associated carry and cascade chains, LAB control
signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to
the ACEX 1K architecture, facilitating efficient routing with optimum device utilization and
high performance.

12.2.6.4 Logic Element
The LE, the smallest unit of logic in the ACEX 1K architecture, has a compact size that
provides efficient logic utilization. Each LE contains a 4-input LUT, which is a function
generator that can quickly compute any function of four variables. In addition, each LE
contains a programmable flip-flop with a synchronous clock enable, a carry chain, and a
cascade chain. Each LE drives both the local and the FastTrack Interconnect routing
structure. The schematic of ACEX 1K logic element is similar to FLEX 10K and has been
shown in Figure 36.

The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. For
combinatorial functions, the flip-flop is bypassed and the LUT’s output drives the LE’s output.
The LE has two outputs that drive the interconnect: one drives the local interconnect, and the

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 59

other drives either the row or column FastTrack Interconnect routing structure. The two
outputs can be controlled independently. This feature, called register packing, can improve
LE utilization because the register and the LUT can be used for unrelated functions. The
ACEX 1K architecture provides two types of dedicated high-speed data paths that connect
adjacent LEs without using local interconnect paths: carry chains and cascade chains. The
carry chain supports high-speed counters and adders, and the cascade chain implements
wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB
and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing
flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a
design.

8.2.7. FLEX 6000
The Altera FLEX 6000 devices [54] are based on the OptiFLEX architecture, which
minimizes die size while maintaining high performance and routability. The devices have
reconfigurable SRAM elements, which give designers the flexibility to quickly change their
designs during prototyping and design testing. Designers can also change functionality
during operation via in-circuit reconfiguration.

12.2.7.1 Functional Description
The FLEX 6000 OptiFLEX architecture consists of logic elements (LEs). Each LE includes a
4-input LUT, which can implement any 4-input function, a register, and dedicated paths for
carry and cascade chain functions. Because each LE contains a register, a design can be
easily pipelined without consuming more LEs. The specified gate count for FLEX 6000
devices includes all LUTs and registers. LEs are combined into groups called logic array
blocks (LABs); each LAB contains 10 LEs. The Altera software automatically places related
LEs into the same LAB, minimizing the number of required interconnects. Each LAB can
implement a medium-sized block of logic, such as a counter or multiplexer.

FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the
flip-flops to ensure efficient distribution of high-speed, low-skew control signals. These inputs
use dedicated routing channels that provide shorter delays and lower skews than the
FastTrack Interconnect.

12.2.7.2 Logic Array Block
An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control
signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of
the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization
and high performance. The interleaved LAB structure allows each LAB to drive two local
interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher
performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which
maximizes fitting flexibility while minimizing die size.

12.2.7.3 Logic Element
An LE, the smallest unit of logic in the FLEX 6000 architecture, has a compact size that
provides efficient logic usage. Each LE contains a 4-input LUT, which is a function generator
that can quickly implement any function of four variables. An LE contains a programmable
flip-flop, carry and cascade chains. Additionally, each LE drives both the local and the
FastTrack Interconnect. The FLEX 6000 logic element is shown in Figure 37.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 60

Figure 37: Flex 6000 Logic Element

The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. The
clock and clear control signals on the flip-flop can be driven by global signals, general-
purpose I/O pins, or any internal logic. For combinatorial functions, the flip-flop is bypassed
and the output of the LUT drives the outputs of the LE. The LE output can drive both the local
interconnect and the FastTrack Interconnect. The FLEX 6000 architecture provides two types
of dedicated high-speed data paths that connect adjacent LEs without using local
interconnect paths: carry chains and cascade chains. A carry chain supports high-speed
arithmetic functions such as counters and adders, while a cascade chain implements wide-
input functions such as equivalent comparators with minimum delay. Carry and cascade
chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row.
Because extensive use of carry and cascade chains can reduce routing flexibility, these
chains should be limited to speed-critical portions of a design.

8.3. ACTEL
The FPGA families from ACTEL that will be described at this report are the Axcelerator, the
eX family, the ProASIC 500K, the ProASICPLUS, the SX-A, the 40MX, the 42MX, and the
VariCore family.

8.3.1. Axcelerator Family
Actel’s newest FPGA family, Axcelerator, offers high performance at densities of up to two
million equivalent system gates. Based upon Actel’s new AX architecture, Axcelerator has
several system-level features such as embedded SRAM (with complete FIFO control logic),
PLLs, segmentable clocks, chip-wide highway routing, PerPin FIFOs, and carry logic.

12.3.1.1 Device Architecture
Actel's AX architecture [55], derived from the highly-successful SX-A sea-of-modules
architecture, has been designed for high performance and total logic module utilization. The
entire floor of the AX device is covered with a grid of logic modules with virtually no chip area
lost to interconnect elements or routing, unlike SRAM FPGAs where chip area is lost to
routing. Actel's Axcelerator family provides two types of logic modules, the register cell (R-
cell) and the combinatorial cell (C-cell). The AX C-cell can implement more than 4,000
combinatorial functions of up to 5 inputs. The C-cell contains carry logic for even more

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 61

efficient implementation of arithmetic functions. With its small size, the C-cell structure is
extremely synthesis-friendly, simplifying the overall design as well as reducing design time.
The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and
active-low enable control signals. The R-cell registers feature programmable clock polarity
selectable on a register-by-register basis. This provides additional flexibility while conserving
valuable clock resources. The clock source for the R-cell can be chosen from the hard-wired
clocks, the routed clocks, or the internal logic. Two C-cells, a single R-cell, and two Transmit
(TX) and Receive (RX) routing buffers form a Cluster, and two Clusters comprise a
SuperCluster. Each SuperCluster contains an independent Buffer module, which supports
automatic buffer insertion on high-fanout nets by the place-and-route tool, minimizing system
delays while improving logic utilization.

The logic modules within the SuperCluster are arranged so that two combinatorial modules
are side by side, giving a C–C–R – C–C–R pattern to the SuperCluster. This C–C–R pattern
enables efficient implementation (minimum delay) of 2-bit carry logic for improved arithmetic
performance. The AX architecture is fully fracturable, meaning that if one or more of the logic
modules in a SuperCluster are used by a particular signal path, the other logic modules are
still available for use by other paths. At the chip level, SuperClusters are organized into core
tiles, which are arrayed to build up the full chip. Each core tile consists of an array of 336
SuperClusters and four SRAM blocks (176 SuperClusters and 3 SRAM blocks for the
AX250). The SRAM blocks are arranged in a column on the west side of the tile. Surrounding
the array of core tiles are blocks of I/O Clusters and the I/O bank ring.

12.3.1.2 Embedded Memory
As mentioned earlier, each core tile has either three (in a smaller tile) or four (in the regular
tile) embedded SRAM blocks along the west side, and each variable-aspect-ratio SRAM
block is 4,608 bits in size. Available memory configurations are: 128x36, 256x18, 512x9,
1Kx4, 2Kx2 or 4Kx1 bits. The individual blocks have separate read and write ports that can
be configured with different bit widths on each port. Every SRAM block has an embedded
FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous
FIFO without using core logic modules. The FIFO width and depth are programmable. The
embedded FIFO control unit contains the necessary counters for the generation of the read
and write address pointers as well as control circuitry to prevent metastability and erroneous
operation. The embedded SRAM/FIFO blocks can be cascaded to create larger
configurations.

12.3.1.3 Routing
The AX hierarchical routing structure ties the logic modules, the embedded memory blocks,
and the I/O modules together. At the lowest level, in and between SuperClusters, there are
three local routing structures: FastConnect, DirectConnect, and CarryConnect routing.
DirectConnects provide the highest performance routing inside the SuperClusters by
connecting a C-cell to the adjacent R-cell. DirectConnects do not require an antifuse to make
the connection and achieve a signal propagation time of less than 0.1ns. FastConnects
provide high-performance horizontal routing inside the SuperCluster and vertical routing to
the SuperCluster immediately below it. Only one programmable connection is used in a
FastConnect path, delivering a maximum routing delay of 0.4ns. CarryConnects are used for
routing carry logic between adjacent SuperClusters. CarryConnects do not require an
antifuse to make the connection and achieve a signal propagation time of less than 0.1ns.
The next level contains the core tile routing. In SuperClusters within a core tile, both vertical
and horizontal tracks run across rows or columns respectively. At the chip level, vertical and
horizontal tracks extend across the full length of the device, both north-to-south and east-to-
west. These tracks are composed of highway routing that extend the entire length of the
track as well as segmented routing of varying lengths.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 62

8.3.2. eX Family FPGAs
The eX family of FPGAs [56] is a solution for low-power and high-performance designs. The
inherent low power attributes of the antifuse technology, coupled with an additional low static
power mode, make these devices ideal for power-sensitive applications. Fabricated with an
advanced 0.22�m �
��� ��tifuse technology, these devices achieve high performance with
no power penalty.

12.3.2.1 Architecture
The eX family architecture uses a “sea-of-modules” structure where the entire floor of the
device is covered with a grid of logic modules with virtually no chip area lost to interconnect
elements or routing. Interconnection among these logic modules is achieved using Actel’s
patented metal-to-metal programmable antifuse interconnect elements. Actel’s eX family
provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-
cell). The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and
clock enable control signals as shown in Figure 38. The R-cell registers feature
programmable clock polarity selectable on a register-by-register basis. This provides
additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The
clock source for the R-cell can be chosen from either the hard-wired clock or the routed
clock. The C-cell implements a range of combinatorial functions up to 5 inputs. The number
of combinatorial functions that can be implemented in a single module has been increased
from 800 options in previous architectures to more than 4,000 in the eX architecture.

Figure 38: The Actel’s eX family logic modules - (a) R-Cell, and (b) C-Cell

12.3.2.2 Module Organization
Actel has arranged all C-cell and R-cell logic modules into horizontal banks called Clusters.
The eX devices contain one type of Cluster, which contains two C-cells and one R-cell. To
increase design efficiency and device performance, Actel has further organized these
modules into SuperClusters. The eX devices contain one type of SuperClusters, which are
two-wide groupings of one type of clusters.

12.3.2.3 Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing
resources called FastConnect and DirectConnect, which enable extremely fast and
predictable interconnection of modules within Clusters and SuperClusters. This routing
architecture also dramatically reduces the number of antifuses required to complete a circuit,
ensuring the highest possible performance. DirectConnect is a horizontal routing resource
that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster.
DirectConnect uses a hard-wired signal path requiring no programmable interconnection to

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 63

achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal
routing between any two logic modules within a given SuperCluster and vertical routing with
the SuperCluster immediately below it. Only one programmable connection is used in a
FastConnect path, delivering maximum pin-to-pin propagation of 0.3 ns. In addition to
DirectConnect and FastConnect, the architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive routing. Actel’s segmented routing
structure provides a variety of track lengths for extremely fast routing between
SuperClusters.

12.3.2.4 Technology
Actel’s eX family is implemented on a high-voltage twin-well CMOS process using 0.22�m
������� �����
 ��� �����-to-metal antifuse is made up of a combination of amorphous silicon
and dielectric material with barrier metals and has an “on” state resistance of 25�� ���� �
capacitance of 1.0 fF for low signal impedance.

12.3.2.5 Performance
The combination of architectural features described above enables eX devices to operate
with internal clock frequencies exceeding 350 MHz for very fast execution of complex logic
functions. Thus, the eX family is an optimal platform upon which to integrate the functionality
previously contained in CPLDs. In addition, designs that previously would have required a
gate array to meet performance goals can now be integrated into an eX device with dramatic
improvements in cost and time to market. Using timing-driven place-and-route tools,
designers can achieve highly deterministic device performance.

8.3.3. ProASIC 500K Family
The ProASIC 500K family’s nonvolatile Flash technology combines the advantages of ASICs
with the benefits of programmable devices. ProASIC 500K devices shorten time-to-
production by enabling designers to create high-density systems using existing ASIC or
FPGA design flows and tools. The ProASIC 500K family consists of four devices ranging
from 100k to 475k system gates and with up to 63k bits of embedded two-port memory.
These memory blocks include hardwired FIFO circuitry as well as circuits to generate or
check parity. This minimizes external logic gate count and complexity while maximizing
flexibility and utility.

12.3.3.1 Architecture
The ProASIC 500K family’s [57] proprietary architecture provides granularity comparable to
gate arrays. Unlike SRAM-based FPGAs that utilize LUTs or architectural mapping during
design, ProASIC device designs are directly synthesized to gates. That streamlines the
design flow, increases design productivity, and eliminates dependencies on vendor-specific
design tools. The ProASIC 500K device core consists of a Sea-of-Tiles, each of which can
be configured as a 3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming
the appropriate Flash switch interconnections. Gates and larger functions are connected with
four levels of routing hierarchy. Flash memory bits are distributed throughout the device to
provide nonvolatile, reconfigurable interconnect programming. Flash switches are
programmed to connect signal lines to the appropriate logic cell inputs and outputs.
Dedicated high-performance lines are connected as needed for fast, low-skew global signal
distribution throughout the core. Maximum core utilization is possible for virtually any design.
The ProASIC 500K devices also contain embedded two-port SRAM blocks with built-in
FIFO/RAM control logic. Programming options include synchronous or asynchronous
operation, two-port RAM configurations, user defined depth and width, and parity generation
or checking.

12.3.3.2 Logic Tile
The logic tile cell, as it is shown in Figure 39, has three inputs (any or all of which can be
inverted) and one output (which can connect to both ultra fast local and efficient long line

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 64

routing resources). Any three-input one-output logic function, except a three input XOR, can
be configured as one tile. Two multiplexers with feedback paths through the NAND gates
allow the tile to be configured as a latch with clear or set, or as a flip-flop with clear or set.
Thus, the tiles can flexibly map logic and sequential gates of a design.

Figure 39: Core Logic Tile for ProASIC 500K Family

12.3.3.3 Routing Resources
The routing structure of the ProASIC 500K devices is designed to provide high performance
through a flexible four-level hierarchy of routing resources: ultra fast local resources, efficient
long line resources, high speed very long line resources, and high performance global
networks. The ultra fast local resources are dedicated lines that allow the output of each tile
to connect directly to every input of the eight surrounding tiles. The efficient long line
resources provide routing for longer distances and higher fan-out connections. These
resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and
cover the entire ProASIC device. Each tile can drive signals onto the efficient long line
resources, while the resources can also access every input of any tile. The routing software
automatically inserts active buffers to limit loading effects due to distance and fan-out. The
high speed very long line resources, spanning across the entire device with minimal delay,
are used to route very long or very high fan-out nets. These resources run vertically and
horizontally, providing multiple accesses to each group of tiles throughout the device. The
high performance global networks’ clock trees are low skew, high fan-out nets that are
accessible from four dedicated pins or from internal logic. These nets are typically used to
distribute clocks, resets, and other high fan-out nets requiring a minimum skew. The global
networks are implemented as clock trees, and signals can be introduced at any junction.
These can be employed hierarchically, with signals accessing every input on all tiles.

8.3.4. ProASICPLUS Family Flash FPGAs
The ProASICPLUS family [58] of devices offers enhanced performance over Actel’s ProASIC
family. It combines the advantages of ASICs with the benefits of programmable devices
through nonvolatile Flash technology. This enables engineers to create high-density systems
using existing ASIC or FPGA design flows and tools. In addition, the ProASICPLUS family
offers a unique clock conditioning circuit based on two on-board phase lock loops (PLLs).
The family offers up to 1 million system gates, supported with up to 198 Kbits of 2-port SRAM
and up to 712 user I/Os, all providing 50 MHz PCI performance. Four levels of routing
hierarchy simplify routing, while the use of Flash technology allows all functionality to be live
at power up, unlike SRAM-based FPGAs. No external Boot PROM is required to support
device programming. While on-board security mechanisms prevent all access to the program
information, reprogramming can be performed in-system to support future design iterations
and field upgrades. The device’s architecture mitigates the complexity of ASIC migration at

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 65

higher user volume. This makes ProASICPLUS a cost-effective solution for applications in
the networking, communications, computing, and avionics markets. The ProASICPLUS
family achieves its non-volatility and reprogrammability through an advanced Flash-based
0.22�m LVCMOS process with four-layer metal. Standard CMOS design techniques are
used to implement logic and control functions, including the PLLs and LVPECL inputs. The
result is predictable performance fully compatible with gate arrays. The ProASICPLUS
architecture provides granularity comparable to gate arrays. The device core consists of a
Sea-of-Tiles. Each tile can be configured as a flip-flop, latch, or 3-input/1-output logic function
by programming the appropriate Flash switches. The combination of fine granularity, flexible
routing resources, and abundant Flash switches allow 100% utilization and over 95%
routability for highly congested designs. Tiles and larger functions are interconnected through
a 4-level routing hierarchy. Embedded 2-port SRAM blocks with built-in FIFO/RAM control
logic can have user-defined depth and width.

12.3.4.1 Architecture
The proprietary ProASICPLUS architecture provides granularity comparable to gate arrays.
The ProASICPLUS device core consists of a Sea-of-Tiles. Each tile can be configured as a
3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate
Flash switch interconnections. Tiles and larger functions are connected with any of the four
levels of routing hierarchy. Flash cells are distributed throughout the device to provide
nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to
connect signal lines to the appropriate logic cell inputs and outputs. Dedicated high-
performance lines are connected as needed for fast, low-skew global signal distribution
throughout the core. Maximum core utilization is possible for virtually any design.

12.3.4.2 Logic Tile
The logic tile cell has three inputs (any or all of which can be inverted) and one output (which
can connect to both ultra fast local and efficient long line routing resources). Any three-input
one-output logic function, except a three input XOR, can be configured as one tile. The tile
can be configured as a latch with clear or set or as a flip-flop with clear or set. Thus the tiles
can flexibly map logic and sequential gates of a design. The logic tile is similar to ProASIC
500K Family that has been shown in Figure 39.

12.3.4.3 Routing Resources
The routing structure of the ProASICPLUS devices is designed to provide high performance
through a flexible four-level hierarchy of routing resources: ultra fast local resources, efficient
long line resources, high speed very long line resources, and high performance global
networks. The ultra fast local resources are dedicated lines that allow the output of each tile
to connect directly to every input of the eight surrounding tiles. The efficient long line
resources provide routing for longer distances and higher fan-out connections. These
resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and
cover the entire ProASICPLUS device. Each tile can drive signals onto the efficient long line
resources, which can, in turn, access every input of every tile. Active buffers are inserted
automatically by routing software to limit the loading effects due to distance and fan-out. The
high speed very long line resources which span the entire device with minimal delay, are
used to route very long or very high fan-out nets. The high performance global networks are
low skew, high fan-out nets that are accessible from external pins or from internal logic.
These nets are typically used to distribute clocks, resets, and other high fan-out nets
requiring a minimum skew. The global networks are implemented as clock trees, and signals
can be introduced at any junction. These can be employed hierarchically, with signals
accessing every input on all tiles.

8.3.5. SX-A Family FPGAs
Actel’s SX-A family [59] of FPGAs features a sea-of-modules architecture that delivers
device performance and integration levels not currently achieved by any other FPGA

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 66

architecture. SX-A devices simplify design time, enable dramatic reductions in power
consumption, and further decrease time to market for performance-intensive applications.
Actel’s SX-A architecture features two types of logic modules, the combinatorial cell (C-cell)
and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized
logic functions. The routing and interconnect resources are in the metal layers above the
logic modules, providing optimal use of silicon. This enables the entire floor of the device to
be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or
“sea-of-modules”), which reduces the distance signals have to travel between logic modules.
To minimize signal propagation delay, SX-A devices employ both local and general routing
resources. The high-speed local routing resources (DirectConnect and FastConnect) enable
very fast local signal propagation that is optimal for fast counters, state machines, and
datapath logic. The general system of segmented routing tracks allows any logic module in
the array to be connected to any other logic or I/O module. Within this system, propagation
delay is minimized by limiting the number of antifuse interconnect elements to five (90
percent of connections typically use only three or fewer antifuses). The unique local and
general routing structure featured in SX-A devices gives fast and predictable performance,
allows 100 percent pin-locking with full logic utilization, reduces design time, and allows
designers to achieve performance goals with minimum effort. Further complementing SX-A’s
flexible routing structure is a hard-wired, constantly loaded clock network that has been
tuned to provide fast clock propagation with minimal clock skew. Additionally, the high
performance of the internal logic has eliminated the need to embed latches or flip-flops in the
I/O cells to achieve fast clock-to-out or fast input set-up times. SX-A devices have easy-to-
use I/O cells that do not require HDL instantiation, facilitating design re-use and reducing
design and verification time.

12.3.5.1 Programmable Interconnect Element
The SX-A family provides efficient use of silicon by locating the routing interconnect
resources between the top two metal layers. This completely eliminates the channels of
routing and interconnect resources between logic modules (as implemented on SRAM
FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the
device to be spanned with an uninterrupted grid of logic modules. Interconnection between
these logic modules is achieved using Actel’s patented metal-to-metal programmable
antifuse interconnect elements. The antifuses are normally open circuit and, when
programmed, form a permanent low-impedance connection. The extremely small size of
these interconnect elements gives the SX-A family abundant routing resources and provides
excellent protection against design pirating. Reverse engineering is virtually impossible
because it is extremely difficult to distinguish between programmed and unprogrammed
antifuses, and since SX-A is a nonvolatile, single-chip solution, there is no configuration
bitstream to intercept. Additionally, the interconnect (i.e., the antifuses and metal tracks)
have lower capacitance and lower resistance than any other device of similar capacity,
leading to the fastest signal propagation in the industry.

12.3.5.2 Logic Module Design
The SX-A family architecture is described as a “sea-of-modules” architecture because the
entire floor of the device is covered with a grid of logic modules with virtually no chip area lost
to interconnect elements or routing. Actel’s SX-A family provides two types of logic modules,
the register cell (R-cell) and the combinatorial cell (C-cell). The R-cell contains a flip-flop
featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1
lines) control signals. The R-cell registers feature programmable clock polarity selectable on
a register-by-register basis. This provides additional flexibility while allowing mapping of
synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen
from either the hard-wired clock, the routed clocks, or internal logic. The C-cell implements a
range of combinatorial functions up to 5 inputs. Inclusion of the DB input and its associated
inverter function increases the number of combinatorial functions that can be implemented in
a single module from 800 options (as in previous architectures) to more than 4,000 in the SX-

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 67

A architecture. An example of the improved flexibility enabled by the inversion capability is
the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates
construction of 9-bit parity-tree functions with 1.9 ns propagation delays. At the same time,
the C-cell structure is extremely synthesis friendly, simplifying the overall design and
reducing synthesis time. The R-cell and C-cell are similar to the eX Family, and have been
shown in Figure 38.

3.3.5.1 Chip Architecture
The SX-A family’s chip architecture provides a unique approach to module organization and
chip routing that delivers the best register/logic mix for a wide variety of new and emerging
applications. Actel has arranged all C-cell and R-cell logic modules into horizontal banks
called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell,
while Type 2 contains one C-cell and two R-cells. To increase design efficiency and device
performance, Actel has further organized these modules into SuperClusters. SuperCluster 1
is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one
Type 1 cluster and one Type 2 cluster. SX-A devices feature more SuperCluster 1 modules
than SuperCluster 2 modules because designers typically require significantly more
combinatorial logic than flip-flops.

12.3.5.3 Routing
Clusters and SuperClusters can be connected through the use of two innovative local routing
resources called FastConnect and DirectConnect, which enable extremely fast and
predictable interconnection of modules within Clusters and SuperClusters. This routing
architecture also dramatically reduces the number of antifuses required to complete a circuit,
ensuring the highest possible performance. DirectConnect is a horizontal routing resource
that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster.
DirectConnect uses a hard-wired signal path requiring no programmable interconnection to
achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal
routing between any two logic modules within a given SuperCluster and vertical routing with
the SuperCluster immediately below it. Only one programmable connection is used in a
FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns. In addition to
DirectConnect and FastConnect, the architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive routing. Actel’s segmented routing
structure provides a variety of track lengths for extremely fast routing between
SuperClusters. The exact combination of track lengths and antifuses within each path is
chosen by the 100 percent automatic place-and-route software to minimize signal
propagation delays.

12.3.5.4 Technology
Actel’s SX-A family is implemented on a high-voltage twin-well CMOS process using
0.22�m/0.25�m� ������ �����
 ��� �����-to-metal antifuse is made up of a combination of
amorphous silicon and dielectric material with barrier metals and has a programmed (“on”
state) resistance of 25������ ����������� �� �
	 � ��� ��� ���nal impedance.

12.3.5.5 Performance
The combination of architectural features described above enables SX-A devices to operate
with internal clock frequencies of 350 MHz, enabling very fast execution of even complex
logic functions. Thus, the SX-A family is an optimal platform upon which to integrate the
functionality previously contained in multiple CPLDs. In addition, designs that previously
would have required a gate array to meet performance goals can now be integrated into an
SX-A device with dramatic improvements in time-to-market. Using timing-driven place-and-
route tools, designers can achieve highly deterministic device performance.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 68

8.3.6. 40MX and 42MX FPGA Families
Actel’s 40MX and 42MX families [60] provide a high-performance, single-chip solution for
shortening the system design and development cycle, offering a cost-effective alternative to
ASICs. The 40MX and 42MX devices are excellent choices for integrating logic that is
currently implemented in multiple PALs, CPLDs, and FPGAs. Example applications include
high-speed controllers and address decoding, peripheral bus interfaces, DSP, and co-
processor functions. The MX device architecture is based on Actel’s patented antifuse
technology implemented in a 0.45µm triple-metal CMOS process. With capacities ranging
from 3,000 to 54,000 system gates, the synthesis-friendly MX devices provide performance
up to 250 MHz, are live on power-up, and require up to five times lower stand-by power
consumption than any other FPGA device. Actel’s MX FPGAs provide up to 202 user I/Os
and are available in a wide variety of packages and speed grades.

12.3.6.1 Architecture
The 40MX and 42MX devices are composed of fine-grained building blocks that enable fast,
efficient logic designs. All devices within these families are composed of logic modules, I/O
modules, routing resources, and clock networks, which are the building blocks for designing
fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM and
wide decode modules. The dual-port SRAM modules are optimized for high-speed datapath
functions such as FIFOs, LIFOs, and scratchpad memory.

12.3.6.2 Logic Modules
The 40MX logic module is an eight-input, one-output logic circuit designed to implement a
wide range of logic functions with efficient use of interconnect routing resources as it is
shown in Figure 40. The logic module can implement the four basic logic functions (NAND,
AND, OR, and NOR) in gates of two, three, or four inputs. Each function may have many
versions with different combinations of active low inputs. The logic module can also
implement a variety of D-latches, exclusivity functions, AND-ORs, and OR-ANDs. No
dedicated hard-wired latches or flip-flops are required in the array, since latches and flip-flops
can be constructed from logic modules wherever needed in the application.

Figure 40: 40MX Logic Module

The 42MX devices contain three types of logic modules: combinatorial (C-modules),
sequential (S-modules), and decode (D-modules). The C-module implements the following
function:

111000,

1101100!10101!000!1!

BASandBASwhere

DSSDSSDSSDSSY

+=∗=
∗∗+∗∗+∗∗+∗∗=

The S-module is designed to implement high-speed sequential functions within a single logic
module. The S-module implements the same combinatorial logic function as the C-module
while adding a sequential element. The sequential element can be configured as either a D
flip-flop or a transparent latch. To increase flexibility, the S-module register can be bypassed
so that it implements purely combinatorial logic.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 69

Some of the 42MX devices contain D-modules, which are arranged around the periphery of
the devices. D-modules contain wide-decode circuitry, which provides a fast, wide-input AND
function similar to that found in product-term architectures. The D-module allows 42MX
devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The
output of the D-module has a programmable inverter for active high or low assertion. The D-
module output is hard-wired to an output pin, but it can also be fed back into the array to be
incorporated into other logic.

12.3.6.3 Routing
The MX architecture uses vertical and horizontal routing tracks to interconnect the various
logic and I/O modules. These routing tracks are metal interconnects that may be either of
continuous length or broken into pieces called segments. Varying segment lengths allows the
interconnection of over 90% of design tracks with only two antifuse connections. Segments
can be joined together at the ends using antifuses to increase their lengths up to the full
length of the track. All interconnects can be accomplished with a maximum of four antifuses.

Horizontal channels are located between the rows of modules and are composed of several
routing tracks. The horizontal routing tracks within the channel are divided into one or more
segments. The minimum horizontal segment length is the width of a module pair, and the
maximum horizontal segment length is the full length of the channel. Any segment that spans
more than one-third at the row length is considered a long horizontal segment. Non-
dedicated horizontal routing tracks are used to route signal nets while the dedicated routing
tracks are used for global clock networks and for power and ground tie-off tracks.

Another set of routing tracks run vertically through the module. There are three types of
vertical tracks: input, output, and long, which are also divided into one or more segments.
Each segment in an input track is dedicated to the input of a particular module; each
segment in an output track is dedicated to the output of a particular module. Long segments
are uncommitted and can be assigned during routing. Each output segment spans four
channels (two above and two below), except near the top and bottom of the array, where
edge effects occur. Long vertical tracks contain either one or two segments.

12.3.6.4 Antifuse Structures
An antifuse is a “normally open” structure as opposed to the normally connected fuse
structure used in PROMs or PALs. The use of antifuses to implement a programmable logic
device results in highly testable structures as well as efficient programming algorithms. The
structure is highly-testable because there are no pre-existing connections; therefore,
temporary connections can be made using pass transistors. These temporary connections
can isolate individual antifuses to be programmed and individual circuit structures to be
tested, which can be done before and after programming. For example, all metal tracks can
be tested for continuity and shorts between adjacent tracks, and the functionality of all logic
modules can be verified.

8.3.7. VariCore
VariCore IP blocks [92] are embedded, reprogrammable “soft hardware” cores designed for
use in ASIC and ASSP SoC applications. The available VariCore embedded programmable
gate array (EPGA) blocks have been designed in 0.18 micron CMOS SRAM technology.

12.3.7.1 Architecture
The main building block of the VariCore SRAM-based EPGA architecture is the PEG. Each
of these PEG blocks can implement about 2.5K ASIC gates. The VariCore EPGA core that is
used within the SoC device contains several of these PEG blocks, as shown in Figure 41,
along with additional logic to provide configuration and test features. Actel has created
VariCore EPGA cores ranging from 2x1 up to 4x4 PEG blocks.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 70

Figure 41: VariCore SRAM Architecture – A 4x4 array

The aspect ratio and shape of this tiling can be varied to obtain the best design fit on the SoC
device. As the number of PEG blocks increases, so does the potential number of shapes.
Actel supports a subset of these, typically rectangular, shapes. The ideal shape for the
VariCore IP core is a square since this tends to reduce the internal delays within the core.
However, there may be applications where a rectangular or ‘L’ shaped core provides a more
efficient implementation at the physical level.

12.3.7.2 PEG block
The PEG itself contains an 8x8 array of functional group (FG) blocks.

12.3.7.3 Functional Group
There are 64 functional groups within each PEG. Each FG contains four logic units (LUs). To
support high-speed arithmetic functions, a hard-wired carry chain is included in the FG that
connects the output of one LUT (look-up table) directly to the input on the next. If the carry
input on the LUT is used, then the designer can use only two of three data inputs on the LUT.
This carry chain extends vertically across all the FGs within the PEG block.

12.3.7.4 Logical Unit
Each logic unit contains two three-input LUTs and a register, as shown in Figure 42.

Figure 42: The EPGA Logic Unit

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 71

The register input can be driven by either one of the three-input LUTs and the outputs can
either come directly from the LUTs or the register output. It should be noted that the four LUs
within the FG share the same register control lines. Although this is a LUT3 architecture, it is
possible to implement a LUT4 function using the two three-input LUTs and the MUX. The
same configuration can also be used to create a MUX4 function.

8.4. ATMEL
Here are described the FPGAs that are available from ATMEL. These are the AT40K,
AT40KLV, and AT6000 families.

8.4.1. AT40K/AT40KLV FPGA family
The AT40K/AT40KLV [60] is a family of fully PCI-compliant, SRAM-based FPGAs with
distributed 10 ns programmable synchronous/asynchronous, dual-port/single-port SRAM, 8
global clocks, Cache Logic ability (partially or fully reconfigurable without loss of data),
automatic component generators, and range in size from 5,000 to 50,000 usable gates.

The AT40K/AT40KLV is designed to quickly implement high-performance, large gate count
designs through the use of synthesis and schematic-based tools. Atmel’s design tools
provide seamless integration with industry standard tools such as Synplicity, ModelSim,
Exemplar and Viewlogic. The AT40K/AT40KLV can be used as a coprocessor for high-speed
(DSP/processorbased) designs by implementing a variety of computation intensive,
arithmetic functions. These include adaptive finite impulse response (FIR) filters, fast Fourier
transforms (FFT), convolvers, interpolators and discrete-cosine transforms (DCT) that are
required for video compression and decompression, encryption, convolution and other
multimedia applications.

12.4.1.1 SRAM
The AT40K/AT40KLV FPGA offers a patented distributed 10 ns SRAM capability where the
RAM can be used without losing logic resources. Multiple independent, synchronous or
asynchronous, dual-port or single-port RAM functions (FIFO, scratch pad, etc.) can be
created using Atmel’s macro generator tool.

12.4.1.2 Array and Vector Multipliers
The AT40K/AT40KLV’s patented 8-sided core cell with direct horizontal, vertical and diagonal
cell-to-cell connections implements ultra fast array multipliers without using any busing
resources. The AT40K/AT40KLV’s Cache Logic capability enables a large number of design
coefficients and variables to be implemented in a very small amount of silicon, enabling vast
improvement in system speed at much lower cost than conventional FPGAs.

12.4.1.3 Automatic Component Generators
The AT40K/AT40KLV FPGA family is capable of implementing user-defined, automatically
generated, macros in multiple designs; speed and functionality are unaffected by the macro
orientation or density of the target device. This enables the fastest, most predictable and
efficient FPGA design approach and minimizes design risk by reusing already proven
functions. The Automatic Component Generators work seamlessly with industry standard
schematic and synthesis tools to create the fastest, most efficient designs available. The
patented AT40K/AT40KLV series architecture employs a symmetrical grid of small yet
powerful cells connected to a flexible busing network.

Devices range in size from 5,000 to 50,000 usable gates in the family, and have 256 to 2,304
registers. The AT40K/AT40KLV series FPGAs utilize a reliable 0.6µm single-poly, CMOS
process. Multiple design entry methods are supported. The Atmel architecture was
developed to provide the highest levels of performance, functional density and design
flexibility in an FPGA. The cells in the Atmel array are small, efficient and can implement any

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 72

pair of Boolean functions of (the same) three inputs or any single Boolean function of four
inputs. The cell’s small size leads to arrays with large numbers of cells, greatly multiplying
the functionality in each cell.

12.4.1.4 Cache Logic Design
The AT40K/AT40KLV, AT6000 and FPSLIC families are capable of implementing Cache
Logic (dynamic full/partial logic reconfiguration, without loss of data, on-the-fly) for building
adaptive logic and systems. As new logic functions are required, they can be loaded into the
logic cache without losing the data already there or disrupting the operation of the rest of the
chip; replacing or complementing the active logic. The AT40K/AT40KLV can act as a
reconfigurable coprocessor.

8.4.2. AT6000 FPGA Family
AT6000 Series [62] SRAM-based Field Programmable Gate Arrays (FPGAs) are ideal for
use as reconfigurable coprocessors and implementing compute-intensive logic. Supporting
system speeds greater than 100 MHz and using a typical operating current of 15 to 170 mA,
AT6000 Series devices are ideal for high-speed, compute-intensive designs. These FPGAs
are designed to implement Cache Logic, which provides the user with the ability to
implement adaptive hardware and perform hardware acceleration. The patented AT6000
Series architecture employs a symmetrical grid of small yet powerful cells connected to a
flexible busing network.

Devices range in size from 4,000 to 30,000 usable gates, and 1024 to 6400 registers. Pin
locations are consistent throughout the AT6000 Series for easy design migration. High-I/O
versions are available for the lower gate count devices. AT6000 Series FPGAs utilize a
reliable 0.6 µm single-poly, double-metal CMOS process Multiple design entry methods are
supported. The Atmel architecture was developed to provide the highest levels of
performance, functional density and design flexibility in an FPGA. The cells in the Atmel
array are small, very efficient and contain the most important and most commonly used logic
and wiring functions. The cell’s small size leads to arrays with large numbers of cells, greatly
multiplying the functionality in each cell. A simple, high-speed busing network provides fast,
efficient communication over medium and long distances.

12.4.2.1 Symmetrical Array
At the heart of the Atmel architecture is a symmetrical array of identical cells. The array is
continuous and completely uninterrupted from one edge to the other, except for bus
repeaters spaced every eight cells. In addition to logic and storage, cells can also be used as
wires to connect functions together over short distances and are useful for routing in tight
spaces.

12.4.2.2 Cell Structure
The Atmel cell is simple and small and yet can be programmed to perform all the logic and
wiring functions needed to implement any digital circuit. Its four sides are functionally
identical, so each cell is completely symmetrical. The Atmel AT6000 Series cell structure is
shown in Figure 43.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 73

Figure 43: The AT6000 Series Cell Structure

In addition to the four local-bus connections, a cell receives two inputs and provides two
outputs to each of its North (N), South (S), East (E) and West (W) neighbors. These inputs
and outputs are divided into two classes: “A” and “B”. There is an A input and a B input from
each neighboring cell and an A output and a B output driving all four neighbors. Between
cells, an A output is always connected to an A input and a B output to a B input. Within the
cell, the four A inputs and the four B inputs enter two separate, independently configurable
multiplexers. Cell flexibility is enhanced by allowing each multiplexer to select also the logical
constant “1”. The two multiplexer outputs enter the two upstream AND gates.

12.4.2.3 Logic States
The Atmel cell implements a rich and powerful set of logic functions, stemming from 44
logical cell states which permutate into 72 physical states. Some states use both A and B
inputs. Other states are created by selecting the “1” input on either or both of the input
multiplexers.

8.5. QUICKLOGIC
The available FPGA families from QuickLogic are the Eclipse, pASIC 1, pASIC 2, pASIC 3,
and the QuickRam, and will be described briefly below.

8.5.1. Eclipse Family
The Eclipse [63] features an enhanced Supercell with an additional D flip-flop register and
associated control logic. The Eclipse logic Supercell structure is similar to the 0.35 mm
QuickLogic logic cell with the addition of a second register. Both registers share CLK, SET
and RESET inputs. The second register has a two-to-one multiplexer controlling its input.
The register can be loaded from the NZ output or directly from a dedicated input. The Eclipse
SuperCell is shown in Figure 44.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 74

Figure 44: (a) Eclipse SuperCell, (b) pASIC 1 Internal Logic Cell, and (c) pASIC 3 Family
Logic Cell

The complete logic cell consists of two 6-input AND gates, four two-input AND gates, seven
two-to-one multiplexers and two D flip-flop with asynchronous SET and RESET controls. The
cell has a fan-in of 30 (including register control lines) and fits a wide range of functions with
up to 17 simultaneous inputs. It has 6 outputs; 4 combinatorial and 2 registered. The high
logic capacity and fan-in of the logic cell accommodate many user functions with a single
level of logic delay while other architectures require two or more levels of delay.

12.5.1.1 RAM Modules
The Eclipse Family includes multiple dual-port 2,304-bit RAM modules for implementing
RAM, ROM and FIFO functions. Each module is user-configurable into four different block
organizations. Modules can also be cascaded horizontally to increase their effective width or
vertically to increase their effective depth. The RAM can also be configured as a modified
Harvard Architecture, similar to those found in DSPs. The number of RAM modules varies
from 12 to 36 blocks within the Eclipse family, for a total of 46.1Kbits to 82.9Kbits of RAM.
Using two "mode" pins, designers can configure each module into 128 x 18 (Mode 0), 256 x
9 (Mode 1), 512 x 4 (Mode 2), or 1024 x 2 blocks (Mode 3). The blocks are also easily
cascadable to increase their effective width and/or depth.

12.5.1.2 Routing
Six types of routing resources are provided, as in the QuickRAM devices: short (sometimes
called segmented) wires, dual wires, quad wires, express wires, distributed networks and
defaults. Short wires span the length of 1 logic cell, always in the vertical direction. Dual
wires run horizontally and span the length of 2 logic cells. Short and dual wires are
predominantly used for local connections. They effectively traverse one or two logic cells
utilize an interconnect element to continue to the next cell or to change direction. Quad wires
have passive link interconnect elements every fourth logic cell. As a result, these wires are
typically used to implement intermediate length or medium fan-out nets. Express lines run
the length of the programmable logic uninterrupted. Each of these lines has a higher
capacitance than a quad, dual or short wire, but less capacitance than shorter wires
connected to run the length of the device. The resistance will also be lower because the
express wires don't require the use of "pass" links. Express wires provide higher
performance for long routes or high fan-out nets. Distributed networks are described in the
clock/control section. These wires span the programmable logic, and are driven by "column
clock" buffers. Each dedicated clock network pin buffer is hard wired to a set of column clock
buffers. Five global networks "global buffers" can be connected through special purpose

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 75

routing called "HSCK lines" to either a dedicated pin buffer, or any vertical routing wire
crossing it.

8.5.2. pASIC 1 Family
The pASIC 1 Family [64] of very-high-speed CMOS user-programmable ASIC (pASIC)
devices is based on the first FPGA technology to combine high speed, high density and low
power in a single architecture. pASIC 1 devices range in density from 1,000 to 8,000 usable
ASIC gates, equivalent to 2,000 to 14,000 usable programmable (PLD) gates. All pASIC 1
devices are based on an array of highly flexible logic cells which have been optimized for
efficient implementation of high-speed arithmetic, counter, data path, state machine, random
and glue logic functions. Logic cells are configured and interconnected by rows and columns
of routing metal and ViaLink metal-to-metal programmable-via interconnect elements.
ViaLink technology provides a nonvolatile, permanently programmed custom logic function
capable of operating at counter speeds of over 150 MHz. Internal logic cell nominal worst
case delays are under 2 ns and total input to output combinatorial logic delays are under 8
ns. This permits high-density programmable devices to be used with today’s fastest
microprocessors, while consuming a fraction of the power and board area of PAL/GAL,
CPLD and discrete logic solutions.

12.5.2.1 Architecture
The pASIC 1 device architecture consists of an array of user-configurable logic building
blocks, called logic cells and shown in Figure 44, set in a grid of metal wiring channels similar
to those of a gate array. Through ViaLink elements located at the wire intersections, the
output of any cell may be programmed to connect to the input of any other cell. This regular
and orthogonal interconnect makes the pASIC 1 architecture similar in structure and
performance to a metal masked gate array. Abundant wiring resources permit 100%
automatic placement and routing of designs using up to 100% of the logic cells. The pASIC 1
internal logic cell is a general-purpose building block that can implement most TTL and gate
array macro library functions. It has been optimized to maintain the inherent speed
advantage of the ViaLink technology while ensuring maximum logic flexibility. The logic cell
consists of two 6-input AND gates, four 2-input AND gates, three 2-to-1 multiplexers and a D
flip-flop. Multiple outputs from the logic cell allow the automatic place and route software to
pack unrelated logic functions into a single cell to maximize silicon utilization. The pASIC 1
logic cell is unique among FPGA architectures in that it offers up to 14-input-wide gating
functions. This allows many logic functions to be accomplished in a single cell delay that
require two or more delays with other architectures. It can implement all possible Boolean
transfer functions of up to three variables as well as many functions of up to 14 variables The
multiplexer output feeds the D-type flip-flop which can also be configured to provide J-K, S-R,
or T-type functions. Two independent SET and RESET inputs can be used to
asynchronously control the output condition. Three types of input and output structures are
provided on pASIC 1 devices to configure buffering functions at the external pads. They are
the Bi-directional Input/Output (I/O) cell, the Dedicated Input (I) cell and the Clock Input cell
(I/CLK).

12.5.2.2 Technology
The pASIC 1 Family is based on a 0.65 micron high-volume CMOS fabrication process with
the ViaLink programmable-via antifuse technology inserted between the metal deposition
steps.

8.5.3. pASIC2
QuickLogic’s pASIC 2 family [65] includes seven FPGAs ranging from 5,000 to over 16,000
usable PLD gates and 84 to 256 package pins. This family employs a unique combination of
architecture, technology, and software tools to provide high speed, high usable density and
flexibility in the same devices. The flexibility and speed make pASIC 2 devices an efficient

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 76

and high-performance silicon solution for designs described using HDLs such as Verilog and
VHDL, as well as schematics.

Devices in the pASIC 2 family are based on an array of highly flexible logic cells which have
been optimized to efficiently implement a wide range of logic functions at high speed. Each
cell can implement one large function, or five independent smaller functions. This flexibility
gives synthesized designs efficient logic utilization plus high performance within the same
device. Logic cells are configured and interconnected by rows and columns of routing metal
and ViaLink metal-to-metal programmable-via antifuses. Due to their small size, ViaLink
antifuses may be placed at every desired routing track junction. In the pASIC 2 family, the
benefits of ViaLink technology are further enhanced by a three-layer metal process which
allows all routing and programmable elements to be placed above, rather than adjacent to
the logic cells.

All devices share a common architecture and development software to allow easy transfer of
designs from one product to another. Different devices in the same package are pin-
compatible with one another, permitting easy design migration within the family. In addition,
pASIC 2 devices are architectural supersets of pASIC 1 devices, providing a means for users
to upgrade existing designs by integrating additional logic or increasing performance.

The pASIC 2 family contains devices covering a wide spectrum of I/O and density
requirements. The seven members range from 192 logic cells to 672 logic cells arranged in
regular arrays. The single lines between logic cells represent channels containing up to thirty
wires, which are actually placed above the logic cells in the physical devices.

QuickLogic pASIC 2 devices are fabricated on a conventional high-volume CMOS process.
The base technology is a 0.65 micron, n-well CMOS technology with a single polysilicon
layer and three layers of metal interconnect. The only deviation from the standard process
flow occurs when a single mask is used for the amorphous silicon to form the ViaLink
elements between the metal deposition steps.

8.5.4. pASIC 3
The pASIC 3 family [66] is fabricated on a 0.35mm 4-layer metal process using QuickLogic’s
patented ViaLink technology to provide a unique combination of high performance, high
density, low cost, and complete flexibility.

Devices in the pASIC 3 family are based on an array of highly flexible logic cells which have
been optimized to efficiently implement a wide range of logic functions at high speed. Each
cell can implement one large function, five independent smaller functions, or any combination
in-between. Logic cells are configured and interconnected by rows and columns of routing
metal and ViaLink metal-to-metal antifuses. Because ViaLink antifuses are small, fast, and
are placed between metal layers above the logic cells (rather than on the silicon substrate),
they can be located at every routing track junction. This approach allows abundant
interconnect resources with small die sizes.

12.5.4.1 Logic Cell and RAM Module Organization
The pASIC 3 family contains devices covering a wide spectrum of density requirements. The
five members range from 96 logic cells to 1,584 logic cells arranged in regular two-
dimensional arrays. Horizontal and vertical routing channels containing up to thirty wires run
above the logic cells to connect functions. Each logic cell, which is shown in Figure 44,
includes one pre-configured register, plus the logic to implement an additional independent
latch. Therefore, users have up to three fully independent flip-flops for every two logic cells.
Since each input and I/O cell also include a register, the total number of available flip-flops in
a device equals the number of logic cells multiplied by 1.5 plus the total number of I/O pins.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 77

12.5.4.2 Technology
QuickLogic pASIC 3 devices are fabricated on a conventional high-volume CMOS process.
The base technology is a 0.35 micron, n-well CMOS technology with a single polysilicon
layer and four layers of metal interconnect. The only deviation from the standard process
flow occurs when a single mask is used for the amorphous silicon to form the ViaLink
elements between the metal deposition steps. As the size of a ViaLink via is identical to that
of a standard metal interconnect via, programmable elements can be packed very densely.
The packing density is limited only by the minimum dimensions of the metal-line to metal-line
pitch. As a result, pASIC 3 devices typically have four to six times the number of
programmable elements per usable logic gate, with smaller die sizes, than do SRAM-based
FPGAs. Furthermore, the ViaLink technology can easily scale to smaller process geometries
in the future.

12.5.4.3 Array of Logic Cells
The pASIC 3 device architecture consists of an array of user-configurable logic building
blocks, called logic cells, set beneath a grid of metal wiring channels similar to those of a
gate array. Through ViaLink elements located at the wire intersections, the output(s) of any
cell may be programmed to connect to the input(s) of any other cell. By moving all
interconnect resources above the logic cells, die sizes are less than half of two-layer metal
technologies. The regular and orthogonal interconnect makes the pASIC 3 architecture
similar in structure and performance to a metal-masked gate array. It also ensures that
system operating speed is far less sensitive to partitioning and placement decisions, as
minor revisions to a logic design can easily be incorporated without re-routing problems,
resulting in only small changes in performance. The pASIC 3 logic cell is a general-purpose
building block that can implement most TTL and gate array macro library functions. It is
equivalent to the pASIC 2 cell, allowing easy design upgrades. The cell has been optimized
to maintain the inherent speed advantage of the ViaLink technology while ensuring maximum
logic flexibility. Since the logic cell has multiple outputs, it can implement one large function
or multiple smaller independent functions in parallel. The function of a logic cell is determined
by the logic levels applied to the inputs of the AND gates and multiplexers.

The complete pASIC 3 logic cell consists of two 6-input AND gates, four two-input AND
gates, six two-to-one multiplexers and one D flip-flop with asynchronous set and reset
controls. The cell has a fan-in of 29 (including register control lines) and fits a wide range of
functions with up to 16 simultaneous inputs.

The pASIC 3 macro library contains more than 400 of the most frequently used logic
functions optimized to fit the logic cell architecture. A detailed understanding of the logic cell
is therefore not necessary to design successfully with pASIC 3 devices. CAE tools will
automatically map a conventional logic schematic or HDL file into a device and provide
excellent performance and utilization.

12.5.4.4 Routing
Five types of routing resources are provided in pASIC 3 devices: segmented wires, dual
wires, express wires, quad wires, and distributed networks. Segmented wires run vertically
throughout the routing array and dual wires run horizontally. Segmented and dual wires are
predominantly used for local connections. They effectively traverse one or two logic cells and
then use a ViaLink element to continue to the next cell or to change direction. Their low
resistance and capacitance provide high performance for local logic cell connections.

8.5.5. QuickRam
Devices in the QuickRAM family [67] are based on an array of highly flexible logic cells which
have been optimized to efficiently implement a wide range of logic functions at high speed.
Each cell can implement one large function, five independent smaller functions, or any
combination in-between.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 78

12.5.5.1 Logic Cell and RAM Module Organization
The QuickRAM family contains devices covering a wide spectrum of density requirements.
The five members range from 96 logic cells to 1,584 logic cells arranged in regular two-
dimensional arrays. Horizontal and vertical routing channels containing up to thirty wires run
above the logic cells to connect functions. Each logic cell includes one pre-configured
register, plus the logic to implement an additional independent latch.

In addition to the logic cell and I/O cell registers, the QuickRAM devices include multiple
dual-port 1,152-bit RAM modules for implementing FIFO, RAM and ROM functions. Each
module is user-configurable into 64x18, 128x9, 256x4, or 512x2 blocks. Modules can also be
cascaded horizontally to increase their effective width or vertically to increase their effective
depth.

12.5.5.2 Technology
QuickLogic QuickRAM devices are fabricated on a conventional high-volume CMOS
process. The base technology is a 0.35 �m, n-well CMOS technology with a single
polysilicon layer and four layers of metal interconnect. The only deviation from the standard
process flow occurs when a single mask is used for the amorphous silicon to form the
ViaLink elements between the metal deposition steps.

12.5.5.3 Array of Logic Cells
The QuickRAM device architecture consists of an array of user-configurable logic building
blocks, called logic cells, set beneath a grid of metal wiring channels similar to those of a
gate array. Through ViaLink elements located at the wire intersections, the output(s) of any
cell may be programmed to connect to the input(s) of any other cell. By moving all
interconnect resources above the logic cells, die sizes are less than half of two-layer metal
technologies. The regular and orthogonal interconnect makes the QuickRAM architecture
similar in structure and performance to a metal-masked gate array. It also ensures that
system operating speed is far less sensitive to partitioning and placement decisions, as
minor revisions to a logic design can easily be incorporated without re-routing problems,
resulting in only small changes in performance. The QuickRAM logic cell is a general-
purpose building block that can implement most TTL and gate array macro library functions.
It is equivalent to the pASIC 2 cell, allowing easy design upgrades. The cell has been
optimized to maintain the inherent speed advantage of the ViaLink technology while ensuring
maximum logic flexibility. Since the logic cell has multiple outputs, it can implement one large
function or multiple smaller independent functions in parallel.

The function of a logic cell is determined by the logic levels applied to the inputs of the AND
gates and multiplexers. ViaLink sites located on signal wires tied to the gate inputs perform
the dual role of configuring the logic function of a cell and establishing connections between
cells. The complete QuickRAM logic cell consists of two 6- input AND gates, four two-input
AND gates, six twoto-one multiplexers and one D flip-flop with asynchronous set and reset
controls. The cell has a fan-in of 29 (including register control lines) and fits a wide range of
functions with up to 16 simultaneous inputs. The high logic capacity and fan-in of the logic
cell accommodate many user functions with a single level of logic delay (resulting in high
performance) while other architectures require two or more levels of delay.

12.5.5.4 Routing
Five types of routing resources are provided in Quick-RAM devices: segmented wires, dual
wires, express wires, quad wires, and distributed networks. Segmented wires run vertically
throughout the routing array and dual wires run horizontally. Segmented and dual wires are
predominantly used for local connections. They effectively traverse one or two logic cells and
then use a ViaLink element to continue to the next cell or to change direction. Their low
resistance and capacitance provide high performance for local logic cell connections.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 79

8.6. Leopard Logic
At this paragraph will be described the HyperBlock FP from Leopard Logic.

8.6.1. HyperBlock FP
The HyperBlox FP family [91] of embedded FPGA cores allows the combination of the
performance and density of standard cells with the benefits of field programmability. It is
available in 0.18 �m and 0.13 �m CMOS technology. The core sizes range from 3,000 to
48,000 ASIC gates, while the typical system speeds are between 200 and 400 MHz. The
HyperBlox FP cores provide some built-in functions for easy system integration and reliable
operation:

• The Configuration Loader which allows a 32-bit word configuration data to be

downloaded for fast and easy configuration. Partial reconfiguration is also supported.
• The Configuration Monitor checks continuously the bitstream integrity during operation to

ensure maximum reliability.
• Every HyperBlox core has a bult-in self test controller for fast and reliable manufacturing

testing.

The HyperBlox FP family has 5 products, that are described in Table 5.

HyperBlox
Core

Number
of LUTs

Number
of F/F

User I/O FPGA
System
Gates

ASIC
Gates
(2-NAND)

FP_256 256 512 512 24,000 3,000
FP_512 512 1,024 1,024 48,000 6,000
FP_1k 1,024 2,048 2,048 96,000 12,000
FP_2k 2,048 4,096 4,096 192,000 24,000
FP_4k 4,096 8,192 8,192 384,000 48,000

Table 5: Products of the HyperBlox FP family

8.7. Lattice
The Lattice is the last one of the FPGA vendors, whose products are described in this report.
The available families from Lattice are the ispXPGA, ORCA2, ORCA3, and ORCA4.

8.7.1. ispXPGA

12.7.1.1 Architecture
The ispXPGA architecture [87] is a symmetrical architecture consisting of an array of
Programmable Function Units (PFUs) enclosed by Input Output Groups (PICs) with columns
of sysMEM Embedded Block RAMs (EBRs) distributed throughout the array. Figure 45
illustrates the ispXPGA architecture. Each PIC has two corresponding sysIO blocks, each of
which includes one input and output buffer. On two sides of the device, between the PICs
and the sysIO blocks, there are sysHSI High-Speed Interface blocks. The symmetrical
architecture allows designers to easily implement their designs, since any logic function can
be placed in any section of the device. The PFUs contain the basic building blocks to create
logic, memory, arithmetic, and register functions. They are optimized for speed and flexibility
allowing complex designs to be implemented quickly and efficiently. The PICs interface the
PFUs and EBRs to the external pins of the device. They allow the signals to be registered
quickly to minimize setup times for high-speed designs. They also allow connections directly
to the different logic elements for fast access to combinatorial functions.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 80

These three components of the architecture are interconnected via a high-speed, flexible
routing array. The routing array consists of Variable Length Interconnect (VLI) lines between
the PICs, PFUs, and EBRs. There is additional routing available to the PFU for feedback and
direct routing of signals to adjacent PFUs or PICs.

Figure 45: The ispXPGA architecture

12.7.1.2 Programmable Function Unit Description
The Programmable Function Unit (PFU) is the basic building block of the ispXPGA
architecture. The PFUs are arranged in rows and columns in the device with PFU (1,1)
referring to (row 1, column 1). Each PFU consists of four Configurable Logic Elements
(CLEs), four Configurable Sequential Elements (CSEs), and a Wide Logic Generator (WLG).
By utilizing these components, the PFU can implement a variety of functions. Table 6 lists
some of the function capabilities of the PFU.

There are 57 inputs to each PFU and nine outputs. The PFU uses 20 inputs for logic, and 37
inputs drive the control logic from which six control signals are derived for the PFU.

Function Capability
Look-up table LUT-4, LUT-5, LUT-6
Wide logic functions Up to 20-input logic functions
Multiplexing 2:1, 4:1, 8:1
Arithmetic logic Dedicated carry chain and booth multiplication logic
Single-port RAM 16x1, 16x2, 16x4, 32x1, 32x2, 64x1
Double-port RAM 16x1, 16x2, 32x1
Shift register 8-bit shift registers (up to 32-bit shift capability)

Table 6: Function Capability of ispXPGA PFU

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 81

12.7.1.3 Configurable Logic Element
The CLE is made up of a four-input Look-up Table (LUT-4), a Carry Chain Generator (CCG),
and a two-input AND gate. The LUT-4 creates various combinatorial and memory elements,
the CCG creates a single one-bit full adder, and the two-input AND gate can expand the
CCG to incorporate Booth Multiplier capability by feeding the output of the AND gate to one
of the inputs of the CCG.

8.7.2. ORCA 2
ORCA Series 2 SRAM-based FPGAs [88] include patented architectural enhancements that
make functions faster and easier to design while conserving the use of PLCs and routing
resources. All devices are offered in a variety of packages, speed grades, and temperature
ranges.

ORCA Series 2 FPGAs consist of two basic elements: Programmable Logic Cells (PLCs)
and Programmable Input/output Cells (PICs). An array of PLCs is surrounded by PICs. Each
PLC contains a Programmable Function Unit (PFU). The PLCs and PICs also contain routing
resources and configuration RAM. All logic is done in the PFU. Each PFU contains four 16-
bit Look-Up Tables (LUTs) and four latches / Flip-Flops (FFs). The LUTs can be programmed
to operate in one of three modes: combinatorial, ripple, or memory. In combinatorial mode,
the LUTs can be programmed to realize realize any four-, five-, or six-input logic functions. In
ripple mode, the high-speed carry logic is used for arithmetic functions, the multiplier
function, or the enhanced data path functions. In memory mode, the LUTs can be used as a
16x4 read/write or read-only memory (asynchronous mode or synchronous mode) or a 16x2
dual-port memory.

The PLC architecture provides a balanced mix of logic and routing that allows a higher
utilized gate/PFU than alternative architectures. The routing resources carry logic signals
between PFUs and I/O pads. The routing in the PLC is symmetrical about the horizontal and
vertical axes. This improves routability by allowing a bus of signals to be routed into the PLC
from any direction. Each PIC is comprised of I/O drivers, I/O pads, and routing resources.
Each I/O can be programmed to be either an input, output, or bidirectional signal. Other
options include variable output slew rates and pull-up or pull-down resistors.

8.7.3. ORCA 3
The ORCA Series 3 [89] FPGAs are a new generation of SRAM-based FPGAs built on the
successful OR2C/TxxA FPGA Series. Designed from the start to be synthesis friendly and to
reduce place and route times while maintaining the complete routability of the ORCA 2C/2T
devices, Series 3 more than doubles the logic available in each logic block and incorporates
system-level features that can further reduce logic requirements and increase system speed.

ORCA Series 3 devices contain many new patented enhancements and are offered in a
variety of packages, speed grades, and temperature ranges. The ORCA Series 3 FPGAs
consist of three basic elements: programmable logic cells (PLCs), programmable
input/output cells (PICs), and system-level features. An array of PLCs is surrounded by PICs.
Each PLC contains a programmable function unit (PFU), a supplemental logic and
interconnect cell (SLIC), local routing resources, and configuration RAM. Most of the FPGA
logic is performed in the PFU, but decoders, PAL-like functions, and 3-state buffering can be
performed in the SLIC. The PICs provide device inputs and outputs and can be used to
register signals and to perform input demultiplexing, output multiplexing, and other functions
on two output signals. Some of the system-level functions include the new microprocessor
interface (MPI) and the programmable clock manager (PCM).

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 82

12.7.3.1 PLC Logic
Each PFU within a PLC contains eight 4-input (16-bit) LUTs, eight latches/Flip-Flops, and
one additional F/F that may be used independently or with arithmetic functions. The PFU is
organized in a twin-quad fashion: two sets of four LUTs and FFs that can be controlled
independently. LUTs may also be combined for use in arithmetic functions using fast-carry
chain logic in either 4-bit or 8-bit modes. The carry-out of either mode may be registered in
the ninth FF for pipelining. Each PFU may also be configured as a synchronous 32x4 single-
or dual-port RAM or ROM. The F/Fs (or latches) may obtain input from LUT outputs or
directly from invertible PFU inputs, or they can be tied high or tied low. The F/Fs also have
programmable clock polarity, clock enables, and local set/reset. The SLIC is connected to
PLC routing resources and to the outputs of the PFU. It contains 3-state, bidirectional buffers
and logic to perform up to a 10-bit AND function for decoding, or an AND-OR with optional
INVERT (AOI) to perform PAL-like functions. The 3-state drivers in the SLIC and their direct
connections to the PFU outputs make fast, true 3-state buses possible within the FPGA,
reducing required routing and allowing for real world system performance.

12.7.3.2 PIC Logic
Series 3 PIC addresses the demand for ever-increasing system clock speeds. Each PIC
contains four programmable inputs/outputs (PIOs) and routing resources. On the input side,
each PIO contains a fastcapture latch that is clocked by an ExpressCLK. This latch is
followed by a latch/Flip-Flop that is clocked by a system clock from the internal general clock
routing. The combination provides for very low setup requirements and zero hold times for
signals coming on-chip. It may also be used to demultiplex an input signal, such as a
multiplexed address/data signal, and register the signals without explicitly building a
demultiplexer. Two input signals are available to the PLC array from each PIO, and the
ORCA 2C/2T capability to use any input pin as a clock or other global input is maintained. On
the output side of each PIO, two outputs from the PLC array can be routed to each output
flip-flop, and logic can be associated with each I/O pad. The output logic associated with
each pad allows for multiplexing of output signals and other functions of two output signals.
The output FF in combination with output signal multiplexing, is particularly useful for
registering address signals to be multiplexed with data, allowing a full clock cycle for the data
to propagate to the output. The I/O buffer associated with each pad is very similar to the
ORCA 2C/2T Series buffer with a new, fast, open-drain option for ease of use on system
buses.

12.7.3.3 Routing
The abundant routing resources of the ORCA Series 3 FPGAs are organized to route signals
individually or as buses with related control signals. Clocks are routed on a low-skew, high-
speed distribution network and may be sourced from PLC logic, externally from any I/O pad,
or from the very fast ExpressCLK pins. Express-CLKs may be glitchlessly and independently
enabled and disabled with a programmable control signal using the new StopCLK feature.
The improved PIC routing resources are now similar to the patented intra-PLC routing
resources and provide great flexibility in moving signals to and from the PIOs. This flexibility
translates into an improved capability to route designs at the required speeds when the I/O
signals have been locked to specific pins.

12.7.3.4 Configuration
The FPGA’s functionality is determined by internal configuration RAM. The FPGA’s internal
initialization/configuration circuitry loads the configuration data at powerup or under system
control. The RAM is loaded by using one of several configuration modes. The configuration
data resides externally in an EEPROM or any other storage media. Serial EEPROMs provide
a simple, low pin count method for configuring FPGAs. A new, easy method for configuring
the devices is through the microprocessor interface.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 83

8.7.4. ORCA 4
The ORCA Series 4 [90] architecture is a new generation of SRAM-based programmable
devices from Lattice. Designed with networking applications in mind, the Series 4 family
incorporates system-level features that can further reduce logic requirements and increase
system speed. ORCA Series 4 devices contain many new patented enhancements and are
offered in a variety of packages, and speed grades. The hierarchical architecture of the logic,
clocks, routing, RAM and system level blocks create a seamless merge of FPGA and ASIC
designs. Modular hardware and software technologies enable system-on-chip integration
with True Plug and Play design implementation. The architecture consists of four basic
elements: programmable logic cells (PLCs), programmable input/output cells (PIOs),
embedded block RAMs (EBRs), and system-level features. A high-level block diagram
consists of elements that are interconnected with a rich routing fabric of both global and local
wires. An array of PLCs and its associated resources are surrounded by common interface
blocks (CIBs) which provide an abundant interface to the adjacent PIOs or system blocks.
Routing congestion around these critical blocks is eliminated by the use of the same routing
fabric implemented within the programmable logic core. PICS provide the logical interface to
the PIOs which provide the boundary interface off and onto the device. Also the interquad
routing blocks separate the quadrants of the PLC array and provide the global routing and
clocking elements. Each PLC contains a PFU, SLIC, local routing resources, and
configuration RAM. Most of the FPGA logic is performed in the PFU, but decoders, PAL-like
functions, and 3-state buffering can be performed in the SLIC.

The PIOs provide device inputs and outputs and can be used to register signals and to
perform input demultiplexing, output multiplexing, uplink and downlink functions, and other
functions on two output signals. The Series 4 architecture integrates macrocell blocks of
memory known as EBR. The blocks run horizontally across the PLC array and provide
flexible memory functionality. Large blocks of 512x18 quad-port RAM compliment the
existing distributed PFU memory. The RAM blocks can be used to implement RAM, ROM,
FIFO, multiplier, and CAM, typically without the use of PFUs for implementation. System-
level functions such as a microprocessor interface, PLLs, embedded system bus elements
(located in the corners of the array), the routing resources, and configuration RAM are also
integrated elements of the architecture. For Series 4 FPSCs, all PIO buffers and logic are
replaced by the embedded logic core on the side of the device. The four PLLs on the right
side of the device (two in the upper right corner and two in the lower right corner) are
removed and the embedded system bus extends into the FPSC section.

12.7.4.1 Programmable Logic Cells
The PLCs are arranged in an array of rows and columns. The location of a PLC is indicated
by its row and column so that a PLC in the second row and the third column is R2C3. The
array of actual PLCs for every device begins with R3C2 in all Series 4 generic FPGAs. PIOs
are located on all four sides of the FPGA. Every group of four PIOs on the device edge has
an associated PIC. The PLC consists of a PFU, SLIC, and routing resources. Each PFU
within a PLC contains eight 4-input (16-bit) LUTs, eight latches/Flip-Flops, and one additional
F/F that may be used independently or with arithmetic functions. The PFU is the main logic
element of the PLC, containing elements for both combinatorial and sequential logic.
Combinatorial logic is done in LUTs located in the PFU. The PFU can be used in different
modes to meet different logic requirements. The LUTs twin-quad architecture provides a
configurable medium-/large-grain architecture that can be used to implement from one to
eight independent combinatorial logic functions or a large number of complex logic functions
using multiple LUTs. The flexibility of the LUT to handle wide input functions, as well as
multiple smaller input functions, maximizes the gate count per PFU while increasing system
speed. The PFU is organized in a twin-quad fashion: two sets of four LUTs and F/Fs that can
be controlled independently. Each PFU has two independent programmable clocks, clock
enables, local set/reset, and data selects. LUTs may also be combined for use in arithmetic
functions using fast-carry chain logic in either 4-bit or 8-bit modes. The carry-out of either

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 84

mode may be registered in the ninth FF for pipelining. Each PFU may also be configured as
a synchronous 32x4 single- or dual-port RAM or ROM. The F/Fs (or latches) may obtain
input from LUT outputs or directly from invertible PFU inputs, or they can be tied high or tied
low. The F/Fs also have programmable clock polarity, clock enables, and local set/reset.

The LUTs can be programmed to operate in one of three modes: combinatorial, ripple, or
memory. In combinatorial mode, the LUTs can realize any 4-, 5-, or 6-input logic function and
many multilevel logic functions using ORCA’s SWL connections. In ripple mode, the high-
speed carry logic is used for arithmetic functions, comparator functions, or enhanced data
path functions. In memory mode, the LUTs can be used as a 32x4 synchronous read/write or
ROM, in either single- or dual-port mode. The SLIC is connected from PLC routing resources
and from the outputs of the PFU. It contains eight 3-state, bidirectional buffers and logic to
perform up to a 10-bit AND function for decoding, or an AND-OR with optional INVERT to
perform PAL-like functions. The 3-state drivers in the SLIC and their direct connections from
the PFU outputs make fast, true 3-state buses possible within the FPGA.

8.8. Summary
The Table 7 summarizes some of the main characteristics about the FPGAs that have been
described previously at this section. The comparison of the FPGAs is based on the
technology maturity, the design flow, the technology implementation, the technology
portability, the available data-sheet information and their testability.

FPGA Technology

Maturity
Design Flow Technology

Implementation
Technology
Portability

Data-sheet
Information

Testability

Altera

Chips and
development
board
available

Complete
design tools,
Third party
EDA tools
support

Standard SRAM
process

Firm,
HardCopy
devices can
be used to
transfer
from PLD to
ASIC

Complete

JTAG and PC
trace
debugging,
graphical view
of floor
planning

Xilinx

Chips and
development
board
available

Third party
EDA tools
support

Standard SRAM
process

Firm Complete
JTAG
debugging
environment

Atmel Chips
available

ASIC design
flow

Standard SRAM
FPGA and RISC
microcontroller,
standard
peripherals

No Enough

Co-verification
environment,
Source-level
debugging

Actel Chips
available

Compatible
design flow
with ASIC,
third party
EDA tools
support

Standard CMOS
SRAM
technology

Yes, leading
silicon
foundries
support

Enough
Built-in self
test interface

Table 7: Comparison between some the most well-known FPGAs

9. Academic Software tools for designing fine-grain platforms

9.1. Introduction
A typical programmable logic design involves three steps:

• Design entry

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 85

• Design implementation
• Design verification

All of the three steps, which are shown in Figure 46, are described briefly below.

Figure 46: Traditional Design Synthesis Approach and the Modeling Approach

9.1.1. Design Entry
A variety of tools are available to accomplish the design entry step. Some designers prefer to
use their favorite schematic entry package while others prefer to specify their design using a
hardware description language such as Verilog, VHDL, or ABEL. Others prefer to mix both
schematic and language-based entry in the same design. There has been an on-going battle
as to which method is best. Traditionally, schematic-based tools provided experienced
designers more control over the physical placement and partitioning of logic on the device.
However, this extra tailoring took time. Likewise, language-based tools allowed quick design
entry but often at the cost of lower performance or density. Synthesis for language-based
designs has significantly improved in the last few years, especially for FPGA design. In either
case, learning the architecture and the tool helps you to create a better design. Technology-
ignorant design is very possible, but at the expense of density and performance.

9.1.2. Design Implementation
After the design is entered using schematic capture or synthesized, it is ready for
implementation on the target device. The first step involves converting the design into the
format supported internally by the tools. Most implementation tools read "standard" netlist
formats and the translation process is usually automatic. Once translated, the tools perform a
design rule check and optimization on the incoming netlist. Then the software partitions the
designs into the logic blocks available on the device. Partitioning is an important step for
FPGAs, as good partitioning results in higher routing completion and better performance for
FPGAs. After that the implementation software searches for the best location to place the

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 86

logic block among all of the possibilities. The primary goal is to reduce the amount of routing
resources required and to maximize system performance. This is a compute intensive
operation for FPGAs. The implementation software monitors the routing length and routing
track congestion while placing the blocks. In some systems, the implementation software
also tracks the absolute path delays in order to meet user-specified timing constraints.
Overall, the process mimics printed circuit board place and route. When the placement and
routing process is complete, the software creates the binary programming file used to
configure the device. In large or complex applications, the software may not be able to
successfully place and route the design. Some packages allow the software to try different
options or to run much iteration in an attempt to obtain a fully-routed design. Also, some
vendors supply floor-planning tools to aid in physical layout. Layout is especially important for
larger FPGAs because some tools have problems recognizing design structure. A good floor-
planning tool allows the designer to convey this structure to the place and route software.

9.1.3. Verification
Design verification occurs at various levels and steps throughout the design. There are a few
fundamental types of verification as applied to programmable logic. Functional simulation is
performed in conjunction with design entry, but before place and route, to verify correct logic
functionality. Full timing simulation must wait until after the place and route step. While
simulation is always recommended, programmable logic usually does not require exhaustive
timing stimulation like gate arrays. In a gate array, full timing simulation is important because
the devices are mask-programmed and therefore not changeable. In a gate array, you can
not afford to find a mistake at the silicon level. One successful technique for programmable
logic design is to functionally simulate the design to guarantee proper functionality, verify the
timing using a static timing calculator, and then verify complete functionality by testing the
design in the system. Programmable logic devices have a distinct advantage over gate
arrays. Changes are practically free. With in-system programmable (ISP) devices, such as
SRAM based FPGAs, changes are possible even while the parts are mounted in the system.
Using in-system verification techniques, the design is verified at full speed, with all the other
hardware and software. Creating timing simulation vectors to match these conditions would
be extremely difficult and time consuming. Some of the device vendors supply additional in-
system debugging capabilities.

9.2. Public Domain Tools
This paragraph describes the available public domain cad tools that cover a range of
architectures. Those tools are open source, which means the source code of them is
available in order to make any changes targeting improvement of their functionality. The
main providers of those tools are the UCLA and the Toronto FPGA Research Group.

9.2.1. Tools from UCLA
The available CAD Tools from the UCLA could be used for interconnection, technology
mapping and as a multilayer router. Those tools are:

13.2.1.1 TRIO
TRIO [68] stands for Tree, Repeater, and Interconnect Optimization. It includes many
optimization engines in order to perform Routing-tree construction, Buffer (repeater)
insertion, Device and wire sizing, and Spacing. TRIO uses two types of models to compute
the device delay and also two types of interconnect capacitance models.

13.2.1.2 RASP_SYN
RASP_SYN tool [69] is a LUT-based FPGA technology mapping package and is the
synthesis core of the UCLA RASP System. It uses a lot of mapping algorithms, some of them
are the Depth minimization, Depth optimal, Optimal mapping with retiming, Area-delay

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 87

tradeoff, FPGA resynthesis, Simultaneous area delay minimization, Mapping for FPGAs with
embedded memory blocks for area minimization while maintaining the delay, Delay optimal
mapping for heterogenous FPGAs, Delay-oriented mapping for heterogenous FPGAs with
bounded resources, Performance-driven mapping for PLA with area/delay trade-offs,
Simultaneous logic decomposition with technology mapping. The first step of the entire flow
of RASP_SYN package involves the gate decomposition, in order to get K-bounded circuit,
where K is the fan-in limit of LUTs of the target architecture. Then, run the generic LUT
mapping, and the post-processing mainly for area reduction. Finally, takes place the
architecture specific mapping.

13.2.1.3 IPEM
IPEM [70] is another tool from the UCLA which provides a set of procedures that estimate
interconnect performance under various performance optimization algorithms for deep
submicron technology. Since it adopts adopting several models derived from corresponding
interconnection optimization algorithms, IPEM is fast and accurate. Also it has the advantage
that the users can easily use it with its ANSI C interface and library. The output of this tool
produces considering interconnect optimization in logic level synthesis, as well as the
interconnect planning.

13.2.1.4 MINOTAUR
The last available tool from UCLA is the MINOTAUR [71] which is a performance driven
multilayer general area router. It is used to utilize current high-performance interconnect
optimization results in order to obtain interconnect structures which address delay and signal
integrity required. In addition to that, the tool considers global congestion by routing all layers
simultaneously, and places no restriction on the layers a route may use. Moreover it
combines the freedom and flexibility of maze routing solutions with the global optimization
abilities of the iterative deletion method.

13.2.1.5 FPGAEVA
FpgaEva [72] is a heterogeneous FPGA evaluation tool that incorporates a set of
architecture evaluation related features into a user friendly Java interface. This tool uses the
state-of-the-art mapping algorithms and supports user-specified circuit models like
area/delay of LUTs of different size, while it allows the user to compare multiple
architectures. In addition to that, fpgaEva has the advantage that it is written in Java and so
the remote evaluation mode permits user to run it from any computer.

13.2.1.6 V4R
V4R [73] is an efficient multilayer general area router for MCM and dense PCB designs. It
uses no more than four vias to route every net and yet produces high quality routing
solutions. It combines global routing and detailed routing in one step and produces high
quality detailed routing solutions directly from the given netlist and module placement. As a
result, V4R is independent of net ordering, runs much faster, and uses far less memory
compared to other multilayer general area routers. Compared with the 3D maze router, on
average the V4R router uses 44% fewer vias, 2% less wirelength, and runs 26 times faster.
Compared with the SLICE router, on average the V4R router uses 9% fewer vias, 4% less
wirelength, and runs 3.5 times faster. The V4R also uses fewer routing layers compared to
the 3D maze router and the SLICE router.

9.2.2. Tools from Toronto FPGA Research Group
Apart from the available tools from UCLA there are also CAD tools from the Toronto FPGA
Research Group. Those tools could be used for variable serial data width arithmetic module
generation, for placement, routing and for technology mapping. A briefly description of the
characteristics of those tools is following.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 88

13.2.2.1 PSAC-Gen
The first tool from this group is the PSAC-Gen [74] which stands for Parametrizeable Serial
Arithmetic Core Generator. It is a tool that allows design and implementation of bit-serial and
digit-serial arithmetic circuits using simple arithmetic expressions. In other words, it is used to
easily generate a wide variety of arithmetic circuits involving addition, subtraction, and
multiplication. The PSAC-Gen takes as input an arithmetic circuit description and creates a
set of VHDL files that describe the circuit.

13.2.2.2 Edif2Blif
EDIF is an industry-standard file format that allows EDA tools to communicate with each
other, including the ability to transfer netlists, timing parameters, graphical representations,
and any other data the vendors wish. The Edif2Blif tool [75] converts netlists from the
industry standard Electronic Data Interchange Format (EDIF) to the academic Berkeley Logic
Interchange Format (BLIF).

13.2.2.3 SEGA
SEGA [76] was developed as a tool to evaluate routing algorithms and architectures for
array-based Field-Programmable Gate Arrays. It was written in a modular fashion to permit
flexibility between modifying the routing algorithm and representing the routing architecture.
Both SEGA and CGE solve the detailed routing resource allocation problem for array-based
FPGAs, but SEGA is improved upon CGE in that it considers the speed-performance of the
routed circuit an important goal (instead of just routability).

13.2.2.4 PGARoute
PGARoute [77] is a global router for symmetric FPGAs. In order to make the placement, it
uses the Xaltor program. When the PGARoute finishes its work, it prints out the number of
logic blocks it used in the longest and in the shortest row.

13.2.2.5 Transmogrifier C
Transmogrifier C [78] is a compiler for a simple hardware description language. It takes a
program written in a restricted subset of the C programming language, and produces a netlist
for a sequential circuit that implements the program in a Xilinx XC4000 series FPGA. This
tool could be used in order to produce the reconfiguration bit-stream.

13.2.2.6 Chortle
The next available tool from the Toronto FPGA Research Group is the Chortle [79], which
used to map a Boolean network into a circuit of lookup tables. During this mapping, it
attempts to minimize the number of lookup tables required to implement the Boolean
network.

13.2.2.7 VPR and T-VPACK
VPR [80] is a placement and routing tool for array-based FPGAs that was developed from
Toronto FPGA Research Group. The VPR was written to allow circuits to be placed and
routed on a wide variety of FPGAs. It is used to perform placement and either global routing
or combined global and detailed routing. Although this tool was initially developed for island-
style FPGAs, it can also be used with row-based FPGAs. The cost function that is used in
this tool is the “linear congestion cost” while the router is based on the Pathfinder negotiated
congestion algorithm.

Figure 47 summarizes the CAD flow with the VPR tool.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 89

Figure 47: The CAD flow with the VPR tool

First, a system for sequential circuit analysis (SIS) is used to perform technology-
independent logic optimization on a circuit. Next this circuit is technology-mapped by
FlowMap into four-input look-up tables (4-LUTs) and registers. The Flowpack post-
proccessing algorithm is then run to further optimize the mapping and reduce the number of
LUTs required. VPack packs 4-LUTs and registers together into the logic blocks. The netlist
of logic blocks and a description of the FPGA global routing architecture are then read into
the placement and routing tool. The VPR first places the circuit, and then repeatedly globally
routes (or attempts to route) the circuit with different number of tracks in each channel, or
channel capacities. VPR performs a binary search on the channel capacities, increasing
them after a failed routing and reducing them after a successful one, until it finds the
minimum number of tracks required for the circuit to globally route successfully on a given
global routing architecture.

13.2.2.8 Power Model (VPR)
The Power Model [12] is built on top of the original VRP CAD tool. Figure 48 shows the VPR
framework with the power model, which is part of the area and delay model. An activity
estimator is used to estimate the switching frequencies of all nodes in the circuit. In the
current implementation, the activity estimator and the power model are not used to guide the
placement and routing. It estimates the power consumption only after placement and routing
has occurred.

Figure 48: Framework with power model

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 90

The Power Model includes terms for dynamic power, short-circuit, and leakage power. The
model is flexible enough to target FPGAs with different LUT sizes, different interconnect
strategies (segment length, switch block type, connection flexibility), different cluster sizes
(for a hierarchical FPGA), and different process technologies.

10. Commercial Software tools for designing fine-grain platforms
At this section of the document are described some of the most well-known commercial
software tools for designing fine-grain reconfigurable platforms. These tools are sorted
alphabetically and they are grouped by the vendor company that produces them.

10.1. Actel

10.1.1. Development Software

• Libero v2.2 Integrated Design Environment (IDE): Actel's Libero v2.2 IDE offers best in
class tools from such EDA powerhouses as Mentor Graphics, SynaptiCAD, Synplicity,
and custom developed tools from Actel integrated into a single design package. It
includes also Actel's "Designer" software,. Designer offers premier backend design
support for physical implementation. Libero IDE supports all currently released Actel
devices and is available in three flavors: Libero Silver, Libero Gold, and Libero Platinum.
Some of the Libero’s IDE Software features are the powerful design management and
flow control environment, the easy schematic and HDL design, the VHDL or Verilog
Behavioral, post-synthesis and post-layout simulation capability, the VHDL / Verilog
synthesis, and the physical implementation with place and route.

• Actel Designer R1-2002 Software: The Actel Designer offers an easy to use and flexible
solution for all Actel’s FPGA devices. It gives designers the flexibility to plug and play with
other third party tools. Advanced place-and-route algorithms accommodate the needs of
today’s increasingly complex design and density requirements. The architecture expertise
are built into the tools to create the most optimized design. The Actel Designer software
interface offers both automated and manual flows, with the push-button flow achieving
the optimal solution in the shortest cycle. User driven tools like ChipEdit, PinEdit, and
Timing Constraint Editor give expert users maximum flexibility to drive the place-and-
route tools to achieve the timing required. The Actel Designer software supports all the
established EDA standards like Verilog/VHDL/EDIF netlist formats. I/O handling tools like
I/O-Attribute Editor and PinEdit enable designers to assign different attributes including
capacitance, slew, pin, and hot swap capabilities to individual I/Os. Actel's highly efficient
place and route algorithms allow designers to assign package pins locations during the
design development phase with confidence that the design will place and route as
specified. Silicon Explorer enables the user to debug the design in real time by probing
internal nodes for viewing while the design is running at full speed.

10.1.2. Programming

• Silicon Sculptor II: Silicon Sculptor II is a robust, compact, single device programmer with
stand alone software for the PC. Designed to allow concurrent programming of multiple
units from the same PC, with speeds equivalent to, or faster than those of Actel's
previous programmers. It replaces the Silicon Sculptor I as Actel's programmer of choice.
The Silicon Sculptor II can program all Actel packages, it works with Silicon Sculptor I
adapter modules, and uses the same software as the Silicon Sculptor I. In addition to
that, it could allow self-test in order to test its own hardware extensively.

• Silicon Sculptor I: Silicon Sculptor is a robust, compact, single device programmer with
stand alone software for the PC. Silicon Sculptor 6X Concurrent Actel Device
Programmer, is a six site production oriented device programmer designed to withstand
the high stress demands of high volume production environments. Actel no longer offers

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 91

the Silicon Sculptor I and Silicon Sculptor 6X for sale, as both items have been
discontinued. On the other hand, Actel supports the Silicon Sculptor I and Silicon
Sculptor 6X by continuing to release new software that allows the programming of new
Actel devices.

10.1.3. Verification and Debug

• Silicon Explorer II: Actel's antifuse FPGAs contain ActionProbe circuitry that provides
built-in, no-cost access to every node in a design, enabling 100% real-time observation
and analysis of a device's internal logic nodes without design iteration. Silicon Explorer II
is an easy to use integrated verification and logic analysis tool for the PC, accesses the
probe circuitry that allows designers to complete the design verification process at their
desks.

10.1.4. Device Support
The tools that described above could work properly with product families: ProASICPLUS,
Axcelerator, ProASIC, eX, SX-A, SX, MX, RT, RH, DX, 1200XL, ACT3, ACT2, and ACT1.

10.2. Cadence
FPGA HDL design, synthesis, and verification are more demanding than ever due to today's
complex system-on-programmable-chips (SoPC). There is a need for tools and solutions to
proficiently manage complex FPGA designs, to dramatically increase design efficiencies, and
to significantly reduce system costs and development time. Cadence gives the tools and
solutions to achieve all that. It provides exclusive transaction-level verification capabilities
that can handle HDL schematics-including component-level and block-based decomposition-
along with algorithmic entry, mixed-language, and mixed-signal simulation.

10.2.1. Signal Processing Worksystem (SPW)
The Cadence Signal Processing Worksystem (SPW) starts by building your design with pre-
authored library blocks. Additionally, it is possible to simulate the design and analyze the
results by easily integrating C, C++, or SystemC code or MATLAB models. From there take
the design to application-specific integrated circuit (ASIC) or field-programmable gate array
(FPGA) implementation by describing the hardware architectures using VHDL, Verilog,
SystemC, or graphical-based blocks, and verify and debug it together with previously-
generated testbenches. The generation of register transfer level (RTL) allows targeting an
unparalleled efficient datapath synthesis step.

10.2.2. Cadence FPGA Verification
The Cadence NC-Sim simulation family is the optimum verification solution for high-end
FPGA design. The native compiled simulator offers the freedom to transparently mix VHDL
and Verilog. This makes Cadence NC-Sim the most flexible and adaptable simulator,
allowing seamless integration into today's complex FPGA design flows.

10.2.3. ORCAD Capture
With its fast, universal design entry capabilities, Orcad Capture schematic entry has quickly
become one of the world’s favorite design entry tools. From designing a new analog circuit,
revising schematic diagrams on an existing PCB, or drafting a block diagram of HDL
modules, Orcad Capture provides everything you need to complete and verify the designs
quickly.

10.2.4. Cadence Verilog Desktop
The Cadence Verilog Desktop brings the quality and reliability of the Cadence NC-Verilog
simulator to every desktop. Built on technology from NC-Verilog, the Verilog Desktop is ideal

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 92

for engineering teams that want to leverage the performance and capacity created to validate
multimillion gate ASIC designs. Its unique debug features make Verilog Desktop a perfect fit
for FPGA and CPLD development and verification. It comes complete with the SimVision
Graphical Analysis Environment, and the Signalscan waveform display tool.

10.3. Lattice
The available tool from Lattice is the ispLEVEL, and it will be described below.

10.3.1. ispLEVER v2.0
Lattice’s development tool suite, ispLEVER v2.0, supports all Lattice programmable Logic
products. It includes tools that have developed by both Lattice and leaders in the CAE
industry for Design Entry, Synthesis, Verification / Simulation, Device Fitting, Place & Route
and Device Programming. The Table 8 could be used in order to find a configuration of
ispLEVER, component of ispLEVER, or other software product tailored to meet the designer
needs [83].

Software Device Support Synthesis
Support Simulation

ispLEVER Advanced
All Lattice Programmable
Logic: GPLD, FPGA,
FPSC, GDX

This is the full version of ispLEVER, including every available
option. (PC)

Mentor Graphics

Synplicity

ModelSim

Lattice
Functional
Simulator

ispLEVEL UNIX – advanced
All Lattice Programmable
Logic: CPLD, FPGA,
FPSC, GDX

Includes Lattice device libraries to work with 3rd party EDA
environments. (UNIX)

n/a n/a

ispLEVER Base
Intended for developers who
don’t need the full functionality
provided by ispLEVER
Advanced. (PC)

All CPLD, FPGA, and
GDX

Mentor Graphics

Synplicity (CPLD
only)

ModelSim

Lattice
Functional
Simulator

ispLEVER Starter
Intended for evaluation, and
student users, ispLEVEL Starter
is a complete solution that can
take the CPLD design from
concept through device
programming. (PC)

All CPLD, GDX Synplicity
Lattice
Functional
Simulator

Table 8: Lattice Software

10.4. Mentor Graphics
Here are described the available tools from Mentor Graphics.

10.4.1. Integrated FPGA Design Flow

• FPGA Advantage: FPGA Advantage provides a complete and seamless integration of
design creation, management, simulation and synthesis, empowering the FPGA designer
to have a faster path from concept to implementation.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 93

10.4.2. HDL Design

• HDL Designer: HDL Designer is a complete design and management solution that
includes all the point tools of the HDL Designer Series. It allows to standardize on a
toolset that can be used to share designs and designers. HDL visualization and creation
tools, along with automatic documentation features, foster a consistent style of HDL for
improved design reuse, so it can fully leverage existing IP.

• Debug Detective: Debug Detective takes debugging of HDL designs to the next level. As
a snap-on to ModelSim it renders on-the-fly graphical and tabular views of HDL source
code to aid understanding and control, and delivers interactive debug and analysis
between these views and the ModelSim user interface. This combination enables faster
debug and improved productivity of the HDL design.

• HDL Detective: HDL Detective allows you to understand, visualize and navigate complex
designs without forcing you to change the design methodology. Its fully automated
documentation and communication features provide a push-button process for reusing
HDL designs and commercial IP, so it is possible to visualize the current state of any
design. HDL Detective also automatically generates documentation for newly developed
HDL. By translating HDL to diagrammatic representations, the time it takes to understand
an unfamiliar design can be reduced dramatically.

• HDL Author: HDL Author integrates all the design management features of HDL Pilot,
and adds best-in-class text-based and graphics-based editors to provide a
comprehensive environment for design creation, reuse and management. To
accommodate the fullest range of design preferences, HDL Author is available in three
flavors that give the flexibility to design systems using pure HDL source code, pure
graphics, or a combination of both.

o HDL Author Text provides absolute control over all aspects of the design process.
It includes a Block Editor and an Interface-Based Design (IBD) editor for writing
code directly, creating documentation, following a reuse methodology, and
integrating blocks from multiple locations

o HDL Author Graphics allows intuitive design, using diagrams from which HDL is
automatically generated and documentation is implicitly available. It includes a
Block Editor, State Machine Editor, Flow Chart Editor and Truth Table Editor for
creating a design and documentation using a graphical methodology that’s ideally
suited to designers or organizations that are migrating to HDL methodologies.

o HDL Author Pro includes all the above features in a single, economical solution
that provides complete creative control.

• HDL Pilot: HDL Pilot is a unique, comprehensive environment for managing HDL designs
and data from start to finish. It provides an easy-to-use cockpit from which designers can
launch common tools for developing complex Verilog, VHDL and mixed-HDL designs.
HDL Pilot automatically and incrementally imports and analyzes HDL files to simplify
design navigation, and introduces a simple but effective GUI for the use of version
control. Common operations such as data compilation for simulation and synthesis are
performed automatically. And HDL Pilot can be easily customized to recognize different
data types and tools.

10.4.3. Synthesis

• Precision Synthesis: The Precision Synthesis has a highly intuitive interface that drives
the most advanced FPGA synthesis technology available, delivering correct results
without iterations. Timing constraints, coupled with state-of-the-art timing analysis, guide
optimization when and where it’s needed most, achieving excellent results for even the
most aggressive designs.

LeonardoSpectrum: With one synthesis environment, it is possible to create PLDs, FPGAs,
or ASICs in VHDL or Verilog. LeonardoSpectrum from Mentor Graphics combines push-
button ease of use with the powerful control and optimization features associated with
workstation-based ASIC tools. Users faced with design challenges can access advanced

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 94

synthesis controls within LeonardoSpectrum's exclusive PowerTabs. In addition, the powerful
debugging features and exclusive five-way cross-probing in LeonardoInsight accelerate the
analysis of synthesis results. Final, Leonardo can be also used for HDL synthesis on FPGAs.

10.4.4. Simulation

• ModelSim is one of the most popular and widely used VHDL and mixed-VHDL/Verilog
simulator and the fastest-growing Verilog simulator. ModelSim products are uniquely
architected using technology such as Optimized Direct Compile for faster compile times
and simulation performance, Single Kernel Simulation (SKS) and Tcl/Tk for greater levels
of openness and faster debugging. Exclusive to ModelSim, these innovations result in
leading compiler/simulator performance, complete freedom to mix VHDL and Verilog and
the unmatched ability to customize the simulator. In addition, with each ModelSim
license, designers enjoy Model Technology’s ease of use, debugging support, robust
quality and technical support.

10.5. QuickLogic Development Software
QuickLogic provides support for Windows, Unix, and Web Based comprehensive design
environment ranging from schematic and HDL-base design entry, HDL language editors and
tutorials, logic synthesis place and route, timing analysis, and simulation support. The
available tools are:
• QuickWorks: QuickWorks for PC-Workstation, is QuickLogic's comprehensive FPGA and

ESP design environment including fully-integrated schematic and HDL-based design
entry, HDL language editors and tutorials, logic synthesis support from Synplicity, 100%
fully automatic place and route, static timing analysis, Verilog and VHDL functional and
timing simulation support, and 3rd party interfaces.

• QuickTools: QuickTools for Solaris/HP-UX Workstations, contains the following functions
for placement and routing, static timing analysis, generation of a timing annotated Verilog
and VHDL netlist for simulation in many industry standard EDA environments, and
interfaces to 3rd party EDA synthesis and simulation environments.

10.6. Synplicity

• Symplify: The Synplify synthesis solution is a high-performance, sophisticated logic
synthesis engine that utilizes proprietary Behavior Extracting Synthesis Technology
(B.E.S.T.) to deliver fast, highly efficient FPGA and CPLD designs. The Synplify product
takes Verilog and VHDL Hardware Description Languages as input and outputs an
optimized netlist in most popular FPGA vendor formats.

• Synplify Pro: Synplify Pro software extends the capability of the Synplify solution to meet
the needs of today's complex, high density designs. Team design, integration of IP,
complex project management, graphical FSM debugging, testability and other features
are included in the Synplify Pro solution.

• HDL Analyst: HDL Analyst adds to Synplify the ability to create an RTL block diagram of
the design from the HDL source code. A post-mapped schematic diagram is also created
that displays timing information for critical paths. Bi-directional cross-probing between all
three design views allows to instantly understand exactly what the HDL code produced
while dramatically improving debug time.

• Amplify Physical Optimizer: The Amplify Physical Optimizer product is the first and only
physical synthesis tool designed specifically for programmable logic designers. By
performing simultaneous placement and logic optimization, the Amplify product has
demonstrated an average of over 21% performance improvement and over 45%
improvement in some cases when compared with logic synthesis alone. Now the Amplify
product includes Total Optimization Physical Synthesis (TOPS) technology. This boosts

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 95

performance further and also reduces design iterations through highly accurate timing
estimations. The Amplify Physical Optimizer product was created for programmable logic
designers utilizing Altera and Xilinx devices, and who need to converge on aggressive
timing goals as quickly as possible. RT Level physical constraints, along with standard
timing constraints, are provided to the Amplify product's highly innovative new physical
synthesis algorithms, resulting in superior circuit performance in a fraction of the time
normally required by traditional methodologies.

• Certify SC: A new member of Synplicity's Certify verification synthesis software family,
the Certify SC software is a tool aimed at ASIC and intellectual property (IP) prototyping
on a single FPGA, and providing advanced hardware debug capabilities to FPGA
designers. Introducing new features targeted at ASIC conversion and debug access,
including integration with Xilinx ChipScope debugging tools, the Certify SC software is
designed to enable ASIC designers to either prototype IP or portions of ASIC designs
onto high-density FPGAs. Additionally, FPGA designers can now take advantage of the
advanced debug insertion features of the Certify product as an upgrade option to the
Synplify Pro advanced FPGA synthesis solution.

10.7. Synopsys

• FPGA Compiler II: By leveraging Synopsys expertise in multimillion-gate ASIC synthesis
technology and applying this expertise to FPGA architecture-specific synthesis, FPGA
Compiler II provides unsurpassed flow integration and the highest quality of results
(QoR). It has the unique capability of providing traditional FPGA or ASIC-like design flows
that precisely meet the needs of programmable logic designers while at the same time
utilizing an intuitive GUI or scripting mode for design realization.

10.8. Quartus II
The Quartus II software provides a complete flow for creating high-performance system-on-
a-programmable-chip (SOPC) designs. It integrates design, synthesis, place-and-route, and
verification into a seamless environment, including interfaces to third-party EDA tools.

10.8.1. LogicLock Block-Based Design
LogicLock block-based design is a design methodology available through the Quartus II
software. With the LogicLock design flow, the Quartus II software is a programmable logic
device (PLD) design software which includes block-based design methodologies as a
standard feature, helping to increase designer productivity and shorten design and
verification cycles. The LogicLock design flow provides the capability to design and
implement each design module independently. Designers can integrate each module into a
top-level project while preserving the performance of each module during integration. The
LogicLock flow shortens design and verification cycles because each module is optimized
only once.

The Quartus II software supports both VHDL and Verilog hardware description language
(HDL) text and graphical based design entry methods and combining the two methods in the
same project. Using the Quartus II block design editor, top-level design information can be
edited in graphical format and converted to VHDL or Verilog for use in third-party synthesis
and simulation flows.

NativeLink integration facilitates the inter-operation and seamless transfer of information
between the Quartus II software and other EDA tools. It allows third-party synthesis tools to
map primitives directly to Altera device primitives. Because primitives are mapped directly,
the synthesis tool has control over how the design is mapped to the device. Direct mapping
shortens compile times and eliminates the need for extra library mapping translations that

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 96

could limit performance gains provided by the third-party synthesis tool. The NativeLink flow
allows designers to use the Quartus II software pre-place-and-route estimates in third-party
EDA tools to optimize synthesis strategies. The Quartus II software can pass post-place-and-
route timing information to third-party EDA simulation and timing analysis tools, addressing
chip-level and board-level verification issues.

The Quartus II software allows designers to develop and run scripts in the industry-standard
tool command language (Tcl). The use of Tcl scripts in the Quartus II software could
automate compilation flows and makes assignments, automates complex simulation test
benches, and creates custom interfaces to third-party tools.

10.8.2. Quartus II Synthesis
The Quartus II design software includes integrated VHDL and Verilog hardware description
language (HDL) synthesis technology and NativeLink integration to third-party synthesis
software from Mentor Graphics, Synopsys, and Synplicity. Through these close partnerships,
Altera offers synthesis support for all its latest device families and support for the latest
Quartus II software features in industry-leading third-party synthesis software.

10.8.3. Place & Route
The PowerFit place-and-route technology in the Quartus II design software uses the
designer's timing specifications to perform optimal logic mapping and placement. The timing-
driven router algorithms in the Quartus II software intelligently prioritize which routing
resources are used for each of the design's critical timing paths. Critical timing paths are
optimized first to help achieve timing closure faster and deliver faster performance (fMAX). The
Quartus II software supports the latest Altera device architectures such as the Cyclone,
Stratix, Stratix GX, APEX II, APEX 20KC, and Mercury device families. This cutting-edge
place-and-route technology provides Quartus II software users with superior performance
and productivity, including the fastest compile times in the industry. The Quartus II software
versions 2.0 and later also include the fast fit compilation option for up to 50% faster compile
times.

10.8.4. Quartus II Verification & Simulation
Design verification can be the longest process in developing high-performance system-on-a-
programmable-chip (SOPC) designs. Using the Quartus II design software the verification
times could be reduced because this high-performance software includes a suite of
integrated verification tools which integrate with the latest third-party verification products.
The Quartus II Verification Solutions is shown in Table 9.

Verification Method Description Quartus II Software

Support
or Subscription
Support

Third-Party Support

Design Rule
Checking

Checks designs
before synthesis and
fitting for coding styles
that could cause
synthesis, simulation,
or design migration
problems

Quartus II software to
HardCopy device
migration design rule
checking

Atrenta: SpyGlass
Synopsys: Leda

Functional
Verification

Checks if a design
meets functional
requirements before
fitting

ModelSim-Altera
software

Cadence: NC-Verilog,
NC-VHDL
Mentor Graphics:
ModelSim Tool
Synopsys: VCS,
Scirrocco

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 97

Testbench
Generation

Reduces amount of
hand-generated test
vectors

-Waveform-to-
testbench converter
-Testbench template
generator

Static Timing
Analysis

Analyzes, debugs,
and validates a
design's performance
after fitting

Quartus II software
static timing analyzer

Synopsys: PrimeTime

Timing Simulation Performs a detailed
gate-level timing
simulation after fitting

-Quartus II software
simulator
-ModelSim-Altera
software

Cadence: NC-Verilog,
NC-VHDL
Mentor Graphics:
ModelSim
Synopsys: VCS,
Scirrocco

Hardware/
Software Co-
Simulation

Quickly simulates
interaction between
PLD hardware,
embedded processor,
memory, and
peripherals

ModelSim-Altera
software

ModelSim

In-System
Verification

Reports behavior of
internal nodes in-
system and at system
speeds

-Quartus II
SignalTap II logic
analyzer
-Quartus II
SignalProbe feature

Bridges to silicon

Board-Level Timing
Analysis

Verifies PLD and
entire board meets
system timing
requirements

 Innoveda: Blast
Mentor Graphics: Tau

Signal Integrity
Analysis & EMC

Verifies that high
speed I/O signals will
be transmitted reliably
and within EMC
guidelines

Quartus II software
design-specific IBIS
model generation

Cadence:
SpectraQuest
Innoveda: XTK,
Hyperlynx
Mentor Graphics:
Interconnectix

Formal Verification Identifies differences
between source
register transfer level
(RTL) net lists and
post place-and-route
net lists without the
user creating any test
vectors

 Synopsys:
FormalityVerplex:
Conformal LEC

Power Estimation Estimates the power
consumption of your
device using your
design's operating
characteristics

-Quartus II software
simulator
-ModelSim-Altera
software

Mentor Graphics:
ModelSim

Table 9: Quartus II Verification Solutions

10.8.5. Quartus II Web Edition Software
The Quartus II Web Edition software is an entry-level version of the Quartus II design
software supporting selected Cyclone, Stratix, APEX II, APEX 20KE, Excalibur, MAX 7000,
MAX 3000, FLEX 10KE, ACEX 1K, and FLEX 6000 devices. With PowerFit place-and-route
technology, Quartus II Web Edition software lets to experience the performance and compile
time benefits of the Quartus II software.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 98

The Quartus II Web Edition software includes a complete environment for programmable
logic device (PLD) design including schematic- and text-based design entry, HDL synthesis,
place-and-route, verification, and programming.

10.9. Xilinx ISE

10.9.1. Design Entry
ISE provides support for today's most popular methods for design capture including HDL and
schematic entry, integration of IP cores as well as robust support for reuse of IP. ISE even
includes technology called IP Builder, which allows to capture an IP and to reuse it in other
designs.

ISE's Architecture Wizards allow easy access to device features like the Digital Clock
Manager and Multi-Gigabit I/O technology. ISE also includes a tool called PACE (Pinout Area
Constraint Editor) which includes a front-end pin assignment editor, a design hierarchy
browser, and an area constraint editor. By using PACE, designers are able to observe and
describe information regarding the connectivity and resource requirements of a design,
resource layout of a target FPGA, and the mapping of the design onto the FPGA via
location/area.

10.9.2. Synthesis
Synthesis is one of the most essential steps in the design methodology. It takes the
conceptual Hardware Description Language (HDL) design definition and generates the
logical or physical representation for the targeted silicon device. A state of the art synthesis
engine is required to produce highly optimized results with a fast compile and turnaround
time. To meet this requirement, the synthesis engine needs to be tightly integrated with the
physical implementation tool and have the ability to proactively meet the design timing
requirements by driving the placement in the physical device. In addition, cross probing
between the physical design report and the HDL design code will further enhance the
turnaround time.

Xilinx ISE provides the seamless integration with the leading synthesis engines from Mentor
Graphics, Synopsys, and Synplicity. It is possible to use any of the above synthesis engines.
In addition, ISE includes Xilinx proprietary synthesis technology, XST. It gives the option to
use multiple synthesis engines to obtain the best-optimized result of the programmable logic
design.

10.9.3. Implementation & Configuration
Programmable logic design implementation assigns the logic created during design entry and
synthesis into specific physical resources of the target device. The term "place and route"
has historically been used to describe the implementation process for FPGA devices and
"fitting" has been used for CPLDs. Implementation is followed by device configuration,
where a bitstream is generated from the physical place and route information and
downloaded into the target programmable logic device.

10.9.4. Verification
There are five types of verification available at this product:

• Functional Verification verifies syntax and functionality of a design at the DHL level.
• Gate-Level Verification allows you to directly verify your design at the RTL level after it

has been generated by the Synthesis tool.
• Timing Verification is used to verify timing delay in a design ensuring timing specification

is met.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 99

• Advanced Verification offers designers different options beyond the traditional verification
tools.

• Using Board Level Verification tools ensures your design performs as intended once
integrated with the rest of the system.

10.9.5. Advanced Design Techniques
As the FPGA requirements grow, the design problems can change. High-density design
environments mean multiple teams working through distributed nodes on the same project,
located in different parts of the world, or across the aisle. ISE advanced design options are
targeted at making the high-density design as easy to realize as the smallest glue-logic.

• Floorplanner - The Xilinx High-Level Floorplanner is a graphic planning tool that lets to

map the design onto the target chip. Floorplanning can efficiently drive the high-density
design process.

• Modular Design - The ability to partition a large design into individual modules. Each of
those modules can then be floorplanned, designed, implemented, and then locked until
the remaining modules are finished.

• Partial Reconfigurability - Partial reconfiguration is useful for applications requiring the
loading of different designs into the same area of the device, or the ability to flexibly
change portions of a design without having to either reset or completely reconfigure the
entire device.

• Incremental Design - By first Area Mapping your design, Incremental Design makes sure
that any late design changes don't force a full re-implementation of the chip. Only the
area involved in the change must be re-implemented, the rest of the design stays intact.

• High-Level Languages - As design densities increase, the need for a higher-level of
abstraction becomes more important. Xilinx is driving and supporting the industry
standards and their supporting tools.

10.9.6. Board Level Integration
Xilinx understands the critical issues such as complex board layout, signal integrity, high-
speed bus interface, high-performance I/O bandwidth, and electromagnetic interference for
system level designers. To ease the system level designers’ challenge, ISE provides support
to all Xilinx leading FPGA technologies:
• System IO
• XCITE
• Digital clock management for system timing
• EMI control management for electromagnetic interference

11. Conclusions
A comprehensive survey of the existing fine-grain reconfigurable architectures from both
academia and industry was presented, which indicated both the strengths and limitations of
fine-grain reconfigurable hardware. An important consideration in dynamically reconfigurable
systems is the reconfiguration latency and power consumption. Various techniques have
been employed to reduce the reconfiguration latency, such as prefetching and configuration
caching. Prefetch techniques can reduce the reconfiguration latency by allowing pipelining of
reconfiguration and execution operations. Prefetching requires knowing beforehand what the
next configuration will be, while caching simply requires knowledge of the most common and
often required reconfigurations, so they can stored in the configuration cache.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 100

In recent years, increased density has helped integrate coarse-grain elements in FPGAs
such as SRAM, dedicated arithmetic units (multipliers etc.) and DLLs, and also a great
number of logic gates, making them significant alternatives to ASICs. In fact 75 per cent of
the ASICs produced in 2001 could fit in a commercial FPGA, and 60 per cent of them have
timing constraints that could be met in an FPGA implementation.

Although fine-grain architectures with building blocks of 1-bit are highly reconfigurable, the
systems exhibit low efficiency, when it comes to more specific tasks. An example of this
category is if an 8-bit adder is implemented in a fine-grain circuit, it will be inefficient
compared to a reconfigurable array of 8-bit adders, when performing an addition-intensive
task. In addition to that, an 8-bit adder will also occupy more space in the fine-grain
implementation. On the other hand, when a system uses building blocks with more than 1-bit,
for example 2-bit, it has a major advantage compared to the 1-bit building blocks. This
advantage is that the system could utilize the chip area better, since it is optimized for the
specific operations. However, a drawback of this approach is represented in a high overhead
when synthesizing operations that are incompatible with the simplest logic block architecture.

The CLB of the fine-grain reconfigurable architecture that will be used for the design of the
embedded FPGA will be based on the LP_PGA II platform. This architecture has been
explored in details above, in terms of the configurable logic block, interconnection,
performance and the power consumption.

Furthermore, description of implementation flow CAD tools from both industry and academia
was included. Commercial tools have become very advanced in recent years, supporting a
constantly increasing subset of VHDL/Verilog. Many of them have also user-friendly
interfaces, while at the same time allow great manual intervention by the designer. The main
disadvantage of the available academic tools is the lack of aggregate CAD flow in order to be
used to design an FPGA based system. Also, many of those tools do not have GUI
(Graphical User Interface) and their operation has to be done manually, which is quite
difficult for end-users with no experience of working with command prompt in operating
systems like Solaris or Linux. On the other hand, many of these tools like VPR and T-VPack
have been used successfully by [31] [85]. Since we have to make a complete design CAD-
flow with the available academic tools that have been described above, we propose to use
the tools from the Toronto FPGA Research Group in order to make placement, routing and
bit-stream generation, while the existing tools from the UCLA could be used for the LUT-
mapping.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 101

12. References
[1] H. Hsieh, W. Carter, J. Y. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin, and L.

Tinkey, “Third-generation architecture boosts speed and density of field-programmable
gate arrays”, in Proc. Custom Integrated Circuits Conf., 1990, pp. 31.2.1-31.2.7

[2] M. Ahrens, A. El Gamal, D. Galbraith, J. Greene, and S. Kaptanoglu, “An FPGA family
optimized for high densities and reduced routing delay”, in Proc. Custom Integrated
Circuits Conf., 1990, pp. 31.5.1-31.5.4

[3] The programmable Logic Data Book, Xilinx, San Jose, 1998.
[4] Accelerator Series FPGAs – ACT3 Family, Actel Corporation, 1997.
[5] SX Family of High Performance FPGAs, Actel Corporation, 2001.
[6] Butts M. and Batcheller J, “Method of using electronically reconfigurable logic circuits”,

1991, US Patent 5,036,473.
[7] Hauck S, “Configuration prefetch for single context reconfigurable coprocessors”, ACM /

SIGDA International Symposium on FPGAs, pp. 65-74, 1998.
[8] Hauck S, “The roles of FPGAs in reprogrammable systems”, Proc. IEEE 86, 4, pp. 615-

638, 1998.
[9] Khalid M., “Routing architecture and layout synthesis for multi-FPGA systems”, Ph. D.

dissertation, Dept. of ECE, Univ. Toronto, 1999.
[10] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of Field-Programmable

Array: The Effect of Logic Block Functionality on Area Efficiency”, IEEE Journal of Solid
State Circuits, vol. 25, no. 5, October 1990, pp. 1217-1225.

[11] H. Schmit, “Incremental reconfiguration for pipelined applications”, 5th IEEE Symposium
on FPGA-Based Custom Computing Machines (FCCM '97), Napa Valley, CA, April 16 -
18, 1997.

[12] Kara K. W. Poon, Andy Yan, and Steven J. E. Wilton, “A Flexible Power Model for
FPGAs”, 12th International Conference, FPL 2002 Montpellier, France, September 2002.

[13] J. L. Kouloheris and A. El Gamal, “FPGA Performance Versus Cell Granularity”,
Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego, California,
1991, pp. 6.2.1-6.2.4.

[14] S. Singh, J. Rose, P. Chow, and D. Lewis, “The Effect of Logic Block Architecture on
FPGA Performance”, IEEE Journal of Solid-State Circuits, vol. 27, no. 3, March 1992,
pp. 281-287.

[15] J. He and J. Rose, “Advantages of Heterogeneous Logic Block Architecture for FPGAs”,
Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego, California,
1993, pp. 7.4.1-7.4.5.

[16] V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. Input
Sharing and Size”, IEEE Custom Integrated Circuits Conference, Santa Clara,
California, 1997, pp. 551-554.

[17] E. Kysse, “Analysis and Circuit Design for Low Power Programmable Logic Modules”,
M.S. Thesis, University of California, Berkley, December 1997.

[18] “Reconfigurability requirements for wireless LAN products”, Electronic document
available at http://www.imec.be/adriatic/deliverables/ec-ist-adriatic_deliverable-D1-1.zip

[19] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-multiplexed FPGA”, IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 22-28, 1997.

[20] S. Hauck, T. W. Fry, M. M. Holser, and J. P. Kao, “The Chimaera reconfigurable
functional unit”, IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 87-96, 1997.

[21] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, and D. E. Thomas, “Managing
pipeline-reconfigurable FPGAs”, ACM/SIGDA International Symposium on FPGAs, pp
55-64, 1998.

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 102

[22] C. R. Rupp, M. Landguth, T. Garverick, E. Comersall, H. Holt, J. M. Arnold, and M.
Gokhale, “The NAPA adaptive processing architecture”, IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 28-37, 1998.

[23] “The Programmable Logic Data Book”, Xilinx Inc., San Jose, CA, 1994.
[24] “Virtex 2.5V Field Programmable Gate Arrays: Advanced Product Specification”, Xilinx

Inc. San Jose, CA, 1999.
[25] Scott Hauck, “Configuration Prefetch for Single Context Reconfigurable Coprocessors”,

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1998.
[26] Scott Hauck, Zhiyun Li, Eric Schewabe, "Configuration Compression for the Xilinx

XC6200 FPGA", IEEE Symposium on FPGAs for Custom Computing Machines, 1998.
[27] K. Li, Z. Compton, J. Cooley, S. Knol, and S. Hauck, “Configuration relocation and

defragmentation for run-time reconfigurable computing”, IEEE Trans., VLSI System,
2002.

[28] Zhiyuan Li, Katherine Compton, Scott Hauck, “Configuration Caching Techniques for
FPGA”, IEEE Symposium on FPGAs for Custom Computing Machines, 2000.

[29] J.M. Arnold et al., "The Splash 2 Processor and Applications," Proc. Int'l Conf. Computer
Design, CS Press, Los Alamitos, Calif.. 1993, pp. 482-485.

[30] R.A. Keaney, L.H. C. Lee, D. J. Skellern, J.E. Vuillemin, and M. Shand, “Implementation
of Long Constraint Length Viterbi Decoders using Programmable Active Memories”.

[31] John R. Hauser and JohnWawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor”, University of California, Berkeley.

[32] Ralph D. Wittig, and Paul Chow, “OneChip: An FPGA Processor With Reconfigurable
Logic”.

[33] Zhi Alex Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Banerjee, “Chimaera: A
High-Performance Architecture with a Tightly-Coupledd Reconfigurable Function Unit”.

[34] Michael J. Wirthlin, and Brad L. Hutchings, “DISC: The dynamic instruction set
computer”.

[35] Edward Tau, Derrick Chen, Ian Eslick, Jeremy Brown, Andre DeHon, “A First
Generation DPGA Implementation”, FPD’95, Third Canadian Workshop of Field-
Programmable Devices, May 29-June 1, 1995, Montreal, Canada

[36] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, and E.A. Walkup, “TRIPTYCH: A new
FPGA architecture”, in FPGA’s, W. Moore and W. Luk, Eds. Abingdon, U.K.L Abingdon,
1991, ch 3.1, pp. 75-90.

[37] G. Borriello, C. Ebeling, S. A. Hauck, and S. Burns, “The Triptych FPGA architecture”,
IEEE Trans. VLSI Syst., vol 3, pp 491-500, Dec. 1995.

[38] S. Hauck, G. Borriello, S. Burns, and C. Ebeling, “MONTAGE: An FPGA for
synchronous and asynchronous circuits”, in Proc. 2nd Int. Workshop Field-Programmable
Logic Applicat., Vienna, Austria, Sept. 1992.

[39] P. Chow, S. O. Seo, D. Au, T. Choy, B. Fallah, D. Lewis, C. Li, and J. Rose, “A 1.2 �m
CMOS FPGA using cascaded logic blocks and segmented routing”, in FPGA’s W.
Moore and W. Luk, Eds. Abingdon, U.K.: Abingdon, 1991, ch 3.2, pp. 91-102.

[40] Varghese George, Hui Zhang and Jan Rabaey, “The Design of a Low Energy FPGA”,
ISLPED 1999.

[41] Varghese George and Jan M. Rabaey, “Low-Energy FPGAs: Architecture and Design”,
Kluwer Academic Publishers, 2001.

[42] Silviu Chiricescu, Miriam Leeser, and M. Michael Vai, “Design and Analysis of a
Dynamically Reconfigurable Three-Dimensional FPGA”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 9, No. 1, February 2001.

[43] Paul Chow, Soon Ong Seo, Jonathan Rose, Kevin Chung, Gerard Paez-Monzon, and
Immanuel Rahardja, “The Design of a SRAM-Based Field-Programmable Gate Array-
Part I: Architecture”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 7, No. 2, June 1999.

[44] Paul Chow, Soon Ong Seo, Jonathan Rose, Kevin Chung, Gerard Paez-Monzon, and
Immanuel Rahardja, “The Design of a SRAM-Based Field-Programmable Gate Array-

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 103

Part II: Circuit Design and Layout”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 7, No. 3, September 1999.

[45] http://www.xilinx.com/partinfo/ds060.pdf
[46] http://www.xilinx.com/partinfo/ds060.pdf
[47] http://www.xilinx.com/partinfo/ds060.pdf
[48] http://www.altera.com/literature/ds/ds_stx.pdf
[49] http://www.altera.com/literature/ds/ds_ap2.pdf
[50] http://www.altera.com/literature/ds/ds_apex20kc.pdf
[51] http://www.altera.com/literature/ds/dsmercury.pdf
[52] http://www.altera.com/literature/ds/dsf10k.pdf
[53] http://www.altera.com/literature/ds/acex.pdf
[54] http://www.altera.com/literature/ds/dsf6k.pdf
[55] http://www.actel.com/docs/datasheets/AXDS.pdf
[56] http://www.actel.com/docs/datasheets/eXDS.pdf
[57] http://www.actel.com/docs/datasheets/ProasicDS.pdf
[58] http://www.actel.com/docs/datasheets/ProASICPlusDS.pdf
[59] http://www.actel.com/docs/datasheets/A54SXADS.pdf
[60] http://www.actel.com/docs/datasheets/MXDS.pdf
[61] http://www.atmel.com/atmel/acrobat/doc2818.pdf
[62] http://www.atmel.com/atmel/acrobat/doc0264.pdf
[63] http://www.quicklogic.com/images/eclipse_family_datasheet.pdf
[64] http://www.quicklogic.com/images/pasic1_datasheet.pdf
[65] http://www.quicklogic.com/images/pasic2_datasheet.pdf
[66] http://www.quicklogic.com/images/pasic3_datasheet.pdf
[67] http://www.quicklogic.com/images/quickram_datasheet.pdf
[68] http://ballade.cs.ucla.edu/~trio/
[69] http://ballade.cs.ucla.edu/software_release/rasp/htdocs/
[70] http://ballade.cs.ucla.edu/software_release/ipem/htdocs/
[71] Young-Jun Cha, Chong S. Rim, and Kazuo Nakajima, “A Simple and Effective Greedy

Multilayer Router for MCMS”, Proceedings of the International Symposium on Physical
Design, Napa Valley, California, United States, 1997.

[72] http://cadlab.cs.ucla.edu/~xfpga/fpgaEva/index.html
[73] http://ballade.cs.ucla.edu/
[74] http://www.eecg.toronto.edu/~jayar/software/psac/psac.html
[75] http://www.eecg.toronto.edu/~jayar/software/edif2blif/edif2blif.html
[76] Electronic document available at http://www.eecg.toronto.edu/~lemieux/sega/sega.html
[77] Electronic document available at ftp://ftp.eecg.toronto.edu/pub/software/pgaroute/
[78] http://www.eecg.toronto.edu/EECG/RESEARCH/tmcc/tmcc/
[79] Electronic document available at ftp://ftp.eecg.toronto.edu/pub/software/Chortle/
[80] Electronic document available at http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
[81] Kara K. W. Poon, Andy Yan, and Steven J. E. Wilton, “A Flexible Power Model for

FPGAs”, 12th International Conference, FPL 2002 Montpellier, France, September 2002.
[82] Francisco Barat, Rudy Lauwereins, Geert Deconinck, “Reconfigurable Instruction Set

Processors from a Hardware/Software Perspective”, IEEE Transactions on Software
Engineering, vol. 28, No. 9, pp. 847-861, September 2002.

[83] Electronic document available at http://www.latticesemi.com/
[84] Stephen Trimberger, "Effects of FPGA Architecture on FPGA Routing", Xilinx, Inc.
[85] Katarzyna Leijten-Nowak and Jef L. van Meerbergen, “Embedded Reconfigurable Logic

Core for DSP Applications”, FPL 2002
[86] Hui Zhang, Vandana Prabhu, Varghese George, Marlene Wan, Martin Benes, Arthur

Abnous, and Jan M. Rabaey, “A 1V Heterogeneous Reconfigurable Processor IC for
Baseband Wireless Applications”

[87] http://www.latticesemi.com/lit/docs/datasheets/fpga/xpga.pdf
[88] http://www.latticesemi.com/products/fpga/orca/orca2/index.cfm
[89] http://www.latticesemi.com/lit/docs/datasheets/fpga/ds99-087fpga.pdf

Survey of FPGA reconfigurable Systems: Hardware platforms and Software

 104

[90] http://www.latticesemi.com/lit/docs/datasheets/fpga/ds01-174ncip.pdf
[91] http://www.leopardlogic.com/Product_Briefs/HyperBlox_FP.pdf
[92] http://www.actel.com/varicore/support/docs/VariCoreEPGADS.pdf
[93] http://direct.xilinx.com/bvdocs/publications/ds022.pdf
[94] http://direct.xilinx.com/bvdocs/publications/ds031.pdf

