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1. Abstract 
This document contains both an introduction to FPGA technology that includes architecture, 
power consumption and configuration models, and a comprehensive survey of the existing 
fine-grain reconfigurable architectures that have emerged from both academia and industry. 
All aspects of the architectures, including logic block structure, interconnect, and 
configuration methods are presented in detail. Comparisons in terms of testability, 
technology portability, design flow completeness and configuration type are shown. 
 
Additionally, the implementation techniques and CAD tools (synthesizers, LUT-mapping tools 
and placement and routing tools) that have been developed to facilitate the implementation 
of a system in reconfigurable hardware by the industry (both by the FPGA manufacturers and 
third-party EDA tool vendors) and academia are described. 
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6. Introduction to FPGAs 
The Field Programmable Gate Array (FPGA) is an important technology, which allows circuit 
designers to produce application-specific chips around the time-consuming fabrication 
process. When FPGAs were first introduced in the mid 1980s they were viewed as a 
technology for replacing standard gate arrays for some applications. In these first-generation 
systems, a single configuration is created for the FPGA, and this configuration is the only one 
loaded into the FPGA. A second generation soon followed, with FPGAs that could use 
multiple configurations, but reconfiguration was done relatively infrequently. In such systems, 
the time to reconfigure the FPGA was of little concern. Nowadays, the applications demand 
short time for reconfiguration and so a new generation of FPGAs was developed that could 
support many types of reconfiguration methods, depending to the application specific needs. 
Those types of reconfiguration are described also briefly this survey. 
 
The first part of this report describes the Field Programmable Gate Arrays (FPGA) at the field 
of the existing interconnect architectures, the architecture of the logic block, the existing 
programming technologies, the power dissipation and the reconfigurable models. Next 
follows a description of the available commercial and academic fine-grain reconfigurable 
architectures. The third part of this document presents the available CAD tools, used for 
programming FPGAs. Those tools are separated in commercial ones and those that are 
public domain and referred as academic. Finally, there is a conclusion where remarkable 
results are exhibited. 
 
An FPGA can be programmed to solve a problem at hand in a spatial fashion. The goal of 
reconfigurable architectures is to achieve implementation efficiency approaching that of 
specialized logic, while providing the silicon reusability of general-purpose processors.  
 
The main characteristics of an FPGA that will be described below are: 

•  The interconnect architecture 
•  The logic block architecture 
•  The programming technology 
•  The power dissipation 
•  The existing reconfigurable models 
 

FPGA can be visualized as a programmable logic embedded in programmable interconnect. 
All FPGAs are composed of three fundamental components: logic blocks, I/O blocks and 
programmable routing. A circuit is implemented in an FPGA by programming each logic 
block to implement a small portion of the logic required by the circuit, and each of the I/O 
blocks to act as either an input pad or an output pad, as required by the circuit. The 
programmable routing is configured to make all the necessary connections between logic 
blocks and from logic blocks to I/O blocks. The functional complexity of logic blocks can vary 
from simple two-input Boolean operations to larger, complex, multi-bit arithmetic operations. 
The choice of the logic block granularity is dependent on the target application domain. The 
programming technology determines the method of storing the configuration information, and 
comes in different flavors. It has a strong impact on the area and performance of the array. 
The main programming technologies are: Static Random Access Memory (SRAM) [1], 
antifuse [2], and non-volatile technologies. The choice of the programming technology is 
based on the computation environment in which the FPGA is used.  
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Figure 1: FPGA Model 

 
The general model of an FPGA is shown in Figure 1. The logic cell usually consists of lookup 
tables (LUTs), carry logic, flip-flops, and programmable multiplexers. The multiplexers are 
utilized to form data-paths inside the logic cell and to connect the logic cells with the 
interconnection resources.  
 

6.1. Interconnect Architecture (Routing Resources) 
The interconnect architecture is realized using switches that can be programmed to realize 
different connections. The method of providing the connectivity between the logic blocks has 
a strong impact on the characteristics of the FPGA architecture. The arrangement of the logic 
and interconnect resources can be broadly classified into six groups:  

•  Island style 
•  Row-based 
•  Sea-of-gates  
•  Hierarchical 
•  One-dimensional structures 
•  Multi-FPGA systems 
 

Commercial FPGAs can be classified into three groups, based on their routing architecture. 
The FPGAs of Xilinx, Lucent and Vantis are island-style FPGAs, while Actel’s FPGAs are 
row-based, and Altera’s FPGAs are hierarchical. 

6.1.1. Island Style Architecture 
The island style architecture consists of an array of programmable logic blocks with vertical 
and horizontal programmable routing channels. The basic architecture is illustrated in Figure 
2. The number of segments in the channel determines the resources available for routing. 
This is quantified in terms of the channel width. The pins of the logic block can access the 
routing channel through the connection box. The XC4000 and XC3000 series from Xilinx [3] 
are examples of this kind of architecture. 
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Figure 2: Island style architecture 

6.1.2. Row-Based Architecture 
As the name implies, this architecture has logic blocks arranged in rows with horizontal 
routing channel between successive rows. The row-based architecture is shown in Figure 3. 
The routing tracks within the channel are divided into one or more segments. The length of 
the segments can vary from the width of a module pair to the full length of the channel. The 
segments can be connected at the ends using programmable switches to increase their 
length. Other tracks run vertically through the logic blocks. They provide connections 
between the horizontal routing channel and the vertical routing segments. The length of the 
wiring segments in the channel is determined by tradeoffs involving the number of tracks, the 
resistance of the routing switches, and the capacitance of the segments. The ACT3 family of 
FPGAs from Actel [4] is an example of this architecture. 
 

 

Figure 3: Row-based architecture 
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6.1.3. Sea-of-Gates Architecture 
The sea-of-gates architecture, as shown in Figure 4, unlike the previous architectures, is not 
an array of logic blocks embedded in a general routing structure. The architecture consists of 
fine-grain logic blocks covering the entire floor of the device. Connectivity is realized using 
dedicated neighbor-to-neighbor routes that are usually faster than general routing resources. 
Usually the architecture also uses some general routes to realize longer connections. The 
SX family of FPGAs from Actel [5] is an example of this class of architecture. 
 
 

 

Figure 4: Sea-of-Gates Architecture 

 

6.1.4. Hierarchical Architecture 
Most logic designs exhibit locality of connections, which imply a hierarchy in the placement 
and routing of the connections between the logic blocks. The hierarchical FPGA architecture 
tries to exploit this feature to provide smaller routing delays and a more predictable timing 
behavior. This architecture is created by connecting logic blocks into clusters. These clusters 
are recursively connected to form a hierarchical structure. Figure 5 illustrates a possible 
architecture. The speed of the network is determined by the number of routing switches it 
has to pass through. The hierarchical structure reduces the number of switches in series for 
long connections and can hence potentially run at a higher speed. 

 

 

Figure 5: Hierarchical architecture 
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6.1.5. One-Dimensional Structures 
Most current FPGAs are of the two-dimensional variety. This allows for a great deal of 
flexibility, as any signal can be routed on a nearly arbitrary path. However, providing this 
level of routing, flexibility requires a great deal of routing area. Also complicates the 
placement and routing software, as the software must consider a very large number of 
possibilities. One solution is to use a more one-dimensional style of architecture, as shown in 
Figure 6. Here placement is restricted along one axis. With a more limited set of choices, the 
placement can be performed much more quickly. Routing is also simplified, because it is 
generally along a single dimension as well, with the other dimension generally only used for 
calculations requiring a shift operation. One drawback of the one-dimensional routing is that 
if there are not enough routing resources for a specific area of a mapped circuit, then the 
routing of the whole circuit becomes actually more difficult than on a two-dimensional array 
that provides more alternatives. A number of reconfigurable systems have been designed by 
this manner, like Garp [31], Chimaera [20] [33] and NAPA [22]. 
 

 

Figure 6: One-dimensional structure 

 

6.1.6. Multi-FPGA Systems 
Reconfigurable systems that are composed of multiple FPGA chips interconnected on a 
single processing board have additional hardware concerns over a single-chip system. In 
particular, there is a need for an efficient connection scheme between the chips, as well as to 
external memory and the system bus. This is to provide for circuits that are too large to fit 
within a single FPGA, but may be partitioned over the multiple FPGAs available. A number of 
different interconnect schemes have been explored [6] [7] [8] [9] including meshes and 
crossbars, as shown in Figure 7. A mesh connects the nearest-neighbors in the array of 
FPGA chips. This allows for efficient communication between the neighbors, but may require 
that some signals pass through an FPGA simply to create a connection between non-
neighbors. Although this can be done, and is quite possible, it uses valuable I/O resources 
on the FPGA that forms the routing bridge. A crossbar attempts to remove this problem by 
using special routing-only chips to connect each FPGA potentially to any other FPGA. The 
inter-chip delays are more uniform, given that a signal travels the exact same “distance” to 
get from one FPGA to another, regardless of where those FPGAs are located. However, a 
crossbar interconnect does not scale easily with an increase in the number of FPGAs. The 
crossbar pattern of the chips is fixed at fabrication of the multi-FPGA board. For multi-FPGA 
systems, because of the need for efficient communication between the FPGAs, determining 
the inter-chip routing topology is a very important step in the design process. 
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Figure 7: Mesh (left) and partial crossbar (right) interconnect topologies for multi-FPGA 
systems. 

 

6.2. Logic Block Architecture 
The logic block, which is also known as configurable logic block (CLB), is responsible for 
implementing the gate level functionality required for each application. The logic block is 
defined by its internal structure and the granularity. The structure defines the different kinds 
of logic that can be implemented in the block, while the granularity defines the size of the 
function that can be implemented. The functionality of the logic block is obtained by 
controlling the connectivity of some basic logic gates or by using LUTs and has a direct 
impact on the routing resources. As the functional capability increases, the amount of logic 
that can be packed into it increases. This reduces the amount of external routing resources. 
On the other hand, as the logic block size increases, it is also quite possible that the block 
can not be fully utilized, resulting in wastage. Based on this tradeoff, there are numerous 
logic block structures trying to optimize the area and speed of the FPGA [41]. 
  
A collection of CLBs, which could be called as logic cluster, is described with the following 
four parameters: 

•  The size of (number of inputs to) a LUT. 
•  The number of CLBs in a cluster. 
•  The number of inputs to the cluster for use as inputs by the LUTs. 
•  The number of clock inputs to a cluster (for use by the registers). 

 
The advantage of using a k-input LUT (k-LUT) is that it can realize any combinational logic 
with k inputs. Previous work [10] that evaluated the effect of the logic block on the FPGA 
architecture used a k-input LUT with a single output as the logic block. This structure is better 
for implementing random logic functions than for datapath-like bit-slice operations. 

6.2.1. Logic Block Granularity 
The logic blocks vary in complexity from a very small and simple block that can calculate a 
function of only three inputs, to a structure that is essentially a 4-bit ALU. The size and 
complexity of the basic computing blocks is referred to as the block’s granularity. In other 
words, the granularity criterion reflects to the smallest block of which a reconfigurable device 
is made. The choice in the logic block granularity is influenced by the application space 
envisioned for the FPGA, and it has a potential effect on the reconfiguration time of the 
device. This is an important issue especially for run-time reconfiguration systems.  
 
All the reconfigurable platforms based on their granularity are distinguished into two groups, 
the fine-grain and coarse-grain systems. In fine-grained architectures, the basic programmed 
building block consists of a combinatorial network and a few flip-flops. A fine-grain array has 
many configuration points to perform very small computations, and thus requires more data 
bits during configuration. The fine-grain programmability is more amenable to control 
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functions, while the coarser grain blocks with arithmetic capability are more useful for 
datapath operations. 
 
All the reconfigurable architectures that are described in this report are characterized as fine-
grain reconfigurable architectures. This term is traditionally used when the hardware 
architecture implements bit-level functions. Nowadays, where the need for high speed 
calculations is critical, many of the existing reconfigurable hardware use more than one bit 
for the functions that they implement. Even though this hardware can be characterized as 
coarse-grain, we believe, we propose to describe hardware platforms that are based on one 
or two-bit functions as fine-grain architectures, while all the others are supposed to be 
coarse-grain ones. 

6.2.2. Studies on the CLB Structure 
Studies on the CLB structure have shown that the best number of inputs to use in order to 
improve area is between 3 and 4 [10]. Also it is possible to improve the functionality by 
including a D flip-flop. Moreover, for multiple output LUTs, the use of 4-input LUT could 
minimize the area [10], while the 5 and 6 inputs LUT minimize the delay [13]. The use of 
heterogeneous logic blocks that have combination of 4 and 6 inputs LUTs shown that it has 
the same area as the 4-inputs LUTs, but it has improved the speed by 25% [14]. Finally, the 
use of clusters with 4-inputs LUT instead of one 4-input LUT, results in a decrease of 10% at 
area [15].  
 

6.3. Programming Technology 
The logic and routing resources of an FPGA are uncommitted, and must be programmed to 
realize the required behavior. The contents of the logic block can be programmed to control 
the functionality of the logic block, while the routing switches can be programmed to control 
the connections between the logic blocks. There are a number of different methods to store 
this program information, ranging from the volatile SRAM method to the irreversible antifuse 
technology. The area of an FPGA is dominated by the area of the programmable 
components. Hence, the choice of the programming technology can also affect the area of 
the FPGA. Another factor that has to be considered is the number of times the FPGA has to 
be programmed. The antifuse-based FPGA can be programmed only once, while the SRAM-
based FPGA does not limit the number of times the array can be reprogrammed. 

6.3.1. SRAM 
In this method of programming, the configuration is stored in SRAM cells. When the 
interconnect network is implemented using pass-transistors, the SRAM cells control whether 
the transistor is on or off. In the case of the lookup tables used in the logic block, the logic is 
stored in the SRAM cells. This method suffers from the fact that the storage is volatile and 
the configuration has to be written into the FPGA each time on power-up. For systems using 
SRAM-based FPGAs, an external permanent storage device is usually used. This technology 
requires at least five transistors per cell. Due to the relatively large size of the memory cells, 
the area of the FPGA is dominated by configuration storage. The SRAM method of 
programming offers the convenience of reusing a single device for implementing different 
applications by loading different configurations. This characteristic has made SRAM-based 
FPGAs popular in reconfigurable platforms, which strive to obtain performance gains by 
customizing the implementation of functions to the specific application. Figure 8 shows these 
SRAM-based switches, where the pass gates are implemented with nMOS pass transistors, 
rather than complementary transmission gates, as this results in better speed due to the 
higher carrier mobility in nMOS transistors. 
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Figure 8: Types of programmable switch used in SRAM-based FPGAs 

6.3.2. Antifuse 
In the SRAM programming method, the information is stored by controlling the state of the 
memory cell. The antifuse programming method [84] uses a programmable connection 
whose impedance changes on the application of a high voltage. In the un-programmed state, 
the impedance of the connection is of the order of a few giga-ohms, and can be treated as an 
open circuit. By applying a high voltage, a physical change called fusing occurs. This result in 
an impedance of a few ohms though the device, establishing a connection. This method has 
the advantage that the area of the programming element is of the order of the size of a Via, 
and therefore can achieve a significant reduction in area compared to the SRAM-
programmed FPGA. The resistance through the element is of the order of a few ohms and is 
much smaller than the resistance of a pass-transistor that is used as the routing switch in the 
SRAM method. This programming technique is non-volatile, and does not require external 
configuration storage on power-down. Unlike the SRAM based technology, errors in the 
design cannot be corrected, since the programming process is irreversible. 

6.3.3. EPROM, EEPROM, and FLASH  
This class of non-volatile programming technology uses the same techniques as EPROM, 
EEPROM and Flash memory technologies. This method is based on a special transistor with 
two gates: a floating gate and a select gate. When a large current flows through the 
transistor, a charge is trapped in the floating gate that increases the threshold voltage of the 
transistor. Under normal operation, the programmed transistors may act as open circuits, 
while the other transistors can be controlled using the select gates. The charge under the 
floating gate will persist during power-down. The floating charge can be removed by 
exposing the gate to the ultraviolet light in the case of EPROMs, and by electrical means in 
the case of EEPROMs and Flash. These techniques straddle the middle ground between the 
SRAM and antifuse techniques. They provide the non-volatility of antifuse with the 
reprogrammability of SRAM. The resistance of the routing switches is larger than that of the 
antifuse, while the programming is more complex and time consuming than that of the SRAM 
technique.  
 

6.4. Power Dissipation 
Today’s reconfigurable systems have become more complex, and can take advantage of the 
programmability offered by the Field-Programmable Gate Arrays. This environment places 
stress on the energy efficiency of FPGAs, which has not been solved in existing commercial 
architectures. Another factor that has gained importance is the power density of the 
integrated circuits. With the reduction in feature size the transistor count per die have 
increased. This has resulted in an increase of power density, and the overall power 
dissipation per chip. Recently, some academic research attempts concern the issue of power 
dissipation reduction [41]. This trend will continue, and has implications on the economics 
and technology of packaging these devices. 
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6.4.1. Components of Power 
A dramatic improvement in energy efficiency of FPGAs is required. An understanding of the 
energy breakdown in an FPGA is required to enable an efficient redesign process. Figure 9 
gives the energy breakdown of an XC4003 FPGA over a set of benchmark netlists [16]. 
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Figure 9: Power Breakdown in an XC4003 FPGA 

 
The majority of the power is dissipated in the interconnection. The next major component is 
the clock network, while the logic block consumes only 5% of the total energy. This 
breakdown is not specific to the Xilinx FPGA, but is representative of most of the commercial 
FPGA architectures. 

6.4.2. Interconnect Energy 
The term “interconnect” include all the resources required to realize a connection between 
two logic blocks. The physical realization of the connection involves metal tracks and 
programmable switches that have to be activated. The capacitance on the line comes from 
the metal track spanning one logic block, and from the diffusion capacitances of the pass 
transistors connected to this metal track. This can be reduced by either decreasing the 
number of switches accessing the line, or by making the transistors smaller. The number of 
switches can be decreased by reducing the flexibility of the switch box and the connection 
box, and by reducing the width of the routing channel. Any modification of the flexibility has to 
be accompanied by an evaluation of the routing efficiency of the entire architecture. The 
interconnect path in an FPGA can be modeled as an RC chain. The resistance of the series 
transistors contributes to the R, while the diffusion capacitance of the nMOS transistors in the 
path contributes to the C. By reducing the width of the switch, the R of the series path 
increases, reducing the speed performance.  

6.4.3. Clock Energy 
The next major contributor to the total energy is the clock. Typically in all FPGAs, flip-flops 
are provided in each logic block to register the output. The availability of flip-flops in each 
logic block improves the utilization of the array, and leads to a better area efficiency. A side 
effect to this architectural decision is that the clock has to be distributed over the entire array 
to supply the sparse distribution of flip-flops. This results in a relatively large cost for the 
clock distribution network. For the clock energy, the dominant component is actually the 
distribution network, and not the load presented by the flip-flops. Hence, the distribution 
network has to be targeted first to reduce the clock energy. 
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6.5. Reconfigurable Models 
Traditional FPGA structures have been implemented to function in a single context, only 
allowing one full-chip configuration to be loaded at a time. This style of reconfiguration is too 
limited or slow to efficiently implement run-time reconfiguration. The most well-known 
reconfiguration models, which could be used in order to program an FPGA, will be described 
in next paragraphs.  

6.5.1. Statically Reconfigurable  
Static reconfiguration, which often referred as compile time reconfiguration, is the simplest 
and most common approach for implementing applications with reconfigurable logic. Static 
reconfiguration involves hardware changes at a relatively slow rate: hours, days, or weeks. 
At this strategy, each application consists of one configuration. Many of the existing 
reconfigurable systems are statically reconfigurable. In order to reconfigure such a system, it 
has to be halted while the reconfiguration is in progress and then restarted with the new 
program. This reconfiguration model is depicted in Figure 10. 

 

 

Figure 10: Static Reconfiguration 

6.5.2. Dynamically Reconfigurable 
On the other hand, dynamic reconfiguration [18], which also called as run-time 
reconfiguration, uses a dynamic allocation scheme that re-allocates hardware at run-time. 
With this technique there is a trade-off between time and space. It can increase system 
performance by using highly-optimized circuits that are loaded and unloaded dynamically 
during the operation of the system, as shown in Figure 11. Dynamic reconfiguration is based 
on the concept of virtual hardware, which is similar to idea of virtual memory. Here, the 
physical hardware is much smaller than the sum of the resources required by all the 
configurations. Therefore, instead of reducing the number of configurations that are mapped, 
we prefer to swap them in and out of the actual hardware, as they are needed. 
 
 

 

Figure 11: Dynamic Reconfiguration 

6.5.3. Single Context 
The single context FPGAs have only one configuration every time and can be programmed 
using a serial stream of configuration information. Because only sequential access is 
supported, any change to a configuration on this type of FPGA requires a complete 
reprogramming of the entire chip. Although this does simplify the reconfiguration hardware, it 
does incur a high overhead when only a small part of the configuration memory needs to be 
changed. Many commercial FPGAs are of this style, including the Xilinx 4000 series and the 
Altera Flex10K series. This type of FPGA is therefore more suited for applications that can 
benefit from reconfigurable computing without run-time reconfiguration. In order to implement 
run-time reconfiguration onto a single context FPGA, the configurations must be grouped into 
contexts, and each full context is swapped in and out of the FPGA as needed. Because each 
of these swap operations involve reconfiguring the entire FPGA, a good partitioning of the 
configurations between contexts is essential in order to minimize the total reconfiguration 
delay [11]. If all the configurations used within a certain time period are present in the same 
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context, no reconfiguration will be necessary. However, if a number of successive 
configurations are each partitioned into different contexts, several reconfigurations will be 
needed, slowing the operation of the run-time reconfigurable system. 
 

6.5.4. Multi-Context 
A multi-context FPGA includes multiple memory bits for each programming bit location [19]. 
These memory bits can be thought of as multiple planes of configuration information, each of 
which can be active at a given moment, but the device can quickly switch between different 
planes, or contexts, of already-programmed configurations. A multi-context device can be 
considered as a multiplexed set of single context devices, which requires that a context be 
fully reprogrammed to perform any modification. This system does allow for the background 
loading of a context, where one plane is active and in execution while an inactive place is the 
process of being programmed. Fast switching between contexts makes the grouping of the 
configurations into contexts slightly less critical, because if a configuration is on a different 
context than the one that is currently active, it can be activated within an order of 
nanoseconds, as opposed to milliseconds or longer. However, it is likely that the number of 
contexts within a given program is larger than the number of contexts available in the 
hardware. In this case, the partitioning again becomes important to ensure that 
configurations occurring in close temporal proximity are in a set of contexts that are loaded 
into the multi-contexts device at the same time.  

6.5.5. Partially Reconfigurable 
In some cases, configurations do not occupy the full reconfigurable hardware, or only a part 
of a configuration requires modification. In both of these situations, a partial reconfiguration 
of the array is required, rather than the full reconfiguration required by a single-context or 
multi-context device. In a partially reconfigurable FPGA, the underlying programming bit layer 
operates like a RAM device. Using addresses to specify the target location of the 
configuration data allows for selective reconfiguration of the array. Frequently, the 
undisturbed portions of the array may continue execution, allowing the overlap of 
computation with reconfiguration. This has the benefit of potentially hiding some of the 
reconfiguration latency. When configurations do not require the entire area available within 
the array, a number of different configurations may be loaded into unused areas of the 
hardware at different times. Since only part of the array is reconfigured at a given point in 
time, the entire array does not require reprogramming. Additionally, some applications 
require the updating of only a portion of a mapped circuit, while the rest should remain intact. 
Using this selective reconfiguration can greatly reduce the amount of configuration data that 
must be transferred to the FPGA. Several run-time reconfigurable systems are based upon a 
partially reconfigurable design, including Chimaera [20] [33], PipeRench [21], NAPA [22], and 
the Xilinx 6200 and Virtex FPGAs [23] [24].Unfortunately, since address information must be 
supplied with configuration data, the total amount of information transferred to the 
reconfigurable hardware may be greater than what is required with a single context design. 
This makes the full reconfiguration of the entire array slower than the single context version. 
However, a partially reconfigurable design is intended for applications in which the size of the 
configurations is small enough that more than one can fit on the available hardware 
simultaneously.  

6.5.6. Pipeline Reconfigurable 
A modification of the partially reconfigurable FPGA design is one in which the partial 
reconfiguration occurs in increments of pipeline [11] stages. Each stage is configured as a 
whole. This is primarily used in datapath style computations, where more pipeline stages are 
used than can be fitted simultaneously on available hardware. In a pipeline reconfigurable 
FPGA, there are two primary execution possibilities. Either the available number of hardware 
pipeline stages is greater than or equal to the number of pipeline stages of the designed 
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circuit (virtual pipeline stages), or the number of virtual pipeline stages will exceed the 
number of hardware pipeline stages. The first case is straightforward: the circuit is simply 
mapped to the array, and some hardware stages may go unused. The second case is more 
complex and is the one that requires runtime reconfiguration. The pipeline stages are 
configured one by one, from the start of the pipeline, through the end of the available 
hardware stages. After each stage is programmed, it begins computation. In this manner, the 
configuration of a stage is exactly one step ahead of the flow of data. Once the hardware 
pipeline has been completely filled, reuse of the hardware pipeline stages begins.  
 

6.6. Runtime Reconfiguration Categories 
The challenges associated with runtime reconfiguration are closely linked with the goal of 
reconfiguration. Therefore, it is important to consider the motivation and the different 
scenarios of runtime reconfiguration, which are algorithmic, architectural and functional 
reconfiguration. They are briefly described below. 

6.6.1. Algorithmic Reconfiguration 
The goal in algorithmic reconfiguration is to reconfigure the system with a different 
computational algorithm that implements the same functionality, but with different 
performance, accuracy, power, or resource requirements.  The need for such reconfiguration 
arises when either the dynamics of the environment or the operational requirements change.  

6.6.2. Architectural Reconfiguration 
The goal in architectural reconfiguration is to modify the hardware topology and computation 
topology by reallocating resources to computations. The need for this type of reconfiguration 
arises in situations where some resources become unavailable either due to a fault or due to 
reallocation to a higher priority job, or due to a shutdown in order to minimize the power 
usage. For the system to keep functioning in spite of the fault the hardware topology need to 
be modified and the computational tasks need to be reassigned.  

6.6.3. Functional Reconfiguration 
The goal in functional reconfiguration is to execute different function on the same resources. 
The need for this type of reconfiguration arises in situations where a large number of different 
functions are to be performed on a very limited resource envelope. In such situations the 
resources must be time-shared across different computational tasks to maximize resource 
utilization and minimize redundancy.  
 

6.7. Fast Configuration 
Because run-time reconfigurable systems involve reconfiguration during program execution, 
the reconfiguration must be done as efficiently and as quickly as possible. This is in order to 
ensure that the overhead of the reconfiguration does not eclipse the benefit gained by 
hardware acceleration. Stalling execution of either the host processor or the reconfigurable 
hardware because of configuration is clearly undesirable. There are a number of different 
tactics for reducing the configuration overhead, and they will be described below. 

6.7.1. Configuration Prefetching 
By loading a configuration into the reconfigurable logic in advance of when it is needed, it is 
possible to overlap the reconfiguration with useful computation. This results in a significant 
decrease in the reconfiguration overhead for these applications. Specifically, in systems with 
multiple contexts, partial run-time reconfigurability, or tightly coupled processors it is possible 
to load a configuration into all or part of the FPGA while other parts of the system continue 
computing. In this way, the reconfiguration latency is overlapped with useful computations, 
hiding the reconfiguration overhead. The challenge in configuration prefetching [25] is 
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determining far enough in advance which configuration will be required next. Many 
computations (especially those found in general-purpose computations) can have very 
complex control flows, with multiple execution paths branching off from any point in the 
computation, each potentially leading to a different next configuration.  

6.7.2. Configuration Compression 
When multiple contexts or configurations have to be loaded in quick succession then the 
system’s performance may not be satisfactory. In such a case, the delay incurred is 
minimized when the amount of data transferred from the processor to the reconfigurable 
hardware is minimized. A technique that could be used in order to compact this configuration 
information is the configuration compression [26]. In addition to that, a new configuration 
might reuse configuration information that is already present on the hardware, such that only 
the areas differing in configuration values must be reprogrammed. Moreover, by creating 
larger configurations out of groups of smaller configurations, the configuration overhead is 
reduced. This happens due to the fact that more operations can be present on chip 
simultaneously. On the other hand, a disadvantage of this method is that it has some area 
and execution penalties. 

6.7.3. Relocation and Defragmentation in Partially Reconfigurable Systems 
Partially reconfigurable systems have advantages over single context systems, but problem 
might occur if two partial configurations are supposed to be located at overlapping physical 
locations on the FPGA. A solution to this problem is to allow the final placement of the 
configurations to occur at run-time, allowing for run-time relocation of those configurations. 
By using this technique, the new configuration could be placed onto the reconfigurable 
hardware where it will cause minimum conflict with other needed configurations already 
present on the hardware. A number of systems use the run-time relocation [27], among them 
are the Chimaera [20] [33], PipeRench [21] and Garp [31]. Over time, as a partially 
reconfigurable device loads and unloads configurations, the location of the unoccupied area 
on the array is likely to become fragmented, similar to what occurs in memory systems when 
RAM is allocated and deallocated. A configuration normally requires continues region of the 
chip, so it would have to overwrite a portion of the valid configuration in order to be placed 
onto the reconfigurable hardware. A system that incorporates the ability to perform 
defragmentation [27] of the reconfigurable array, however, would be able to consolidate the 
unused area by moving valid configurations to new locations. 

6.7.4. Configuration Caching 
Caching configurations [28] on an FPGA, which is similar to caching instructions or data in a 
general memory, is to retain the configurations on the chip so the amount of the data that 
needs to be transferred to the chip can be reduced. In a general-purpose computational 
system, caching is an important approach to hide memory latency by taking advantage of 
two types of locality, spatial and temporal locality. These two localities also apply to the 
caching of configurations on the FPGA in coupled processor-FPGA systems. The challenge 
in configuration caching is to determine which configurations should remain on the chip and 
which should be replaced when a reconfiguration occurs. An incorrect decision will fail to 
reduce the reconfiguration overhead and lead to a much higher reconfiguration overhead 
than a correct decision. The non-uniform configuration latency and the small number of 
configurations that reside simultaneously on the chip increase the complexity of this decision. 
Both frequency and latency factors of configurations need to be considered to assure the 
best reconfiguration overhead reduction. Specifically, in certain situations retaining 
configurations with high latency is better than keeping frequently required configurations that 
have lower latency. In other situations, keeping configurations with high latency and ignoring 
the frequency factor will result switching between other frequently required configurations 
because they cannot fit in the remaining area. The switching causes reconfiguration 
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overhead in this case that will not occur if the configurations with high latency but low 
frequency are unloaded.  
 

7. Academic fine-grain Reconfigurable platforms 
Some of the existing well-known academic fine-grain reconfigurable platforms are described 
in the next paragraphs. The first part of this section is about platforms that are based on fine-
grain reconfigurable devices, while the second one is for stand alone reconfigurable devices. 
All of those architectures use one or two bits for their functions, and so they could be 
characterized as fine-grain. At the end of this section is a summary table, where many of the 
previous referred systems are compared with criteria like the programmability, the 
reconfiguration method, the interface and the possible application domain. 
 

7.1. Platforms that are based on fine-grain reconfigurable devices 
At this part of the document will be described the Splash, Splash2, DECPeRLe-1, OneChip, 
Chimaera, DISC, Garp, and Morphosys systems that are platforms based on fine-grain 
reconfigurable devices.  

7.1.1. Splash  
The Splash [29] is an attached processor board designed at the Supercomputing Research 
center to provide very high performance for a range of bit-processing problems. The Splash, 
a single multiwire board that could be plugged into the VMEbus of a Sun Worksation, was 
initially designed to be a test-bed for Systolic Algorithms. The board contains 32 Xilinx 3090 
FPGA chips as processing elements. These FPGAs are connected in a linear array by a 32-
bit-wide path. The board is connected via 2 buses: one for data transfer and other for 
configurations. The Splash environment consists of several development tools like the Logic 
Description Generator (LDG) the output of which is mapped to the Xilinx chips. It also 
consists of a LISP language for manipulating templates describing logic functions. In addition 
to these tools it also has a debugger called Trigger and some C routines for directly 
accessing Splash platform from C programs. The main drawback of Splash was that it was 
implemented as a linear array. The software tools were rudimentary and required knowledge 
of FPGA architecture.  

7.1.2. Splash 2 
The Splash2 system [29] has been developed to improve certain aspects of the Splash1 
system, like the scalability, the I/O bandwidth and the programmability. It uses a SPARC 2 as 
a host over a Sbus. The I/O rate of Splash2 is 8 to 10 times faster than Splash1. The 
Splash2 has 17 Xilinx XC4010 chips on aboard. The major differences between 3090 and 
4010 are that the latter has 400 CLBs as compared to 320 in the former, each CLB has 9 
input lines instead of 5 and maximum speed is 40 MHz as compared to 32 MHz. In addition 
to these it has a fast carry internal to the CLBs to make the computations faster and reduces 
amount of programming and CLBs. The new chip also allows the use of CLBs as a 32-bit 
RAM and can be configured as either 32 x 1 bit or 16 x 2 bits. The Splash2 in addition to the 
linear connection of the Xilinx chips it has broadcast to multiple Splash boards, memory 
connection to host and interchip connections on the board itself. There is an interface board, 
which handles the FIFOs and preconditioning of data. The memory chips on the board are 
directly connected to a single Xilinx chip and the 128K x 8 bit RAMs have been replaced 
256K x 16 bit RAMs and these changes make the memory more accessible to the Xilinx 
chips.  

7.1.3. DECPeRLe-1  
The DECPeRLe–1 [30] system is a programmable hardware accelerator based on a matrix 
of Xilinx FPGAs attached to a DECStation 5000 Ultrix workstation. Figure 12 outlines the 
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architecture of the system. The central matrix consists of 16 Xilinx XC3090 Logic Cell Arrays 
(LCAs), connected to four 64 bit buses, shown as the North (N), South (S), East (E) and 
West (W) matrix buses. These buses are connected to the N, S, E and W data switches, 
which are also XC3090 LCAs. Each switch is also connected to a bank of 32 bit by 256K 
word high speed SRAM. The N and E switches are linked by another 32 bit bus, as are the S 
and W switches. Each of these buses connects to a 5th switch LCA, known as the FIFO 
Switch, which communicates to the host workstation via 32–bit FIFOs connected to a 
TurboChannel expansion slot. Finally, 2 more LCAs are included to control the N and E 
memories (Controller NE) and the S and W memories (Controller SW). The XC3090 LCA 
consists of a 16x20 array of configurable logic blocks (CLBs), where each CLB has 2 flip–
flops and a 5 input programmable logic array. The central matrix of LCAs thus forms a 
160x64 array of bit programmable logic elements.  
 

 

Figure 12: (a) The DECPeRLe-1 System Architecture, (b) The Central Matrix 

The system is programmed using C++ as a hardware description language. A C++ library is 
provided which contains low level primitives for describing designs. Logical nets are 
described using Boolean variables, while the Boolean equations are described using the 
standard C syntax for bitwise operators. Additional primitives are supplied to assign specific 
CLB pins to specific nets and declare the usage of tri–state buffers and clocks. A special 
operator to assign the placement of nets to CLBs is also provided. Hierarchical designs are 
constructed using C functions and C++ class declarations, and a standard template file is 
used to map a design into the board architecture. 

7.1.4. GARP 
Garp [31] was developed at University of California Berkeley. It belongs to the family of 
Reconfigurable Coprocessors as it integrates a reconfigurable array that has access to the 
processor’s memory hierarchy. The reconfigurable array may be partially reconfigured as it is 
organized in rows. Configuration bits are included and linked as constants with ordinary C 
compiled programs. 
 
At the Garp architecture, the FPGA is recast as a slave computational unit located on the 
same die as the processor. The reconfigurable hardware is used to speed up what it can, 
while the main processor takes care of all other computations. Figure 13 shows the 
organization of the machine at the highest level. Garp’s reconfigurable hardware goes by the 
name of the reconfigurable array. It has been designed to fit into an ordinary processing 
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environment, one that includes structured programs, libraries, context switches, virtual 
memory, and multiple users. The main thread of control through a program is managed by 
the processor and in fact programs never need to use the reconfigurable hardware. It is 
expected, however, that for certain loops or subroutines, programs will switch temporarily to 
the reconfigurable array to obtain a speedup. With Garp, the loading and execution of 
configurations on the reconfigurable array is always under the control of a program running 
on the main processor. 
 
The Garp makes external storage accessible to the reconfigurable array by giving the array 
access to the standard memory hierarchy of the main processor. This also provides 
immediate memory consistency between array and processor. Furthermore, Garp has been 
defined to support strict binary compatibility among implementations, even for its 
reconfigurable hardware. 
 
Garp’s reconfigurable array is composed of entities called blocks. One block on each row is 
known as a control block. The rest of the blocks in the array are logic blocks, which 
correspond roughly to the CLBs of the Xilinx 4000 series. The Garp Architecture fixes the 
number of columns of blocks at 24, while the number of rows is implementation-specific, but 
can be expected to be at least 32. The architecture is defined so that the number of rows can 
grow in an upward-compatible fashion. 

 
 

Figure 13: Basic Garp block diagram 

 
The basic “quantum” of data within the array is 2 bits. Logic blocks operate on values as 2-bit 
units, and all wires are arranged in pairs to transmit 2-bit quantities. Operations on data wider 
than 2 bits can be formed by adjoining logic blocks along a row. Construction of multi-bit 
adders, shifters, and other major functions is aided by hardware invoked through special 
logic block modes. 
 
Compared to typical FPGAs, Garp expends more hardware on accelerating operations like 
additions and variable shifts. In fact, each row of Garp’s array approximates a conventional 
ALU. However, with most of the array die area typically going to inter-block wiring and 
configuration storage, the incremental area cost of including this special hardware is not 
necessarily as high as one might think. The cost can be paid back when a configuration that 
uses the special modes is faster and/or needs fewer logic blocks as a result. 

7.1.5. OneChip 
The OneChip [32] architecture combines a fixed-logic processor core with reconfigurable 
logic resources. Typically, the OneChip is useful for two types of applications. The first one is 
the embedded controller type problems requiring custom glue logic interfaces, while the other 
one is for application specific accelerators utilizing customized computation hardware. Using 
the programmable components of this architecture, the performance of speed-critical 
applications can be improved by customizing OneChip’s execution units, or flexibility can be 
added to the glue logic interfaces of embedded controller applications. OneChip eliminates 
the shortcomings of other custom compute machines by tightly integrating its reconfigurable 
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resources into a MIPS-like processor. Speedups of close to 50 over strict software 
implementations on a MIPS R4400 are achievable for computing the DCT. 

7.1.6. Chimaera 
Chimaera [20] [33] prototype system integrates a small and fast reconfigurable functional unit 
(RFU) into the pipeline of an aggressive, dynamically-scheduled superscalar processor. The 
RFU is a small and fast field programmable gate array like devices that can implement 
application specific operations. The Chimaera system is capable of collapsing a set of 
instructions into RFU operations, converting control-flow into RFU operations, and supporting 
a more powerful fine-grain data-parallel model than that supported by current multimedia 
extension instruction sets (for integer operations). The RFU is capable of performing 
computations that use up to 9 input registers and produce a single register result and it is 
tightly integrated with the processor core to allow fast operation (in contrast to typical FPGAs 
which are build as discrete components and that are relatively slow).  
 
Chimaera has the following potential advantages: 
•  The RFU may reduce the execution time of dependent operations. By tailoring its 

datapath for specific operations, the RFU may perform several dependent operations in 
less time than it takes to execute each of the operations individually. 

•  The RFU may reduce dynamic branch count by collapsing code containing control flow 
into an RFU operation. In this case the RFU speculatively executes all branch paths and 
internally selects the appropriate one. 

•  The RFU may exploit sub-word parallelism. Using the bit-level flexibility of the RFU, 
several sub-word operations can be performed in parallel. While this is similar to what 
typical multimedia instruction set extensions do, the RFU-based approach is more 
general. Not only the operations that can be combined are not fixed in the ISA definition, 
but also, they do not have to be the same. For example, an RFU operation could 
combine 2-byte additions and 2-byte subtracts. Moreover, it could combine 4-byte wide 
conditional moves. 

•  Finally the RFU may reduce resource contention as several instructions are replaced by 
a single one. These resources include instruction issue bandwidth, write-back bandwidth, 
reservation stations and functional units. 

 

 

Figure 14: Overview of the Chimaera Architecture 

 
The Chimaera architecture, shown in Figure 14, comprises the following components: the 
reconfigurable array (RA), the shadow register file (SRF), the execution control unit (ECU), 
and the configuration control and caching unit (CCCU). The RA is where operations are 
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executed. The ECU decodes the incoming instruction stream and directs execution. The 
ECU communicates with the control logic of the host processor for coordinating execution of 
RFU operations. The CCCU is responsible for loading and caching configuration data. 
Finally, the SRF provides input data to the RA for manipulation. 
 
In the core of the RFU lies the RA. The RA is a collection of programmable logic blocks 
organized as interconnected rows. Each row contains a number of logic blocks, one per bit in 
the largest supported register data type. The logic block can be configured as a 4-LUT, two 
3-LUTs, or a 3-LUT and a carry computation. Across a single row, all logic blocks share a 
fast-carry logic that is used to implement fast addition and subtraction operations. By using 
this organization, arithmetic operations such as addition, subtraction, comparison, and parity 
can be supported very efficiently. The routing structure of Chimaera is also optimized for 
such operations. 

7.1.7. DISC 
The DISC [34] architecture implements relocatable hardware with the linear hardware model 
on a single National Semiconductor CLAy31 FPGA coupled to an external RAM. The 
CLAy31 provides a 56x56 array of fine-grain logic cells allowing 56 complete rows in the 
linear hardware space. A complete processor is made by coupling a global controller to a 
library of custom instruction circuit modules.  
 

 

Figure 15: DISC Architecture 

 
The DISC processor, as shown in Figure 15, was implemented on a PC-ISA custom board 
made exclusively for the study. The board includes static bus interface circuitry, two CLAy31 
FPGAs, and memory. A configuration controller is implemented on the first FPGA to monitor 
the processor execution and request instructions from the host. DISC is implemented on the 
second FPGA and the application program memory is stored in the adjacent memory. The 
board operates under a UNIX-based operating system and is controlled by a host device 
driver. 

7.1.8. Pleiades 
The Pleiades processor [86] combines an on-chip microprocessor with an on-chip 
microprocessor with an array of heterogeneous programmable computational units of 
different granularities, which are called satellite processors, connected by a reconfigurable 
interconnect network, as shown in Figure 16. The microprocessor supports the control-
intensive components of the applications as well as the reconfiguration, while repetitive and 
regular data-intensive loops are directly mapped on the array of satellites by configuring the 
satellite parameters and the interconnections between them. The synchronization between 
the satellite processors is accomplished by a data-driven communication protocol in 
accordance with the data-flow nature of the computations performed in the regular data-
intensive loops. 
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Figure 16: Heterogeneous Reconfigurable Processor Architecture 

 
The Maia processor combines an ARM8 core with 21 satellite processors. Those processors 
are two MACs, two ALUs, eight address generators, eight embedded memories (4 512x16 
bit, 4 1Kx16 bit), and an embedded low-energy FPGA array [40]. The embedded ARM8 is 
optimized for low-energy operation. Both the dual-stage pipelined MAC and the ALU can be 
configured to handle a range of operations. The address generators and embedded 
memories are distributed to supply multiple parallel data streams to the computational 
elements. The embedded FPGA supports a 4x8 array of 5-input 3-output CLBs, optimized for 
arithmetic operations and data-flow control functions. It contains 3 levels of interconnect 
hierarchy, superimposing nearest-neighbor, mesh and tree architectures. The chip is shown 
in Figure 17. 
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Figure 17: Heterogeneous Reconfigurable Processor Chip Microphotograph 

 
The overall chip characteristics are summarized in Table 1. 
 

Technology 0.25 �m 6-level metal 
CMOS 

Main Supply Voltage 1 V 
Additional Voltages 0.4 V, 1.5 V 
Die Size 5.2 mm x 6.7 mm 
Transistor Count 1.2 Million transistors 
Average Cycle Speed  40 MHz 
Average Power 
Dissipation 

1.5 – 2 mW 

Table 1: Chip Characteristics 

7.2. Stand alone fine-grain reconfigurable devices 
Here are described the academic systems that could be characterized as stand alone fine-
grain reconfigurable devices. Those are DPGA, Triptych, Montage, UTFPGA-1, LP_PGA, 
LP_PGA II, 3D-FPGA, LEGO. 

7.2.1. DPGA 
Dynamically Programmable Gate Arrays (DPGAs) [35] differ from traditional FPGAs by 
providing on-chip memory for multiple array personalities. The configuration memory 
resources are replicated to contain several configurations for the fixed computing and 
interconnect resources. In effect, the DPGA contains an on-chip cache of array 
configurations and exploits high, local on-chip bandwidth to allow reconfiguration to occur 
rapidly, on the order of nanoseconds instead of milliseconds. Loading a new configuration 
from off-chip is still limited by low off-chip bandwidth. However, the multiple contexts on the 
DPGA allow the array to operate on one context while other contexts are being reloaded. 
 
The DPGA architecture consists of array elements. Each array element is a conventional 4-
input LUT. Small collections of array elements are grouped together into subarrays, and 
these subarrays are then tiled to compose the entire array. Crossbars between the subarrays 
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serve as inter-subarray routing connections. A single, 2-bit, global context identifier is 
distributed throughout the array to select the configuration for use. Additionally, programming 
lines are distributed to read and write configurations to memories. 
 
The basic memory primitive is a 4x32 bit DRAM array that provides four context 
configurations for both the LUT and interconnect network.  

7.2.2. Triptych 
Triptych FPGA [36], [37] matches the physical structure of the routing architecture to the fan-
in/fan-out nature of the structure of digital logic by using short connections to the nearest 
neighbors. Segmented routing channels are used between the columns to provide for nets 
with fan-out greater than one. This routing architecture does not allow the arbitrary point-to-
point routing available in general FPGA structures. The logic block implements logical 
functions using a multiplexer-based three-input lookup table followed by a master-slave D-
latch and can also be used for routing. Initial results show potential implementation 
efficiencies in terms of area using this structure. 

7.2.3. Montage 
The Montage FPGA [37] [38] is a version of the Triptych architecture, which is modified to 
support asynchronous circuits and interfacing separately clocked synchronous circuits. This 
is achieved by the addition of an arbiter unit and a clocking scheme that allows two possible 
clocks or makes the latches transparent. 
 

 

Figure 18: Routing and Logic Block (RLB) 

 
Triptych and Montage are FPGAs designed with integrated routing and logic, and achieve 
higher densities than current commercial FPGAs. Both FPGAs share the same overall 
routing structure. The Routing and Logic Block (RLB), as shown in Figure 18 consists of 3 
multiplexers for the inputs, a functional unit, 3 multiplexers for the outputs, and tri-state 
drivers for the segmented channels. In Triptych, the functional unit is a 3-input LUT, with an 
optional D-latch on its output.  

7.2.4. UTFPGA1 
The work at the University of Toronto resulted in the implementation of an architecture 
(UTFPGA1) using three cascaded four-input logic blocks and segmented routing. UTFPGA1 
[39] used information from previous architectural studies, but there was very little transistor-
level optimization (for speed), and little time was spent on layout optimization. This was a first 
attempt that provided some insight into the problems faced in the design and layout of an 
FPGA. 
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Figure 19: General architecture of UTFPGA1 

 
The general architecture of UTFPGA1 is shown in Figure 19. The logic block (L) contains the 
functionality of the circuit while the connection boxes (C) connect the logic block pins into the 
neighboring channel. The switch box (S) makes connections between adjacent horizontal 
and vertical channel segments. Connections to the I/O pads are done through I/O blocks (I), 
which connect to the routing channels. Configuration is done by programming static memory 
configured as shift registers. They have designed a single tile that contains one logic block, 
two connection boxes and one switch box. This tile can then be arrayed to any size. The 
logic block contains three cascaded four-to-one lookup tables. This configuration was chosen 
because results [31] have shown that significant gains in optimizing for delay can be 
achieved by having some hardwired connections between logic blocks. The block also 
contains a resettable D flip-flop. The routing architecture has tracks segmented into lengths 
of one, two, and three tiles. Such architecture provides fast paths for longer connections, 
improving FPGA performance.  

7.2.5. LP_PGA 
LP_PGA [40] is an energy efficient FPGA architecture. Significant reduction in the energy 
consumption is achieved by tackling both circuit design and architecture optimization issues 
concurrently. A hybrid interconnect structure incorporating Nearest Neighbor Connections, 
Symmetric Mesh Architecture, and Hierarchical connectivity is used. The interconnect energy 
is also reduced by employing low-swing circuit techniques. These techniques have been 
employed to design and fabricate an FPGA. Preliminary analysis shows energy improvement 
of more than an order of magnitude when compared to existing commercial architectures. 

7.2.6. LP_PGA II 
The LP_PGA II [41], is a stand-alone FPGA of 256 logic blocks with an equivalent logic 
capacity of 512 4-input LUTs. At this paragraph the implementation is described at the 
different components of the FPGA (logic block, connection boxes, interconnect levels, and 
the configuration architecture). The LP_PGA II was designed in a 0.25�m CMOS process 
from STMicroelectronics.  
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11.2.6.1 Logic Block 
Based to previous research [10], it is shown that logic blocks that is capable to implement a 
5-input random logic function or a 2-bit arithmetic function, is optimal for energy efficiency. 
This functionality is made possible by implementing the logic block as a cluster of 3-input 
LUTs. This clustering technique makes it possible to combine the results of the four 3-input 
LUTs in various ways to simultaneously realize up to three different functions in a logic block. 
The combination of the results of the 3-input LUTs is realized using multiplexers that can be 
programmed at time of configuration. All the outputs of the logic block can be registered if 
required. The flip-flops use double-edge-triggered clocks to reduce the clock activity on the 
clock distribution network for a given data-throughput. The CLB is illustrated in Figure 20. 
 

 
Figure 20: Logic Block Architecture 

 
11.2.6.2 Look-Up Table 
The 3-input LUT that is used in the logic block is implement using a multiplexer. The control 
signals of the multiplexer are the inputs to the LUT. The inputs to the multiplexer are stored 
in memory cells, while the functionality of the LUT is controlled by programming the contents 
of the memory cells based on the truth table of the required function. 

11.2.6.3 Interconnect Architecture 
All the three levels of interconnect hierarchy are implemented in the LP_PGA II. The 
realization of the interconnect primitives is dependent on the exact implementation of the 
interconnect architecture. At this system it is used three interconnect levels, the nearest 
neighbor connection (Level-0), the mesh architecture (Level-1), and the inverse clustered 
tree (Level-2). 
 
The Level-0 connections provide connections between adjacent logic blocks, as it is shown 
in Figure 21. Each output pin connects to one input pin of the eight immediate neighbors. 
The routing overhead of having eight separate lines to each input pin from the output pins of 
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the neighbors is quite high. The overhead can be reduced if multiple pins share the same 
interconnect line.  
 

 

 

Figure 21: Nearest neighbor connection 

 
The mesh architecture (Level-1) is realized with a channel width of five. The pins of the logic 
block are uniformly distributed on all sides of the logic block. The pins of the logic block can 
access all tracks in the corresponding routing channel. The switch box allows connections 
between each routing segment in a given channel and the corresponding segments in the 
other three routing channels.  
 
The Level-2 network provides connection between logic blocks that are farther apart on the 
array. The long connection can be accessed through the Mesh structure. Two tracks in each 
routing channel are connected using the Level-2 network. This is illustrated in Figure 22. The 
routing through the different levels of the Level-2 network is realized using the 3-transistor 
routing switch. 
 

 

Figure 22: Level-2 connections 

 
During the physical implementation, the Level-2 network contributes a significant amount to 
the area. Area minimization can be achieved by recognizing that the higher levels of the 
network can be discarded without any significant penalty to the routability. 
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11.2.6.4 Tile Layout 
The logic block, connection boxes, and the switch box have been combined to form a single 
tile. The dimensions of a single tile are 241�m x 219�m in a 0.25�m process. The layout of a 
single tile [41] is shown in Figure 23. 
 
 

 

Figure 23: The LP_PGAII layout of a single tile 

 
The contribution of the different components to the total area is given in Table 2 [41]. The 
routing resources account for approximately 49% of the total area. As the size of the array 
increases, the fraction of the total area used by the routing will also increase. This is because 
the increase in the array size necessitates an increase in the routing resources required for 
each tile to ensure successful routing. The logic block contributes only 9% to the total tile 
area. 
 

Component Percent of Total Area 
Logic Block 9 % 
Connection Box 18 % 
Switch Box 10 % 
Hierarchical Routing 21 % 
Local Configuration Distribution and Address Decode 5 % 
Global Configuration Distribution 13 % 
Miscellaneous Routing 24 % 

Table 2: Contribution of different components to the total area 

 
11.2.6.5 Energy 
The energy of the FPGA is reported in two ways: the energy consumed in the interconnect 
as a function of length and the energy for implementing different applications. The Figure 24 
[41] compares the energy dissipated in the interconnect for different path lengths for the 
XC4000XV and LP_PGA II FPGAs. The logic blocks from these FPGAs have similar logic 
capacity and the path lengths can be measured in terms of Manhattan distance between the 
logic blocks.  
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Figure 24: Energy as a Function of Path Length 

 
In order to explore in more detail the overall energy consumption in the FPGA, a number of 
applications are mapped onto the array and the energy is measured. The applications are 
described at the Register Transfer Level, while the mapping to each FPGA is done based on 
component library for the architecture. The applications are executed with the same data 
throughput and input data streams. The energy is reported for processing one data token, 
and it is given in Table 3 [41]. The reported energy is five to sixteen times lower than that of 
the commercial architecture.  
 

Application XC4000XV LP_PGAII 
Single FF driving 9 segments 107 3.8 
1K Array of 16-bit counters 16667 750 
Theta Function 183 20 
Barrel Shifter 992 199 
Accumulator 156 10 
Viterbi Accelerator 1380 131 

Table 3: Execution Energy Per Data Token in pJ 

 
In addition to that, in the same research [41], a comparison of the configuration overhead for 
programming the Xilinx FPGA and the LP_PGA II is performed. The difference in the 
configuration energy between the two FPGAs is dramatic, a reduction by three to six orders 
of magnitude. At the LP_PGAII the energy is a function of the utilization of the array, while 
the energy is constant for the Xilinx FPGA. The low configuration cost of LP_PGA II makes it 
a more attractive choice as a performance accelerator. 
 
Finally, there is a study of the energy and delay tradeoff. One of the main goals of the 
LP_PGA II is to minimize the energy while maintaining acceptable speed performance. This 
resulting in using a 1.5V/0.8V power supply to achieve a maximum toggle frequency of 
125MHz. It is possible to run this design at a higher voltage to improve the speed 
performance. Probably, this improved speed can only be obtained at the cost of higher 
energy consumption. 

11.2.6.6 Configuration Architecture 
The configuration method used in the low-energy FPGA is that of a random access 
technique. This makes it possible to selectively program the resources in the FPGA, without 
having to program the entire array each time.  
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11.2.6.7 LP_PGAII Implementation 
Three prototype FPGAs were built. The first prototype, LP_PGA II, was an array of sixty-four 
logic blocks. The purpose of this chip was to verify the architectural and circuit techniques 
aimed at reducing the execution energy. The second prototype was an embedded version of 
LP_PGA II. The array was used as an accelerator in a digital signal processor for voice band 
processing. Data obtained from the embedded FPGA verified the applicability of an FPGA in 
an energy-sensitive platform. This implementation also brought into focus the overhead 
associated with frequent reconfiguration of the FPGA. The last prototype, LP_PGA II 
incorporated the improvements to reduce the configuration energy. Measured data from the 
prototypes demonstrate five times to twenty-two times improvement in execution energy over 
comparable commercial architectures. 

7.2.7. 3D-FPGA 
3D-FPGA [42] is a dynamically reconfigurable field programmable gate array (FPGA). The 
architecture was developed using a methodology that examines different architectural 
parameters and how they affect different performance criteria such as speed, area, and 
reconfiguration time. The block diagram of the 3-D FPGA is shown in Figure 25. The 
resulting architecture has high performance while the requirement of balancing the areas of 
its constituent layers is satisfied. 
 
 

 

Figure 25: Block diagram of the 3-D FPGA 

 
The architecture consists of three layers: the routing and logic block (RLB) layer, the routing 
layer (RL), and the memory layer (ML). The RLB layer is responsible for implementing logic 
functions and for performing limited routing. Since it is well known that, for practical 
applications, most nets are short, it is decided to implement in the RLB layer the portion of 
the routing structure that will be used for routing short nets. The remaining part of the routing 
structure is implemented in the RL that is formed by connecting multiple switch boxes in a 
mesh array structure. The memory layer is used to store configuration bits for both the RLB 
and routing layers. The number of configuration bits stored in this layer is determined by the 
size of the RLB and routing layers. The main goal is to achieve a balance between the 
FPGAs constituent layers. Figure 26 presents the internal structure of the functional unit.  
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Figure 26: Internal Structure of the functional unit 

 
A dynamically reconfigurable FPGA must provide a mean of communicating intermediate 
results between different configuration instantiations. The proposed FPGA allows direct 
communication between any two configuration instantiations. The SaveS register is provided 
in order to allow the present state to be saved for subsequent processing. The current state 
can be loaded into the register when the SaveState signal is enabled. The value of the 
SaveS register can be retrieved by any configuration instantiation by appropriately setting the 
value of the RestoreState signal without disturbing the operation of the RLB during the 
intermediate configuration instantiations. The restored value can be used as one of the 
inputs into the LUT. The RLBs are organized into clusters. A cluster is formed by a square 
array of RLBs. The size of the cluster will be determined in Section V-B. Each cluster is 
associated with a cluster memory block and a switch box in the routing layer. The cluster 
memory block can be used to store either input data or intermediate results. The size of this 
cluster memory is dependent upon the mismatch between the areas of the FPGA 
constituent’s layers.  

7.2.8. LEGO 
The LEGO [43], [44] (Logic that’s Erasable and Greatly Optimized) FPGA basic block is a 
four-input LUT. The designers’ objective was focused on achieving a high-speed design, 
while keeping in mind the area tradeoffs. The most critical issues are the design of the 
switches and minimizing the capacitance of the routing network. The results have shown that 
the LEGO design compares favorably with existing commercial FPGA’s. Also all the 
commercial FPGA designs are done using full-custom hand layout to obtain absolute 
minimum die sizes. This is both labor and time intensive. Here is proposed a design style 
with a minitile that contains a portion of the components in the logic tile, resulting in less full-
custom effort. The minitile is replicated in a 4x4 array to create a macro tile. The minitile is 
optimized for layout density and speed, and is customized in the array by adding appropriate 
vias. This technique also permits easy changing of the hard-wired connections in the logic 
block architecture and the segmentation length distribution in the routing architecture. 
 

7.3. Summary 
Table 4 provides the main features for some of the above described fine-grain reconfigurable 
architectures in terms of their programmability, the reconfiguration method, the interface and 
the possible application domain. 
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Table 4: Comparisons of fine-grain academic architectures 

 

8. Commercial fine-grain Reconfigurable platforms 
This part of the report referred to commercial fine-grain reconfigurable architectures. The 
best known of them are the FPGAs that various vendors produce. Many FPGA families are 
described below with figures that show the CLB.  

8.1. Xilinx 
At this part of the document will be described the Spartan, Spartan-XL, Spartan-II, Virtex, 
Virtex II, and Virtex E family FPGAs. 

8.1.1. Spartan and Spartan-XL Families FPGAs  
The Spartan and the Spartan-XL families [45] are a high-volume production FPGA solution 
that delivers all the key requirements for ASIC replacement up to 40,000 gates. These 
requirements include high performance, on-chip RAM, core solutions and prices that, in high 
volume, approach and in many cases are equivalent to mask programmed ASIC devices. 
 
12.1.1.1 General Overview 
Spartan series FPGAs are implemented with a regular, flexible, programmable architecture 
of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile 
routing resources (routing channels), and surrounded by a perimeter of programmable 
Input/Output Blocks (IOBs). They have generous routing resources to accommodate the 
most complex interconnect patterns. The devices are customized by loading configuration 
data into internal static memory cells. Re-programming is possible an unlimited number of 

System Granularity Program-
mability 

Reconfi-
guration 

Interface Computing 
Model 

Application 
Domain 

Splash 
 
Splash2 

Fine-grain Multiple  
Context (for 
interconnect) 

Static Remote Uniprocessor Complex bit-
oriented 
computations 

DECPeRLe-1 Fine-grain Single 
Context 

Static Remote Uniprocessor Complex bit-
oriented 
computations 

Garp Fine-grain Multiple  
Context 

Static Local Uniprocessor Bit-level 
image 
processing, 
cryptography 

OneChip Fine-grain Single  
Context 

Static Local Uniprocessor Embedded 
controllers, 
application 
accelerators 

Chimaera Fine-grain Single  
Context 

Static Local Uniprocessor Bit-level 
computations 

DISC Fine-grain Single  
Context 

Dynamic Local Uniprocessor General 
purpose 

DPGA Fine-grain Multiple  
Context 

Dynamic Remote Uniprocessor Bit-level 
computations 
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times. The values stored in these memory cells determine the logic functions and 
interconnections implemented in the FPGA. The FPGA can either actively read its 
configuration data from an external serial PROM (Master Serial mode), or the configuration 
data can be written into the FPGA from an external device (Slave Serial mode). Spartan 
series FPGAs can be used where hardware must be adapted to different user applications.  
 
12.1.1.2 Configurable Logic Blocks (CLBs) 
The Spartan and Spartan-XL CLB elements are composed of three look-up tables (LUT) are 
used as logic function generators, two flip-flops and two groups of signal steering 
multiplexers and is shown in Figure 27. Two 16x1 memory look-up table (F-LUT and G-LUT) 
are used to implement 4-input function generators, each offering unrestricted logic 
implementation of any Boolean function of up to four independent input signals. Using 
memory LUT the propagation delay is independent of the function implemented. A third 3-
input function generator (H-LUT) can implement any Boolean function of three inputs. The 
CLB can therefore, implement certain functions of up to nine inputs, like parity checking. The 
three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of 
five inputs. 
 
 

 

Figure 27: Spartan/XL Simplified CLB Logic Diagram 

 
12.1.1.3 Routing Channel Description 
All internal routing channels are composed of metal segments with programmable switching 
points and switching matrices to implement the desired routing. A structured, hierarchical 
matrix of routing channels is provided to achieve efficient automated routing. 
 
12.1.1.4 Advanced Features Description 
•  Distributed RAM 
Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used 
as Random Access Memory (RAM). Read and write operations are significantly faster for this 
on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively 
short signal propagation delays within the FPGA. 
•  Fast Carry Logic 
Each CLB F-LUT and G-LUT contains dedicated arithmetic logic for the fast generation of 
carry and borrow signals. This extra output is passed on to the function generator in the 
adjacent CLB. The carry chain is independent of normal routing resources. Dedicated fast 
carry logic greatly increases the efficiency and performance of adders, subtractors, 
accumulators, comparators and counters. It also opens the door to many new applications 
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involving arithmetic operation, where the previous generations of FPGAs were not fast 
enough or too inefficient. High-speed address offset calculations in microprocessor or 
graphics systems, and high-speed addition in digital signal processing, are two typical 
applications. 
 
 
•  3-State Long Line Drivers 
A pair of 3-state buffers is associated with each CLB in the array. These 3-state buffers 
(BUFT) can be used to drive signals onto the nearest horizontal longlines above and below 
the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the 
horizontal longlines, saving logic resources. 
•  On-Chip Oscillator 
Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on 
time-out, for configuration memory clearing, and as the source of CCLK in Master 
configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with 
process, VCC, and temperature. The output frequency falls between 4 MHz and 10 MHz. 
 
12.1.1.5 Configuration 
Spartan/XL devices use several hundred bits of configuration data per CLB and its 
associated interconnects. Each configuration bit defines the state of a static memory cell that 
controls either a function LUT bit, a multiplexer input, or an interconnect pass transistor. 

8.1.2. Spartan-II Array  
The Spartan-II [46] user-programmable gate array is composed of five major configurable 
elements: 

•  IOBs provide the interface between the package pins and the internal logic  
•  CLBs provide the functional elements for constructing most logic  
•  Dedicated block RAM memories of 4096 bits each 
•  Clock DLLs for clock-distribution delay compensation and clock domain control 
•  Versatile multi-level interconnect structure 
 

The CLBs form the central logic structure with easy access to all support and routing 
structures. The IOBs are located around all the logic and memory elements for easy and 
quick routing of signals on and off the chip. Values stored in static memory cells control all 
the configurable logic elements and interconnect resources. These values load into the 
memory cells on power-up, and can reload if necessary to change the function of the device. 
Each of these elements will be discussed in detail in the following sections. 
 
12.1.2.1 Configurable Logic Block 
The basic building block of the Spartan-II CLB is the logic cell (LC). An LC includes a 4-input 
function generator, carry logic, and storage element. Output from the function generator in 
each LC drives the CLB output and the D input of the flip-flop. Each Spartan-II CLB contains 
four LCs, organized in two similar slices. In addition to the four basic LCs, the Spartan-II CLB 
contains logic that combines function generators to provide functions of five or six inputs. 
Figure 28 shows the identical slices that are placed in each CLB. 
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Figure 28: Spartan-II CLB Slice 

 
12.1.2.2 Look-Up Tables 
Spartan-II function generators are implemented as 4-input LUTs. In addition to operating as a 
function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the 
two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous 
RAM, or a 16 x 1-bit dual-port synchronous RAM. The Spartan-II LUT can also provide a 16-
bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also 
be used to store data in applications such as DSP. 
 
12.1.2.3 Storage Elements 
Storage elements in the Spartan-II slice can be configured either as edge-triggered D-type 
flip-flops or as level-sensitive latches. The D inputs can be driven either by function 
generators within the slice or directly from slice inputs, bypassing the function generators. 
 
12.1.2.4 Arithmetic Logic 
Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic 
functions. The Spartan-II CLB supports two separate carry chains, one per slice. The height 
of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows 
a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate 
improves the efficiency of multiplier implementation. The dedicated carry path can also be 
used to cascade function generators for implementing wide logic functions. 
 
12.1.2.5 Block RAM 
Spartan-II FPGAs incorporate several large block RAM memories. These complement the 
distributed RAM LUTs that provide shallow memory structures implemented in CLBs. Block 
RAM memory blocks are organized in columns. All Spartan-II devices contain two such 
columns, one along each vertical edge. These columns extend the full height of the chip. 
Each memory block is four CLBs high, and consequently, a Spartan-II device eight CLBs 
high will contain two memory blocks per column, and a total of four blocks. 
 
12.1.2.6 Programmable Routing Matrix 
It is the longest delay path that limits the speed of any worst-case design. Consequently, the 
Spartan-II routing architecture and its place-and-route software were defined in a single 
optimization process. This joint optimization minimizes long-path delays, and consequently, 
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yields the best system performance. The joint optimization also reduces design compilation 
times because the architecture is software-friendly. Design cycles are correspondingly 
reduced due to shorter design iteration times. 
 
12.1.2.7 Configuration 
Spartan-II devices are configured by sequentially loading frames of data that have been 
concatenated into a configuration file. It is important to note that, while a PROM is commonly 
used to store configuration data before loading them into the FPGA, it is by no means 
required. Any of a number of different kinds of under populated nonvolatile storage already 
available either on or off the board (i.e., hard drives, FLASH cards, etc.) can be used. 

8.1.3. Virtex  
The Virtex [47] user-programmable gate array, shown in Figure 29, comprises two major 
configurable elements: the configurable logic blocks (CLBs) which provide the functional 
elements for constructing logic and input/output blocks (IOBs) that provide the interface 
between the package pins and the CLBs. The CLBs are interconnected through a general 
routing matrix (GRM). The GRM comprises an array of routing switches located at the 
intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock 
that also provides local routing resources to connect the CLB to the GRM. The VersaRing I/O 
interface provides additional routing resources around the periphery of the device. This 
routing improves I/O routability and facilitates pin locking. The Virtex architecture also 
includes the following circuits that connect to the GRM. 

•  Dedicated block memories of 4096 bits each. 
•  Clock DLLs for clock-distribution delay compensation and clock domain control. 
•  3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable 

horizontal routing resources. 
 

Values stored in static memory cells control the configurable logic elements and interconnect 
resources. These values load into the memory cells on power-up, and can reload if 
necessary to change the function of the device. 

 

 

Figure 29: Virtex architecture overview 

 
12.1.3.1 Configurable Logic Block 
The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input 
function generator, carry logic, and a storage element. The output from the function 
generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex 
CLB contains four LCs, organized in two similar slices, as shown in Figure 30. 
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Figure 30: A 2-Slice Virtex CLB 

 
In addition to the four basic LCs, the Virtex CLB contains logic that combines function 
generators to provide functions of five or six inputs. Consequently, when estimating the 
number of system gates provided by a given device, each CLB counts as 4.5 LCs. 
 
12.1.3.2 Look-Up Tables 
Virtex function generators are implemented as 4-input LUTs. In addition to operating as a 
function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the 
two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous 
RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit 
shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be 
used to store data in applications such as Digital Signal Processing. 
 
12.1.3.3 Storage Elements 
The storage elements in the Virtex slice can be configured either as edge-triggered D-type 
flip-flops or as level-sensitive latches. The D inputs can be driven either by the function 
generators within the slice or directly from slice inputs, bypassing the function generators. In 
addition to Clock and Clock Enable signals, each Slice has synchronous set and reset 
signals (SR and BY). SR forces a storage element into the initialization state specified for it in 
the configuration. The BY forces it into the opposite state. Alternatively, these signals can be 
configured to operate asynchronously. All of the control signals are independently invertible, 
and are shared by the two flip-flops within the slice. 
 
12.1.3.4 Arithmetic Logic 
Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic 
functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of 
the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 
1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves 
the efficiency of multiplier implementation. The dedicated carry path can also be used to 
cascade function generators for implementing wide logic functions. 
 
12.1.3.5 Block SelectRAM 
Virtex FPGAs incorporate several large Block SelectRAM memories. These complement the 
distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. The 
SelectRAM memory blocks are organized in columns. All Virtex devices contain two such 
columns, one along each vertical edge. These columns extend the full height of the chip. 
Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high 
contains 16 memory blocks per column, and a total of 32 blocks. The Virtex Block 
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SelectRAM also includes dedicated routing to provide an efficient interface with both CLBs 
and other Block SelectRAMs. 
 
12.1.3.6 Programmable Routing Matrix 
It is the longest delay path that limits the speed of any worst-case design. Consequently, the 
Virtex routing architecture and its place-and-route software were defined in a single 
optimization process. This joint optimization minimizes long-path delays, and consequently, 
yields the best system performance. The joint optimization also reduces design compilation 
times because the architecture is software-friendly. Design cycles are correspondingly 
reduced due to shorter design iteration times. 
 
12.1.3.7 Configuration 
Virtex devices are configured by loading configuration data into the internal configuration 
memory. Some of the pins used for this are dedicated configuration pins, while others can be 
re-used as general-purpose inputs and outputs once configuration is complete. Multiple 
FPGAs can be daisy-chained for configuration from a single source.  

12.1.4 Virtex-E 
The Virtex-E FPGA family [93] delivers high-performance, high-capacity programmable logic 
solutions. Dramatic increases in silicon efficiency result from optimizing the new architecture 
for place-and-route efficiency and exploiting an aggressive 6-����� ����� 	
�� �� 
���
process. These advances make Virtex-E FPGAs powerful and flexible alternatives to mask-
programmed gate arrays. The Virtex-E family includes the nine members. Combining a wide 
variety of programmable system features, a rich hierarchy of fast, flexible interconnect 
resources, and advanced process technology, the Virtex-E family delivers a high-speed and 
high-capacity programmable logic solution that enhances design flexibility while reducing 
time-to-market. 
 
12.1.4.1 Architecture 
Virtex-E devices feature a flexible, regular architecture that comprises an array of 
configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all 
interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of 
routing resources permits the Virtex-E family to accommodate even the largest and most 
complex designs. Virtex-E FPGAs are SRAM-based, and are customized by loading 
configuration data into internal memory cells.  
 
12.1.4.2 Virtex-E Array  
The Virtex-E user-programmable gate array, shown in Figure 31, comprises two major 
configurable elements: configurable logic blocks (CLBs) which provide the functional 
elements for constructing logic, and input/output blocks (IOBs) that provide the interface 
between the package pins and the CLBs. The CLBs are interconnected through a general 
routing matrix (GRM), which comprises an array of routing switches located at the 
intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock 
that also provides local routing resources to connect the CLB to the GRM. 
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Figure 31: Virtex-E Architecture Overview 

 
The VersaRing I/O interface provides additional routing resources around the periphery of 
the device. This routing improves I/O routability and facilitates pin locking. The Virtex-E 
architecture also includes the following circuits that connect to the GRM: 
 

•  Dedicated block memories of 4096 bits each. 
•  Clock DLLs for clock-distribution delay compensation and clock domain control. 
•  3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable 

horizontal routing resources. 
 
Values stored in static memory cells control the configurable logic elements and interconnect 
resources. These values load into the memory cells on power-up, and can reload if 
necessary to change the function of the device. 
 
12.1.4.3 Configurable Logic Blocks 
The basic building block of the Virtex-E CLB is the logic cell (LC). An LC includes a 4-input 
function generator, carry logic, and a storage element. The output from the function 
generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex-
E CLB contains four LCs, organized in two similar slices, as have been shown in Figure 30. 
In addition to the four basic LCs, the Virtex-E CLB contains logic that combines function 
generators to provide functions of five or six inputs. Consequently, when estimating the 
number of system gates provided by a given device, each CLB counts as 4.5 LCs. 
 
12.1.4.4 Look-Up Tables 
Virtex-E function generators are implemented as 4-input LUTs. In addition to operating as a 
function generator, each LUT can provide a 16x1-bit synchronous RAM. Furthermore, the 
two LUTs within a slice can be combined to create a 16x2-bit or 32x1-bit synchronous RAM, 
or a 16x1-bit dual-port synchronous RAM. The Virtex-E LUT can also provide a 16-bit shift 
register that is ideal for capturing high-speed or burst-mode data. This mode can also be 
used to store data in applications such as Digital Signal Processing. 
 
12.1.4.5 Virtex-E Compared to Virtex Devices 
The Virtex-E family offers up to 43,200 logic cells in devices up to 30% faster than the Virtex 
family. I/O performance is increased to 622 Mb/s using Source Synchronous data 
transmission architectures and synchronous system performance up to 240 MHz using 
singled-ended SelectI/O technology. Additional I/O standards are supported, notably 
LVPECL, LVDS, and BLVDS, which use two pins per signal. Almost all signal pins can be 
used for these new standards. 
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Virtex-E devices have up to 640 Kb of faster (250 MHz) block SelectRAM, but the individual 
RAMs are the same size and structure as in the Virtex family. They also have eight DLLs 
instead of the four in Virtex devices. Each individual DLL is slightly improved with easier 
clock mirroring and 4x frequency multiplication. The supply voltage for the internal logic and 
memory, is 1.8 V, instead of 2.5 V for Virtex devices. Advanced processin� ��� 	
�� ��
design rules have resulted in smaller dice, faster speed, and lower power consumption.  
 
The Virtex-E family is not bitstream-compatible with the Virtex family, but Virtex designs can 
be compiled into equivalent Virtex-E devices. The same device in the same package for the 
Virtex-E and Virtex families are pin-compatible with some minor exceptions.  

12.1.5 Virtex-II 
The Virtex-II family [94] is a platform FPGA developed for high performance from low-density 
to high-density designs that are based on IP cores and customized modules. The family 
delivers complete solutions for telecommunication, wireless, networking, video, and DSP 
applications, including PCI, LVDS, and DDR interfaces.  
 
The leading-edge 0.15 µm / 0.12 µm CMOS 8-layer metal process and the Virtex-II 
architecture are optimized for high speed with low power consumption. Combining a wide 
variety of flexible features and a large range of densities up to 10 million system gates, the 
Virtex-II family enhances programmable logic design capabilities and is a powerful alternative 
to mask-programmed gates arrays. The Virtex-II family comprises 11 members, ranging from 
40K to 8M system gates. 
 
12.1.5.1 Array Architecture Overview 
Virtex-II devices are user-programmable gate arrays with various configurable elements. As 
shown in Figure 32, the programmable device is comprised of input/output blocks (IOBs) and 
internal configurable logic blocks (CLBs). 
 
 

 
 

Figure 32: Virtex-II Architecture Overview 
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The internal configurable logic includes four major elements organized in a regular array. 
Those are: 
  

•  Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and 
synchronous logic, including basic storage elements. BUFTs (3-state buffers) 
associated with each CLB element drive dedicated segmentable horizontal routing 
resources. 

•  Block SelectRAM memory modules provide large 18 Kbit storage elements of dual-
port RAM.  

•  Multiplier blocks are 18-bit x 18-bit dedicated multipliers. 
•  DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for 

clock distribution delay compensation, clock multiplication and division, coarse- and 
fine-grained clock phase shifting. 

 
12.1.5.2 Configurable Logic Blocks 
The Virtex-II configurable logic blocks (CLB) are organized in an array and are used to build 
combinatorial and synchronous logic designs. The CLB resources include four slices and two 
3-state buffers. Each slice is equivalent and contains: 

•  Two function generators (F & G) 
•  Two storage elements 
•  Arithmetic logic gates 
•  Large multiplexers 
•  Wide function capability 
•  Fast carry look-ahead chain 
•  Horizontal cascade chain (OR gate) 

 
The function generators F & G are configurable as 4-input LUTs, as 16-bit shift registers, or 
as 16-bit distributed SelectRAM memory. In addition, the two storage elements are either 
edge-triggered D-type flip-flops or level-sensitive latches. Each CLB has internal fast 
interconnect and connects to a switch matrix to access general routing resources. 
 
12.1.5.3 Slice Description 
Each slice includes two 4-input function generators, carry logic, arithmetic logic gates, wide 
function multiplexers and two storage elements. Each 4-input function generator is 
programmable as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit 
variable- tap shift register element, and each of them are capable of implementing any 
arbitrarily defined Boolean function of four inputs.. The output from the function generator in 
each slice drives both the slice output and the D input of the storage element.  
 
12.1.5.4 Configuration 
Virtex-II devices are configured by loading application specific configuration data into the 
internal configuration memory. Configuration is carried out using a subset of the device pins, 
some of which are dedicated, while others can be re-used as general purpose inputs and 
outputs once configuration is complete. 
 
One of the major advantages of Virtex-II devices is their ability for the partial reconfiguration. 
With this technique, instead of resetting the chip and doing a full configuration, new data is 
loaded into a specified area of the chip, while the rest of the chip remains in operation. Data 
is loaded on a column basis, with the smallest load unit being a configuration “frame” of the 
bitstream (device size dependent). Partial reconfiguration is useful for applications that 
require different designs to be loaded into the same area of a chip, or that require the ability 
to change portions of a design without having to reset or reconfigure the entire chip. 
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8.2. ALTERA 
The Startix, Apex_II, APEX 20KC, Mercury, FLEX 10KC, ACEX 1K, and FLEX 6000 FPGA 
families are described at this part of the document.  

8.2.1. Startix  
The Stratix family [48] of programmable logic devices (PLDs) is based on a 1.5-V, 0.13-µm, 
all-layer copper SRAM process, with densities up to 114,140 logic elements (LEs) and up to 
10 Mbits of RAM. Stratix devices offer up to 28 digital signal processing (DSP) blocks with up 
to 224 (9-bit x ��-bit) embedded multipliers, optimized for DSP applications that enable 
efficient implementation of high-performance filters and multipliers. Stratix devices support 
various I/O standards and also offer a complete clock management solution with its 
hierarchical clock structure with up to 420-MHz performance and up to 12 phase-locked 
loops (PLLs). 
 
12.2.1.1 Functional Description 
Stratix devices contain a two-dimensional row- and column-based architecture to implement 
custom logic. A series of column and row interconnects of varying length and speed provides 
signal interconnection between logic array blocks (LABs), memory block structures, and DSP 
blocks. The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is 
a small unit of logic providing efficient implementation of user logic functions. LABs are 
grouped into rows and columns across the device. M512 RAM blocks are simple dual-port 
memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple 
dual-port or single-port memory up to 18-bits wide at up to 312 MHz. M512 blocks are 
grouped into columns across the device in between certain LABs.  
 
12.2.1.2 Logic Array Blocks 
Each LAB consists of 10 LEs, LE carry chains, LAB control signals, local interconnect, LUT 
chain, and register chain connection lines. The local interconnect transfers signals between 
LEs in the same LAB. LUT chain connections transfer the output of one LE’s LUT to the 
adjacent LE for fast sequential LUT connections within the same LAB. Register chain 
connections transfer the output of one LE’s register to the adjacent LE’s register within an 
LAB. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, 
allowing the use of local, LUT chain, and register chain connections for performance and 
area efficiency.  
 
12.2.1.3 LAB Interconnects 
The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is 
driven by column and row interconnects and LE outputs within the same LAB. Neighboring 
LABs, M512 RAM blocks, M4K RAM blocks, or DSP blocks from the left and right can also 
drive an LAB’s local interconnect through the direct link connection. The direct link 
connection feature minimizes the use of row and column interconnects, providing higher 
performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link 
interconnects.  
 
12.2.1.4 Logic Elements  
The smallest unit of logic in the Stratix architecture, the LE, is compact and provides 
advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is 
a function generator that can implement any function of four variables. In addition, each LE 
contains a programmable register and carry chain with carry select capability. A single LE 
also supports dynamic single bit addition or subtraction mode selectable by an LAB-wide 
control signal. Each LE drives all types of interconnects: local, row, column, LUT chain, 
register chain, and direct link interconnects. The Startix logic element schematic is shown in 
Figure 33. 
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Figure 33: Startix Logic Element 

 
Each LE has three outputs that drive the local, row, and column routing resources. The LUT 
or register output can drive these three outputs independently. Two LE outputs drive column 
or row and direct link routing connections and one drives local interconnect resources. This 
allows the LUT to drive one output while the register drives another output. This feature, 
called register packing, improves device utilization because the device can use the register 
and the LUT for unrelated functions. Another special packing mode allows the register output 
to feed back into the LUT of the same LE so that the register is packed with its own fan-out 
LUT. This provides another mechanism for improved fitting. The LE can also drive out 
registered and unregistered versions of the LUT output. 
 
12.2.1.5 MultiTrack Interconnect 
In the Stratix architecture, connections between LEs, TriMatrix memory, DSP blocks, and 
device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive 
technology. The MultiTrack interconnect consists of continuous, performance-optimized 
routing lines of different lengths and speeds used for inter- and intra-design block 
connectivity. The Quartus II Compiler automatically places critical design paths on faster 
interconnects to improve design performance. 
 
12.2.1.6 TriMatrix Memory 
TriMatrix memory consists of three types of RAM blocks: M512, M4K, and MegaRAM blocks. 
Although these memory blocks are different, they can all implement various types of memory 
with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, 
and FIFO buffers.  
 
12.2.1.7 Digital Signal Processing Block 
The most commonly used DSP functions are finite impulse response (FIR) filters, complex 
FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct 
cosine transform (DCT) functions, and correlators. All of these blocks have the same 
fundamental building block: the multiplier. Additionally, some applications need specialized 
operations such as multiply-add and multiply-accumulate operations. Stratix devices provide 
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DSP blocks to meet the arithmetic requirements of these functions. Each Stratix device has 
two columns of DSP blocks to efficiently implement DSP functions faster than LE-based 
implementations. Larger Stratix devices have more DSP blocks per column. 
 
12.2.1.8 Configuration  
The logic, circuitry, and interconnects in the Stratix architecture are configured with CMOS 
SRAM elements. Stratix devices can be configured on the board for the specific functionality 
required. In addition to that, they can be configured at system power-up with data stored in 
an Altera serial configuration device or provided by a system controller. The Stratix device’s 
optimized interface allows microprocessors to configure it serially or in parallel, and 
synchronously or asynchronously. The interface also enables microprocessors to treat Stratix 
devices as memory and configure them by writing to a virtual memory location, making 
reconfiguration easy. After a Stratix device has been configured, it can be reconfigured in-
circuit by resetting the device and loading new data. Real-time changes can be made during 
system operation, enabling innovative reconfigurable computing applications. 
 
12.2.1.9 Software  
Stratix devices are supported by the Altera Quartus II design software, which provides a 
comprehensive environment for system-on-programmable-chip (SOPC) design. The Quartus 
II software includes HDL and schematic design entry, compilation and logic synthesis, full 
simulation and advanced timing analysis, SignalTap logic analysis, and device configuration.  

8.2.2. Apex_II  
APEX II devices [49] incorporate LUT-based logic, product-term-based logic, memory, and 
high-speed I/O standards into one device. Signal interconnections within APEX II devices (as 
well as to and from device pins) are provided by the FastTrack interconnect, which is a series 
of fast, continuous row and column channels that run the entire length and width of the 
device. 
 
12.2.2.1 MegaLAB Structure 
APEX II devices are constructed from a series of MegaLAB structures. Each MegaLAB 
structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB 
interconnect, which routes signals within the MegaLAB structure. Signals are routed between 
MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, the edge LABs 
can be driven by I/O pins through the local interconnect.  
 
12.2.2.2 Logic Array Block 
Each LAB consists of 10 LEs, the LEs’ associated carry and cascade chains, LAB control 
signals, and the local interconnect. The local interconnect transfers signals between LEs in 
the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic 
within a LAB or adjacent LABs, allowing the use of a fast local interconnect for high 
performance. APEX II devices use an interleaved LAB structure, so that each LAB can drive 
two local interconnect areas. Every other LE drives to either the left or right local interconnect 
area, alternating by LE. The local interconnect can drive LEs within the same LAB or 
adjacent LABs. This feature minimizes the use of the row and column interconnects, 
providing higher performance and flexibility. Each LAB structure can drive 30 LEs through 
fast local interconnects. 
 
12.2.2.3 Logic Element 
The LE is the smallest unit of logic in the APEX II architecture. Each LE contains a four-input 
LUT, which is a function generator that can quickly implement any function of four variables. 
In addition, each LE contains a programmable register and carry and cascade chains. Each 
LE drives the local interconnect, MegaLAB interconnect, and FastTrack interconnect routing 
structures. The Figure 34 shows the logic element of Apex_II, which is similar to Startix 
FPGA. 
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Figure 34: Apex_II Logic Element 

 
Each LE’s programmable register can be configured for D, T, JK, or SR operation. The 
register’s clock and clear control signals can be driven by global signals, general-purpose I/O 
pins, or any internal logic. For combinatorial functions, the register is bypassed and the 
output of the LUT drives the outputs of the LE.  
 
Each LE has two outputs that drive the local, MegaLAB, or FastTrack interconnect routing 
structure. Each output can be driven independently by the LUT’s or register’s output. This 
feature, called register packing, improves device utilization because the register and the LUT 
can be used for unrelated functions. The LE can also drive out registered and unregistered 
versions of the LUT output. The APEX II architecture provides two types of dedicated high-
speed data paths that connect adjacent LEs without using local interconnect paths: carry 
chains and cascade chains. A carry chain supports high-speed arithmetic functions such as 
counters and adders, while a cascade chain implements wide-input functions such as 
equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 
10 in an LAB and all LABs in the same MegaLAB structure. 
 
12.2.2.4 Carry Chain 
The carry chain provides a fast carry-forward function between LEs. The carry-in signal from 
a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into 
both the LUT and the next portion of the carry chain. This feature allows the APEX II 
architecture to implement high-speed counters, adders, and comparators of arbitrary width. 
The Quartus II Compiler can create carry chain logic automatically during the design 
process, or the designer can create it manually during design entry.  
 
The Quartus II Compiler creates carry chains longer than 10 LEs by linking LABs together 
automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB 
structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the 
next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB.  
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12.2.2.5 Cascade Chain 
With the cascade chain, the APEX II architecture can implement functions with a very wide 
fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain 
serially connects the intermediate values. The cascade chain can use a logical AND or 
logical OR to connect the outputs of adjacent LEs. Each additional LE provides four more 
inputs to the effective width of a function, with a short cascade delay. The Quartus II 
Compiler can create cascade chain logic automatically during the design process, or the 
designer can create it manually during design entry. Cascade chains longer than 10 LEs are 
implemented automatically by linking LABs together. For enhanced fitting, a long cascade 
chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB 
skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-
numbered LAB to the next odd-numbered LAB.  
 
12.2.2.6 FastTrack Interconnect 
In the APEX II architecture, connections between LEs, ESBs, and I/O pins are provided by 
the FastTrack interconnect. The FastTrack interconnect is a series of continuous horizontal 
and vertical routing channels that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the segmented routing in 
FPGAs requires switch matrices to connect a variable number of routing paths, increasing 
the delays between logic resources and reducing performance. 
 
12.2.2.7 Software 
APEX II devices are supported by the Altera Quartus II development system: a single, 
integrated package that offers hardware description language (HDL) and schematic design 
entry, compilation and logic synthesis, full simulation and worst-case timing analysis, 
SignalTap logic analysis, and device configuration. The Quartus II software includes the 
LogicLock incremental design feature. The LogicLock feature allows the designer to make 
pin and timing assignments, verify functionality and performance, and then set constraints to 
lock down the placement and performance of a specific block of logic using LogicLock 
constraints.  
 
12.2.2.8 Configuration 
The logic, circuitry, and interconnects in the APEX II architecture are configured with CMOS 
SRAM elements. APEX II devices are configured at system power-up with data either stored 
in an Altera configuration device or provided by a system controller. Altera offers in-system 
programmability (ISP)-capable configuration devices, which configure APEX II devices via a 
serial data stream. Moreover, APEX II devices contain an optimized interface that permits 
microprocessors to configure APEX II devices serially or in parallel, synchronously or 
asynchronously. This interface also enables microprocessors to treat APEX II devices as 
memory and to configure the device by writing to a virtual memory location, simplifying 
reconfiguration. 

8.2.3. APEX 20KC 
Similar to APEX 20K and APEX 20KE devices, APEX 20KC devices [50] offer the MultiCore 
architecture, which combines the strengths of LUT-based and product-term-based devices 
with an enhanced memory structure. LUT-based logic provides optimized performance and 
efficiency for datapath, register-intensive, mathematical, or digital signal processing (DSP) 
designs. Product-term-based logic is optimized for complex combinatorial paths, such as 
complex state machines.  
 
12.2.3.1 Functional Description 
APEX 20KC devices incorporate LUT-based logic, product-term-based logic, and memory 
into one device on an all-copper technology process. Signal interconnections within APEX 
20KC devices (as well as to and from device pins) are provided by the FastTrack 
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interconnect, which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 
 
12.2.3.2 MegaLAB Structure 
APEX 20KC devices are constructed from a series of MegaLAB structures. Each MegaLAB 
structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect, 
which routes signals within the MegaLAB structure. In EP20K1000C devices, MegaLAB 
structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins 
via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the 
local interconnect.  
 
12.2.3.3 Logic Array Block 
Each LAB consists of 10 LEs, the LEs’ associated carry and cascade chains, LAB control 
signals, and the local interconnect. The local interconnect transfers signals between LEs in 
the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic 
within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high 
performance. APEX 20KC devices use an interleaved LAB structure. This structure allows 
each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and 
FastTrack interconnect and providing higher performance and flexibility. Each LE can drive 
29 other LEs through the fast local interconnect. 
 
12.2.3.4 Logic Element 
The LE, the smallest unit of logic in the APEX 20KC architecture, is compact and provides 
efficient logic usage. Each LE contains a four-input LUT, which is a function generator that 
can quickly implement any function of four variables. In addition, each LE contains a 
programmable register and carry and cascade chains. The CLB element is similar to Startix 
FPGA and it has been shown in Figure 33. 
 
Each LE’s programmable register can be configured for D, T, JK, or SR operation. The 
register’s clock and clear control signals can be driven by global signals, general-purpose I/O 
pins, or any internal logic. For combinatorial functions, the register is bypassed and the 
output of the LUT drives the outputs of the LE. Every LE has two outputs that drive the local, 
MegaLAB, or FastTrack interconnect routing structure. Each output can be driven 
independently by the LUT’s or register’s output. This feature, called register packing, 
improves device utilization because the register and the LUT can be used for unrelated 
functions. The LE can also drive out registered and unregistered versions of the LUT output. 

8.2.4. Mercury 
The Mercury architecture [51] contains a row-based logic array to implement general logic 
and a row-based embedded system array to implement memory and specialized logic 
functions. Signal interconnections within Mercury devices are provided by a series of row and 
column interconnects with varying lengths and speeds. The priority FastTrack Interconnect 
structure is faster than other interconnects.  
 
12.2.4.1 Logic and Interconnect 
Mercury device logic is implemented in LEs. LE resources are used differently according to 
specific operating modes and the type of logic function being implemented. LEs are grouped 
into LABs in a row-based architecture. The multi-level FastTrack Interconnect structure 
provides the routing connection between LEs, ESBs, and IOEs. 
 
12.2.4.2 Logic Array Block 
Each Logic Array Block (LAB) consists of 10 LEs, LE carry chains, multiplier circuitry, LAB 
control signals, local interconnect, and FastLUT connection lines. The local interconnect 
transfers signals between LEs within the same or adjacent LABs. FastLUT connections 
transfer the output of one LE to the adjacent LE for ultra-fast sequential LE connections 
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within the same LAB. The Quartus II Compiler places associated logic within a LAB or 
adjacent LABs, allowing the use of fast local and FastLUT connections for high performance. 
Mercury devices use an interleaved LAB structure, which allows each LAB to drive two local 
interconnect areas. Every other LE drives to either the left or right local interconnect area, 
alternating by LE. The local interconnect can drive LEs within the same LAB or adjacent 
LABs. This feature minimizes use of the row and column interconnects, providing higher 
performance and flexibility. Each LAB structure can drive 30 LEs through fast local 
interconnects. 
 
12.2.4.3 Logic Element 
The LE, the smallest unit of logic in the Mercury architecture, is compact and provides 
efficient logic usage and it is shown in Figure 35. Each LE contains a 4-input LUT, which is a 
function generator that can quickly implement any function of four variables. In addition, each 
LE contains a programmable register and carry chain with carry select look ahead capability. 
Each LE also has the ability to drive its combinatorial output directly to the next LE in the 
LAB. The LE’s programmable register can be configured for D, T, JK, or SR operation.  
 

 

Figure 35: Mercury Logic Element 

 
12.2.4.4 FastLUT Interconnect 
Mercury devices include an enhanced interconnect structure within LABs for faster routing of 
LE output to LE input connections. The FastLUT connection allows the combinatorial output 
of an LE to directly drive the fast input of the LE directly below it, bypassing the local 
interconnect. This resource can be used as a high speed connection for wide fan-in functions 
from LE 1 to LE 10 in the same LAB.  
 
12.2.4.5 Configuration 
The logic, circuitry, and interconnects in the Mercury architecture are configured with CMOS 
SRAM elements. Mercury devices are reconfigurable and as a result, test vectors do not 
have to be generated for fault coverage purposes. Instead, the designer can focus on 
simulation and design verification. Mercury devices can be configured on the board for the 
specific functionality required. They are configured at system power-up with data stored in an 
Altera serial configuration device or provided by a system controller. Altera offers in-system 
programmability (ISP)-capable configuration devices, which configure Mercury devices via a 
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serial data stream. Mercury devices contain an optimized interface that permits 
microprocessors to configure devices serially or in parallel, synchronously or 
asynchronously. This interface also enables microprocessors to treat Mercury devices as 
memory and to configure the device by writing to a virtual memory location, simplifying 
reconfiguration. After a Mercury device has been configured, it can be reconfigured in-circuit 
by resetting the device and loading new data. Real-time changes can be made during 
system operation, enabling innovative reconfigurable computing applications. 

8.2.5. FLEX 10K 
Altera’s FLEX 10K devices [52] are based on reconfigurable CMOS SRAM elements, the 
Flexible Logic Element MatriX (FLEX) architecture incorporates all features necessary to 
implement common gate array mega-functions. With up to 250,000 gates, the FLEX 10K 
family provides the density, speed, and features to integrate entire systems, including 
multiple 32-bit buses, into a single device.  
 
12.2.5.1 Architecture 
The FLEX 10K architecture is similar to that of embedded gate arrays. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional “sea-of-gates” 
architecture. In addition, embedded gate arrays have dedicated die areas for implementing 
large, specialized functions. By embedding functions in silicon, embedded gate arrays 
provide reduced die area and increased speed compared to standard gate arrays. However, 
embedded mega-functions typically cannot be customized, limiting the designer’s options. In 
contrast, FLEX 10K devices are programmable, providing the designer with full control over 
embedded mega-functions and general logic while facilitating iterative design changes during 
debugging.  
 
Each FLEX 10K device contains an embedded array and a logic array. The embedded array 
is used to implement a variety of memory functions or complex logic functions, such as digital 
signal processing (DSP), microcontroller, wide-data-path manipulation, and data-
transformation functions. The logic array performs the same function as the sea-of-gates in 
the gate array: it is used to implement general logic, such as counters, adders, state 
machines, and multiplexers. The combination of embedded and logic arrays provides the 
high performance and high density of embedded gate arrays, enabling designers to 
implement an entire system on a single device. 
 
12.2.5.2 Functional Description 
Each FLEX 10K device contains an embedded array to implement memory and specialized 
logic functions, and a logic array to implement general logic. The embedded array consists of 
a series of EABs. When implementing memory functions, each EAB provides 2,048 bits, 
which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic 
functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs 
can be used independently, or multiple EABs can be combined to implement larger functions. 
The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a 
local interconnect. An LE consists of a 4-input LUT, a programmable flip-flop, and dedicated 
signal paths for carry and cascade functions. The eight LEs can be used to create medium-
sized blocks of logic or combined across LABs to create larger logic blocks. Each LAB 
represents about 96 usable gates of logic. 
 
12.2.5.3 Embedded Array Block 
The Embedded Array Block (EAB) is a flexible block of RAM with registers on the input and 
output ports, and is used to implement common gate array mega-functions. The EAB is also 
suitable for functions such as multipliers, vector scalars, and error correction circuits, 
because it is large and flexible. These functions can be combined in applications such as 
digital filters and microcontrollers. Logic functions are implemented by programming the EAB 
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with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial 
functions are implemented by looking up the results, rather than by computing them. This 
implementation of combinatorial functions can be faster than using algorithms implemented 
in general logic, a performance advantage that is further enhanced by the fast access times 
of EABs. The large capacity of EABs enables designers to implement complex functions in 
one logic level without the routing delays associated with linked LEs or FPGA RAM blocks.  
 
The EAB provides advantages over FPGAs, which implement on-board RAM as arrays of 
small, distributed RAM blocks. These FPGA RAM blocks contain delays that are less 
predictable as the size of the RAM increases. In addition, FPGA RAM blocks are prone to 
routing problems because small blocks of RAM must be connected together to make larger 
blocks. In contrast, EABs can be used to implement large, dedicated blocks of RAM that 
eliminate these timing and routing concerns. 
 
12.2.5.4 Logic Array Block 
Each LAB consists of eight LEs, their associated carry and cascade chains, LAB control 
signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to 
the FLEX 10K architecture, facilitating efficient routing with optimum device utilization and 
high performance.  
 
12.2.5.5 Logic Element 
The LE, the smallest unit of logic in the FLEX 10K architecture, has a compact size that 
provides efficient logic utilization. Each LE contains a four-input LUT, which is a function 
generator that can quickly compute any function of four variables. In addition, each LE 
contains a programmable flip-flop with a synchronous enable, a carry chain, and a cascade 
chain. Each LE drives both the local and the FastTrack Interconnect. See Figure 36. 
 

 

Figure 36: FLEX 10K Logic Element 

 
The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. The 
clock, clear, and preset control signals on the flip-flop can be driven by global signals, 
general-purpose I/O pins, or any internal logic. For combinatorial functions, the flip-flop is 
bypassed and the output of the LUT drives the output of the LE. The LE has two outputs that 
drive the interconnect; one drives the local interconnect and the other drives either the row or 
column FastTrack Interconnect. The two outputs can be controlled independently. This 
feature, called register packing, can improve LE utilization because the register and the LUT 
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can be used for unrelated functions. The FLEX 10K architecture provides two types of 
dedicated high-speed data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-speed counters and 
adders; the cascade chain implements wide-input functions with minimum delay. Carry and 
cascade chains connect all LEs in an LAB and all LABs in the same row. Intensive use of 
carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains 
should be limited to speed-critical portions of a design. 
 
12.2.5.6 FastTrack Interconnect 
In the FLEX 10K architecture, connections between LEs and device I/O pins are provided by 
the FastTrack Interconnect, which is a series of continuous horizontal and vertical routing 
channels that traverse the device. This global routing structure provides predictable 
performance, even in complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, increasing the delays 
between logic resources and reducing performance. 
 
The FastTrack Interconnect consists of row and column interconnect channels that span the 
entire device. Each row of LABs is served by a dedicated row interconnect. The row 
interconnect can drive I/O pins and feed other LABs in the device. The column interconnect 
routes signals between rows and can drive I/O pins. A row channel can be driven by an LE or 
by one of three column channels. These four signals feed dual 4-to-1 multiplexers that 
connect to two specific row channels. These multiplexers, which are connected to each LE, 
allow column channels to drive row channels even when all eight LEs in an LAB drive the 
row interconnect. 
 
12.2.5.7 Configuration 
FLEX 10K devices are configured at system power-up with data stored in an Altera serial 
configuration device or provided by a system controller. Configuration data can also be 
downloaded from system RAM or from Altera’s BitBlaster serial download cable or 
ByteBlasterMV parallel port download cable. After a FLEX 10K device has been configured, 
it can be reconfigured in-circuit by resetting the device and loading new data. Because 
reconfiguration requires less than 320 ms, real-time changes can be made during system 
operation. FLEX 10K devices contain an optimized interface that permits microprocessors to 
configure FLEX 10K devices serially or in parallel, and synchronously or asynchronously. 
The interface also enables microprocessors to treat a FLEX 10K device as memory and 
configure the device by writing to a virtual memory location, making it very easy for the 
designer to reconfigure the device. 

8.2.6. ACEX 1K  
ACEX 1K devices [52] provide a die-efficient, low-cost architecture by combining LUT 
architecture with EABs. LUT-based logic provides optimized performance and efficiency for 
data-path, register intensive, mathematical, or DSP designs, while EABs implement RAM, 
ROM, dual-port RAM, or FIFO functions. These elements make ACEX 1K suitable for 
complex logic functions and memory functions such as digital signal processing, wide data-
path manipulation, data transformation and microcontrollers, as required in high-performance 
communications applications. Based on reconfigurable CMOS SRAM elements, the ACEX 
1K architecture incorporates all features necessary to implement common gate array mega-
functions, along with a high pin count to enable an effective interface with system 
components.  
 
Each ACEX 1K device contains an embedded array and a logic array. The embedded array 
is used to implement a variety of memory functions or complex logic functions, such as digital 
signal processing (DSP), wide data-path manipulation, microcontroller applications, and data 
transformation functions. The logic array performs the same function as the sea-of-gates in 
the gate array and is used to implement general logic such as counters, adders, state 
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machines, and multiplexers. The combination of embedded and logic arrays provides the 
high performance and high density of embedded gate arrays, enabling designers to 
implement an entire system on a single device.  
 
12.2.6.1 Functional Description 
Each ACEX 1K device contains an enhanced embedded array that implements memory and 
specialized logic functions, and a logic array that implements general logic. The embedded 
array consists of a series of EABs. When implementing memory functions, each EAB 
provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or FIFO 
functions. When implementing logic, each EAB can contribute 100 to 600 gates towards 
complex logic functions such as multipliers, microcontrollers, state machines, and DSP 
functions. EABs can be used independently, or multiple EABs can be combined to implement 
larger functions. The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a 4-input LUT, a programmable flip-
flop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used 
to create medium-sized blocks of logic or combined across LABs to create larger logic 
blocks. Each LAB represents about 96 usable logic gates. Signal interconnections within 
ACEX 1K devices (as well as to and from device pins) are provided by the FastTrack 
Interconnect routing structure, which is a series of fast, continuous row and column channels 
that run the entire length and width of the device.  
 
12.2.6.2 Embedded Array Block 
The EAB is a flexible block of RAM, with registers on the input and output ports, that is used 
to implement common gate array mega-functions. Because it is large and flexible, the EAB is 
suitable for functions such as multipliers, vector scalars, and error correction circuits. These 
functions can be combined in applications such as digital filters and microcontrollers. Logic 
functions are implemented by programming the EAB with a read-only pattern during 
configuration, thereby creating a large LUT. With LUTs, combinatorial functions are 
implemented by looking up the results rather than by computing them. This implementation 
of combinatorial functions can be faster than using algorithms implemented in general logic, 
a performance advantage that is further enhanced by the fast access times of EABs. The 
large capacity of EABs enables designers to implement complex functions in a single logic 
level without the routing delays associated with linked LEs or FPGA RAM blocks. For 
example, a single EAB can implement any function with 8 inputs and 16 outputs. The ACEX 
1K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers 
with one or two clocks. The ACEX 1K EAB can also support up to 16-bit-wide RAM blocks.  
 
12.2.6.3 Logic Array Block 
An LAB consists of eight LEs, their associated carry and cascade chains, LAB control 
signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to 
the ACEX 1K architecture, facilitating efficient routing with optimum device utilization and 
high performance.  
 
12.2.6.4 Logic Element 
The LE, the smallest unit of logic in the ACEX 1K architecture, has a compact size that 
provides efficient logic utilization. Each LE contains a 4-input LUT, which is a function 
generator that can quickly compute any function of four variables. In addition, each LE 
contains a programmable flip-flop with a synchronous clock enable, a carry chain, and a 
cascade chain. Each LE drives both the local and the FastTrack Interconnect routing 
structure. The schematic of ACEX 1K logic element is similar to FLEX 10K and has been 
shown in Figure 36. 
 
The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. For 
combinatorial functions, the flip-flop is bypassed and the LUT’s output drives the LE’s output. 
The LE has two outputs that drive the interconnect: one drives the local interconnect, and the 
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other drives either the row or column FastTrack Interconnect routing structure. The two 
outputs can be controlled independently. This feature, called register packing, can improve 
LE utilization because the register and the LUT can be used for unrelated functions. The 
ACEX 1K architecture provides two types of dedicated high-speed data paths that connect 
adjacent LEs without using local interconnect paths: carry chains and cascade chains. The 
carry chain supports high-speed counters and adders, and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB 
and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing 
flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a 
design. 

8.2.7. FLEX 6000 
The Altera FLEX 6000 devices [54] are based on the OptiFLEX architecture, which 
minimizes die size while maintaining high performance and routability. The devices have 
reconfigurable SRAM elements, which give designers the flexibility to quickly change their 
designs during prototyping and design testing. Designers can also change functionality 
during operation via in-circuit reconfiguration. 
 
12.2.7.1 Functional Description 
The FLEX 6000 OptiFLEX architecture consists of logic elements (LEs). Each LE includes a 
4-input LUT, which can implement any 4-input function, a register, and dedicated paths for 
carry and cascade chain functions. Because each LE contains a register, a design can be 
easily pipelined without consuming more LEs. The specified gate count for FLEX 6000 
devices includes all LUTs and registers. LEs are combined into groups called logic array 
blocks (LABs); each LAB contains 10 LEs. The Altera software automatically places related 
LEs into the same LAB, minimizing the number of required interconnects. Each LAB can 
implement a medium-sized block of logic, such as a counter or multiplexer. 
 
FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the 
flip-flops to ensure efficient distribution of high-speed, low-skew control signals. These inputs 
use dedicated routing channels that provide shorter delays and lower skews than the 
FastTrack Interconnect.  
 
12.2.7.2 Logic Array Block 
An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control 
signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of 
the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization 
and high performance. The interleaved LAB structure allows each LAB to drive two local 
interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which 
maximizes fitting flexibility while minimizing die size.  
 
12.2.7.3 Logic Element 
An LE, the smallest unit of logic in the FLEX 6000 architecture, has a compact size that 
provides efficient logic usage. Each LE contains a 4-input LUT, which is a function generator 
that can quickly implement any function of four variables. An LE contains a programmable 
flip-flop, carry and cascade chains. Additionally, each LE drives both the local and the 
FastTrack Interconnect. The FLEX 6000 logic element is shown in Figure 37. 
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Figure 37: Flex 6000 Logic Element 

 
The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. The 
clock and clear control signals on the flip-flop can be driven by global signals, general-
purpose I/O pins, or any internal logic. For combinatorial functions, the flip-flop is bypassed 
and the output of the LUT drives the outputs of the LE. The LE output can drive both the local 
interconnect and the FastTrack Interconnect. The FLEX 6000 architecture provides two types 
of dedicated high-speed data paths that connect adjacent LEs without using local 
interconnect paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain implements wide-
input functions such as equivalent comparators with minimum delay. Carry and cascade 
chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. 
Because extensive use of carry and cascade chains can reduce routing flexibility, these 
chains should be limited to speed-critical portions of a design. 
 

8.3. ACTEL 
The FPGA families from ACTEL that will be described at this report are the Axcelerator, the 
eX family, the ProASIC 500K, the ProASICPLUS, the SX-A, the 40MX, the 42MX, and the 
VariCore family. 

8.3.1. Axcelerator Family 
Actel’s newest FPGA family, Axcelerator, offers high performance at densities of up to two 
million equivalent system gates. Based upon Actel’s new AX architecture, Axcelerator has 
several system-level features such as embedded SRAM (with complete FIFO control logic), 
PLLs, segmentable clocks, chip-wide highway routing, PerPin FIFOs, and carry logic. 
 
12.3.1.1 Device Architecture 
Actel's AX architecture [55], derived from the highly-successful SX-A sea-of-modules 
architecture, has been designed for high performance and total logic module utilization. The 
entire floor of the AX device is covered with a grid of logic modules with virtually no chip area 
lost to interconnect elements or routing, unlike SRAM FPGAs where chip area is lost to 
routing. Actel's Axcelerator family provides two types of logic modules, the register cell (R-
cell) and the combinatorial cell (C-cell). The AX C-cell can implement more than 4,000 
combinatorial functions of up to 5 inputs. The C-cell contains carry logic for even more 
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efficient implementation of arithmetic functions. With its small size, the C-cell structure is 
extremely synthesis-friendly, simplifying the overall design as well as reducing design time. 
The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and 
active-low enable control signals. The R-cell registers feature programmable clock polarity 
selectable on a register-by-register basis. This provides additional flexibility while conserving 
valuable clock resources. The clock source for the R-cell can be chosen from the hard-wired 
clocks, the routed clocks, or the internal logic. Two C-cells, a single R-cell, and two Transmit 
(TX) and Receive (RX) routing buffers form a Cluster, and two Clusters comprise a 
SuperCluster. Each SuperCluster contains an independent Buffer module, which supports 
automatic buffer insertion on high-fanout nets by the place-and-route tool, minimizing system 
delays while improving logic utilization. 
 
The logic modules within the SuperCluster are arranged so that two combinatorial modules 
are side by side, giving a C–C–R – C–C–R pattern to the SuperCluster. This C–C–R pattern 
enables efficient implementation (minimum delay) of 2-bit carry logic for improved arithmetic 
performance. The AX architecture is fully fracturable, meaning that if one or more of the logic 
modules in a SuperCluster are used by a particular signal path, the other logic modules are 
still available for use by other paths. At the chip level, SuperClusters are organized into core 
tiles, which are arrayed to build up the full chip. Each core tile consists of an array of 336 
SuperClusters and four SRAM blocks (176 SuperClusters and 3 SRAM blocks for the 
AX250). The SRAM blocks are arranged in a column on the west side of the tile. Surrounding 
the array of core tiles are blocks of I/O Clusters and the I/O bank ring. 
 
12.3.1.2 Embedded Memory 
As mentioned earlier, each core tile has either three (in a smaller tile) or four (in the regular 
tile) embedded SRAM blocks along the west side, and each variable-aspect-ratio SRAM 
block is 4,608 bits in size. Available memory configurations are: 128x36, 256x18, 512x9, 
1Kx4, 2Kx2 or 4Kx1 bits. The individual blocks have separate read and write ports that can 
be configured with different bit widths on each port. Every SRAM block has an embedded 
FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous 
FIFO without using core logic modules. The FIFO width and depth are programmable. The 
embedded FIFO control unit contains the necessary counters for the generation of the read 
and write address pointers as well as control circuitry to prevent metastability and erroneous 
operation. The embedded SRAM/FIFO blocks can be cascaded to create larger 
configurations. 
 
12.3.1.3 Routing 
The AX hierarchical routing structure ties the logic modules, the embedded memory blocks, 
and the I/O modules together. At the lowest level, in and between SuperClusters, there are 
three local routing structures: FastConnect, DirectConnect, and CarryConnect routing. 
DirectConnects provide the highest performance routing inside the SuperClusters by 
connecting a C-cell to the adjacent R-cell. DirectConnects do not require an antifuse to make 
the connection and achieve a signal propagation time of less than 0.1ns. FastConnects 
provide high-performance horizontal routing inside the SuperCluster and vertical routing to 
the SuperCluster immediately below it. Only one programmable connection is used in a 
FastConnect path, delivering a maximum routing delay of 0.4ns. CarryConnects are used for 
routing carry logic between adjacent SuperClusters. CarryConnects do not require an 
antifuse to make the connection and achieve a signal propagation time of less than 0.1ns. 
The next level contains the core tile routing. In SuperClusters within a core tile, both vertical 
and horizontal tracks run across rows or columns respectively. At the chip level, vertical and 
horizontal tracks extend across the full length of the device, both north-to-south and east-to-
west. These tracks are composed of highway routing that extend the entire length of the 
track as well as segmented routing of varying lengths. 
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8.3.2. eX Family FPGAs 
The eX family of FPGAs [56] is a solution for low-power and high-performance designs. The 
inherent low power attributes of the antifuse technology, coupled with an additional low static 
power mode, make these devices ideal for power-sensitive applications. Fabricated with an 
advanced 0.22�m �
��� ��tifuse technology, these devices achieve high performance with 
no power penalty. 
 
12.3.2.1 Architecture 
The eX family architecture uses a “sea-of-modules” structure where the entire floor of the 
device is covered with a grid of logic modules with virtually no chip area lost to interconnect 
elements or routing. Interconnection among these logic modules is achieved using Actel’s 
patented metal-to-metal programmable antifuse interconnect elements. Actel’s eX family 
provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-
cell). The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and 
clock enable control signals as shown in Figure 38. The R-cell registers feature 
programmable clock polarity selectable on a register-by-register basis. This provides 
additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The 
clock source for the R-cell can be chosen from either the hard-wired clock or the routed 
clock. The C-cell implements a range of combinatorial functions up to 5 inputs. The number 
of combinatorial functions that can be implemented in a single module has been increased 
from 800 options in previous architectures to more than 4,000 in the eX architecture. 
 

 

Figure 38: The Actel’s eX family logic modules - (a) R-Cell, and (b) C-Cell 

 
12.3.2.2 Module Organization 
Actel has arranged all C-cell and R-cell logic modules into horizontal banks called Clusters. 
The eX devices contain one type of Cluster, which contains two C-cells and one R-cell. To 
increase design efficiency and device performance, Actel has further organized these 
modules into SuperClusters. The eX devices contain one type of SuperClusters, which are 
two-wide groupings of one type of clusters. 
 
12.3.2.3 Routing Resources 
Clusters and SuperClusters can be connected through the use of two innovative local routing 
resources called FastConnect and DirectConnect, which enable extremely fast and 
predictable interconnection of modules within Clusters and SuperClusters. This routing 
architecture also dramatically reduces the number of antifuses required to complete a circuit, 
ensuring the highest possible performance. DirectConnect is a horizontal routing resource 
that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. 
DirectConnect uses a hard-wired signal path requiring no programmable interconnection to 
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achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal 
routing between any two logic modules within a given SuperCluster and vertical routing with 
the SuperCluster immediately below it. Only one programmable connection is used in a 
FastConnect path, delivering maximum pin-to-pin propagation of 0.3 ns. In addition to 
DirectConnect and FastConnect, the architecture makes use of two globally oriented routing 
resources known as segmented routing and high-drive routing. Actel’s segmented routing 
structure provides a variety of track lengths for extremely fast routing between 
SuperClusters.  
 
12.3.2.4 Technology 
Actel’s eX family is implemented on a high-voltage twin-well CMOS process using 0.22�m 
������� �����
 ��� �����-to-metal antifuse is made up of a combination of amorphous silicon 
and dielectric material with barrier metals and has an “on” state resistance of 25�� ���� �
capacitance of 1.0 fF for low signal impedance. 
 
12.3.2.5 Performance 
The combination of architectural features described above enables eX devices to operate 
with internal clock frequencies exceeding 350 MHz for very fast execution of complex logic 
functions. Thus, the eX family is an optimal platform upon which to integrate the functionality 
previously contained in CPLDs. In addition, designs that previously would have required a 
gate array to meet performance goals can now be integrated into an eX device with dramatic 
improvements in cost and time to market. Using timing-driven place-and-route tools, 
designers can achieve highly deterministic device performance. 

8.3.3. ProASIC 500K Family 
The ProASIC 500K family’s nonvolatile Flash technology combines the advantages of ASICs 
with the benefits of programmable devices. ProASIC 500K devices shorten time-to-
production by enabling designers to create high-density systems using existing ASIC or 
FPGA design flows and tools. The ProASIC 500K family consists of four devices ranging 
from 100k to 475k system gates and with up to 63k bits of embedded two-port memory. 
These memory blocks include hardwired FIFO circuitry as well as circuits to generate or 
check parity. This minimizes external logic gate count and complexity while maximizing 
flexibility and utility. 
 
12.3.3.1 Architecture 
The ProASIC 500K family’s [57] proprietary architecture provides granularity comparable to 
gate arrays. Unlike SRAM-based FPGAs that utilize LUTs or architectural mapping during 
design, ProASIC device designs are directly synthesized to gates. That streamlines the 
design flow, increases design productivity, and eliminates dependencies on vendor-specific 
design tools. The ProASIC 500K device core consists of a Sea-of-Tiles, each of which can 
be configured as a 3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming 
the appropriate Flash switch interconnections. Gates and larger functions are connected with 
four levels of routing hierarchy. Flash memory bits are distributed throughout the device to 
provide nonvolatile, reconfigurable interconnect programming. Flash switches are 
programmed to connect signal lines to the appropriate logic cell inputs and outputs. 
Dedicated high-performance lines are connected as needed for fast, low-skew global signal 
distribution throughout the core. Maximum core utilization is possible for virtually any design. 
The ProASIC 500K devices also contain embedded two-port SRAM blocks with built-in 
FIFO/RAM control logic. Programming options include synchronous or asynchronous 
operation, two-port RAM configurations, user defined depth and width, and parity generation 
or checking.  
 
12.3.3.2 Logic Tile 
The logic tile cell, as it is shown in Figure 39, has three inputs (any or all of which can be 
inverted) and one output (which can connect to both ultra fast local and efficient long line 
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routing resources). Any three-input one-output logic function, except a three input XOR, can 
be configured as one tile. Two multiplexers with feedback paths through the NAND gates 
allow the tile to be configured as a latch with clear or set, or as a flip-flop with clear or set. 
Thus, the tiles can flexibly map logic and sequential gates of a design. 
 

 

Figure 39: Core Logic Tile for ProASIC 500K Family 

 
12.3.3.3 Routing Resources 
The routing structure of the ProASIC 500K devices is designed to provide high performance 
through a flexible four-level hierarchy of routing resources: ultra fast local resources, efficient 
long line resources, high speed very long line resources, and high performance global 
networks. The ultra fast local resources are dedicated lines that allow the output of each tile 
to connect directly to every input of the eight surrounding tiles. The efficient long line 
resources provide routing for longer distances and higher fan-out connections. These 
resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and 
cover the entire ProASIC device. Each tile can drive signals onto the efficient long line 
resources, while the resources can also access every input of any tile. The routing software 
automatically inserts active buffers to limit loading effects due to distance and fan-out. The 
high speed very long line resources, spanning across the entire device with minimal delay, 
are used to route very long or very high fan-out nets. These resources run vertically and 
horizontally, providing multiple accesses to each group of tiles throughout the device. The 
high performance global networks’ clock trees are low skew, high fan-out nets that are 
accessible from four dedicated pins or from internal logic. These nets are typically used to 
distribute clocks, resets, and other high fan-out nets requiring a minimum skew. The global 
networks are implemented as clock trees, and signals can be introduced at any junction. 
These can be employed hierarchically, with signals accessing every input on all tiles. 

8.3.4. ProASICPLUS Family Flash FPGAs 
The ProASICPLUS family [58] of devices offers enhanced performance over Actel’s ProASIC 
family. It combines the advantages of ASICs with the benefits of programmable devices 
through nonvolatile Flash technology. This enables engineers to create high-density systems 
using existing ASIC or FPGA design flows and tools. In addition, the ProASICPLUS family 
offers a unique clock conditioning circuit based on two on-board phase lock loops (PLLs). 
The family offers up to 1 million system gates, supported with up to 198 Kbits of 2-port SRAM 
and up to 712 user I/Os, all providing 50 MHz PCI performance. Four levels of routing 
hierarchy simplify routing, while the use of Flash technology allows all functionality to be live 
at power up, unlike SRAM-based FPGAs. No external Boot PROM is required to support 
device programming. While on-board security mechanisms prevent all access to the program 
information, reprogramming can be performed in-system to support future design iterations 
and field upgrades. The device’s architecture mitigates the complexity of ASIC migration at 
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higher user volume. This makes ProASICPLUS a cost-effective solution for applications in 
the networking, communications, computing, and avionics markets. The ProASICPLUS 
family achieves its non-volatility and reprogrammability through an advanced Flash-based 
0.22�m LVCMOS process with four-layer metal. Standard CMOS design techniques are 
used to implement logic and control functions, including the PLLs and LVPECL inputs. The 
result is predictable performance fully compatible with gate arrays. The ProASICPLUS 
architecture provides granularity comparable to gate arrays. The device core consists of a 
Sea-of-Tiles. Each tile can be configured as a flip-flop, latch, or 3-input/1-output logic function 
by programming the appropriate Flash switches. The combination of fine granularity, flexible 
routing resources, and abundant Flash switches allow 100% utilization and over 95% 
routability for highly congested designs. Tiles and larger functions are interconnected through 
a 4-level routing hierarchy. Embedded 2-port SRAM blocks with built-in FIFO/RAM control 
logic can have user-defined depth and width.  
 
12.3.4.1 Architecture 
The proprietary ProASICPLUS architecture provides granularity comparable to gate arrays. 
The ProASICPLUS device core consists of a Sea-of-Tiles. Each tile can be configured as a 
3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate 
Flash switch interconnections. Tiles and larger functions are connected with any of the four 
levels of routing hierarchy. Flash cells are distributed throughout the device to provide 
nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to 
connect signal lines to the appropriate logic cell inputs and outputs. Dedicated high-
performance lines are connected as needed for fast, low-skew global signal distribution 
throughout the core. Maximum core utilization is possible for virtually any design. 
 
12.3.4.2 Logic Tile 
The logic tile cell has three inputs (any or all of which can be inverted) and one output (which 
can connect to both ultra fast local and efficient long line routing resources). Any three-input 
one-output logic function, except a three input XOR, can be configured as one tile. The tile 
can be configured as a latch with clear or set or as a flip-flop with clear or set. Thus the tiles 
can flexibly map logic and sequential gates of a design. The logic tile is similar to ProASIC 
500K Family that has been shown in Figure 39. 
 
12.3.4.3 Routing Resources 
The routing structure of the ProASICPLUS devices is designed to provide high performance 
through a flexible four-level hierarchy of routing resources: ultra fast local resources, efficient 
long line resources, high speed very long line resources, and high performance global 
networks. The ultra fast local resources are dedicated lines that allow the output of each tile 
to connect directly to every input of the eight surrounding tiles. The efficient long line 
resources provide routing for longer distances and higher fan-out connections. These 
resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and 
cover the entire ProASICPLUS device. Each tile can drive signals onto the efficient long line 
resources, which can, in turn, access every input of every tile. Active buffers are inserted 
automatically by routing software to limit the loading effects due to distance and fan-out. The 
high speed very long line resources which span the entire device with minimal delay, are 
used to route very long or very high fan-out nets. The high performance global networks are 
low skew, high fan-out nets that are accessible from external pins or from internal logic. 
These nets are typically used to distribute clocks, resets, and other high fan-out nets 
requiring a minimum skew. The global networks are implemented as clock trees, and signals 
can be introduced at any junction. These can be employed hierarchically, with signals 
accessing every input on all tiles. 

8.3.5. SX-A Family FPGAs 
Actel’s SX-A family [59] of FPGAs features a sea-of-modules architecture that delivers 
device performance and integration levels not currently achieved by any other FPGA 
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architecture. SX-A devices simplify design time, enable dramatic reductions in power 
consumption, and further decrease time to market for performance-intensive applications. 
Actel’s SX-A architecture features two types of logic modules, the combinatorial cell (C-cell) 
and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized 
logic functions. The routing and interconnect resources are in the metal layers above the 
logic modules, providing optimal use of silicon. This enables the entire floor of the device to 
be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or 
“sea-of-modules”), which reduces the distance signals have to travel between logic modules. 
To minimize signal propagation delay, SX-A devices employ both local and general routing 
resources. The high-speed local routing resources (DirectConnect and FastConnect) enable 
very fast local signal propagation that is optimal for fast counters, state machines, and 
datapath logic. The general system of segmented routing tracks allows any logic module in 
the array to be connected to any other logic or I/O module. Within this system, propagation 
delay is minimized by limiting the number of antifuse interconnect elements to five (90 
percent of connections typically use only three or fewer antifuses). The unique local and 
general routing structure featured in SX-A devices gives fast and predictable performance, 
allows 100 percent pin-locking with full logic utilization, reduces design time, and allows 
designers to achieve performance goals with minimum effort. Further complementing SX-A’s 
flexible routing structure is a hard-wired, constantly loaded clock network that has been 
tuned to provide fast clock propagation with minimal clock skew. Additionally, the high 
performance of the internal logic has eliminated the need to embed latches or flip-flops in the 
I/O cells to achieve fast clock-to-out or fast input set-up times. SX-A devices have easy-to-
use I/O cells that do not require HDL instantiation, facilitating design re-use and reducing 
design and verification time. 
 
12.3.5.1 Programmable Interconnect Element  
The SX-A family provides efficient use of silicon by locating the routing interconnect 
resources between the top two metal layers. This completely eliminates the channels of 
routing and interconnect resources between logic modules (as implemented on SRAM 
FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the 
device to be spanned with an uninterrupted grid of logic modules. Interconnection between 
these logic modules is achieved using Actel’s patented metal-to-metal programmable 
antifuse interconnect elements. The antifuses are normally open circuit and, when 
programmed, form a permanent low-impedance connection. The extremely small size of 
these interconnect elements gives the SX-A family abundant routing resources and provides 
excellent protection against design pirating. Reverse engineering is virtually impossible 
because it is extremely difficult to distinguish between programmed and unprogrammed 
antifuses, and since SX-A is a nonvolatile, single-chip solution, there is no configuration 
bitstream to intercept. Additionally, the interconnect (i.e., the antifuses and metal tracks) 
have lower capacitance and lower resistance than any other device of similar capacity, 
leading to the fastest signal propagation in the industry. 
 
12.3.5.2 Logic Module Design 
The SX-A family architecture is described as a “sea-of-modules” architecture because the 
entire floor of the device is covered with a grid of logic modules with virtually no chip area lost 
to interconnect elements or routing. Actel’s SX-A family provides two types of logic modules, 
the register cell (R-cell) and the combinatorial cell (C-cell). The R-cell contains a flip-flop 
featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 
lines) control signals. The R-cell registers feature programmable clock polarity selectable on 
a register-by-register basis. This provides additional flexibility while allowing mapping of 
synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen 
from either the hard-wired clock, the routed clocks, or internal logic. The C-cell implements a 
range of combinatorial functions up to 5 inputs. Inclusion of the DB input and its associated 
inverter function increases the number of combinatorial functions that can be implemented in 
a single module from 800 options (as in previous architectures) to more than 4,000 in the SX-
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A architecture. An example of the improved flexibility enabled by the inversion capability is 
the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates 
construction of 9-bit parity-tree functions with 1.9 ns propagation delays. At the same time, 
the C-cell structure is extremely synthesis friendly, simplifying the overall design and 
reducing synthesis time. The R-cell and C-cell are similar to the eX Family, and have been 
shown in Figure 38. 
 
3.3.5.1 Chip Architecture 
The SX-A family’s chip architecture provides a unique approach to module organization and 
chip routing that delivers the best register/logic mix for a wide variety of new and emerging 
applications. Actel has arranged all C-cell and R-cell logic modules into horizontal banks 
called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, 
while Type 2 contains one C-cell and two R-cells. To increase design efficiency and device 
performance, Actel has further organized these modules into SuperClusters. SuperCluster 1 
is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one 
Type 1 cluster and one Type 2 cluster. SX-A devices feature more SuperCluster 1 modules 
than SuperCluster 2 modules because designers typically require significantly more 
combinatorial logic than flip-flops.  
 
12.3.5.3 Routing  
Clusters and SuperClusters can be connected through the use of two innovative local routing 
resources called FastConnect and DirectConnect, which enable extremely fast and 
predictable interconnection of modules within Clusters and SuperClusters. This routing 
architecture also dramatically reduces the number of antifuses required to complete a circuit, 
ensuring the highest possible performance. DirectConnect is a horizontal routing resource 
that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. 
DirectConnect uses a hard-wired signal path requiring no programmable interconnection to 
achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal 
routing between any two logic modules within a given SuperCluster and vertical routing with 
the SuperCluster immediately below it. Only one programmable connection is used in a 
FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns. In addition to 
DirectConnect and FastConnect, the architecture makes use of two globally oriented routing 
resources known as segmented routing and high-drive routing. Actel’s segmented routing 
structure provides a variety of track lengths for extremely fast routing between 
SuperClusters. The exact combination of track lengths and antifuses within each path is 
chosen by the 100 percent automatic place-and-route software to minimize signal 
propagation delays. 
 
12.3.5.4 Technology 
Actel’s SX-A family is implemented on a high-voltage twin-well CMOS process using 
0.22�m/0.25�m� ������ �����
 ��� �����-to-metal antifuse is made up of a combination of 
amorphous silicon and dielectric material with barrier metals and has a programmed (“on” 
state) resistance of 25������ ����������� �� �
	 � ��� ��� ���nal impedance.  
 
12.3.5.5 Performance 
The combination of architectural features described above enables SX-A devices to operate 
with internal clock frequencies of 350 MHz, enabling very fast execution of even complex 
logic functions. Thus, the SX-A family is an optimal platform upon which to integrate the 
functionality previously contained in multiple CPLDs. In addition, designs that previously 
would have required a gate array to meet performance goals can now be integrated into an 
SX-A device with dramatic improvements in time-to-market. Using timing-driven place-and-
route tools, designers can achieve highly deterministic device performance. 
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8.3.6. 40MX and 42MX FPGA Families 
Actel’s 40MX and 42MX families [60] provide a high-performance, single-chip solution for 
shortening the system design and development cycle, offering a cost-effective alternative to 
ASICs. The 40MX and 42MX devices are excellent choices for integrating logic that is 
currently implemented in multiple PALs, CPLDs, and FPGAs. Example applications include 
high-speed controllers and address decoding, peripheral bus interfaces, DSP, and co-
processor functions. The MX device architecture is based on Actel’s patented antifuse 
technology implemented in a 0.45µm triple-metal CMOS process. With capacities ranging 
from 3,000 to 54,000 system gates, the synthesis-friendly MX devices provide performance 
up to 250 MHz, are live on power-up, and require up to five times lower stand-by power 
consumption than any other FPGA device. Actel’s MX FPGAs provide up to 202 user I/Os 
and are available in a wide variety of packages and speed grades. 
 
12.3.6.1 Architecture  
The 40MX and 42MX devices are composed of fine-grained building blocks that enable fast, 
efficient logic designs. All devices within these families are composed of logic modules, I/O 
modules, routing resources, and clock networks, which are the building blocks for designing 
fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM and 
wide decode modules. The dual-port SRAM modules are optimized for high-speed datapath 
functions such as FIFOs, LIFOs, and scratchpad memory.  
 
12.3.6.2 Logic Modules 
The 40MX logic module is an eight-input, one-output logic circuit designed to implement a 
wide range of logic functions with efficient use of interconnect routing resources as it is 
shown in Figure 40. The logic module can implement the four basic logic functions (NAND, 
AND, OR, and NOR) in gates of two, three, or four inputs. Each function may have many 
versions with different combinations of active low inputs. The logic module can also 
implement a variety of D-latches, exclusivity functions, AND-ORs, and OR-ANDs. No 
dedicated hard-wired latches or flip-flops are required in the array, since latches and flip-flops 
can be constructed from logic modules wherever needed in the application. 
 

 

Figure 40: 40MX Logic Module 

 
The 42MX devices contain three types of logic modules: combinatorial (C-modules), 
sequential (S-modules), and decode (D-modules). The C-module implements the following 
function: 
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The S-module is designed to implement high-speed sequential functions within a single logic 
module. The S-module implements the same combinatorial logic function as the C-module 
while adding a sequential element. The sequential element can be configured as either a D 
flip-flop or a transparent latch. To increase flexibility, the S-module register can be bypassed 
so that it implements purely combinatorial logic. 
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Some of the 42MX devices contain D-modules, which are arranged around the periphery of 
the devices. D-modules contain wide-decode circuitry, which provides a fast, wide-input AND 
function similar to that found in product-term architectures. The D-module allows 42MX 
devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The 
output of the D-module has a programmable inverter for active high or low assertion. The D-
module output is hard-wired to an output pin, but it can also be fed back into the array to be 
incorporated into other logic. 
 
12.3.6.3 Routing  
The MX architecture uses vertical and horizontal routing tracks to interconnect the various 
logic and I/O modules. These routing tracks are metal interconnects that may be either of 
continuous length or broken into pieces called segments. Varying segment lengths allows the 
interconnection of over 90% of design tracks with only two antifuse connections. Segments 
can be joined together at the ends using antifuses to increase their lengths up to the full 
length of the track. All interconnects can be accomplished with a maximum of four antifuses. 
 
Horizontal channels are located between the rows of modules and are composed of several 
routing tracks. The horizontal routing tracks within the channel are divided into one or more 
segments. The minimum horizontal segment length is the width of a module pair, and the 
maximum horizontal segment length is the full length of the channel. Any segment that spans 
more than one-third at the row length is considered a long horizontal segment. Non-
dedicated horizontal routing tracks are used to route signal nets while the dedicated routing 
tracks are used for global clock networks and for power and ground tie-off tracks. 
 
Another set of routing tracks run vertically through the module. There are three types of 
vertical tracks: input, output, and long, which are also divided into one or more segments. 
Each segment in an input track is dedicated to the input of a particular module; each 
segment in an output track is dedicated to the output of a particular module. Long segments 
are uncommitted and can be assigned during routing. Each output segment spans four 
channels (two above and two below), except near the top and bottom of the array, where 
edge effects occur. Long vertical tracks contain either one or two segments.  
 
12.3.6.4 Antifuse Structures 
An antifuse is a “normally open” structure as opposed to the normally connected fuse 
structure used in PROMs or PALs. The use of antifuses to implement a programmable logic 
device results in highly testable structures as well as efficient programming algorithms. The 
structure is highly-testable because there are no pre-existing connections; therefore, 
temporary connections can be made using pass transistors. These temporary connections 
can isolate individual antifuses to be programmed and individual circuit structures to be 
tested, which can be done before and after programming. For example, all metal tracks can 
be tested for continuity and shorts between adjacent tracks, and the functionality of all logic 
modules can be verified. 

8.3.7. VariCore  
VariCore IP blocks [92] are embedded, reprogrammable “soft hardware” cores designed for 
use in ASIC and ASSP SoC applications. The available VariCore embedded programmable 
gate array (EPGA) blocks have been designed in 0.18 micron CMOS SRAM technology. 
 
12.3.7.1 Architecture 
The main building block of the VariCore SRAM-based EPGA architecture is the PEG. Each 
of these PEG blocks can implement about 2.5K ASIC gates. The VariCore EPGA core that is 
used within the SoC device contains several of these PEG blocks, as shown in Figure 41, 
along with additional logic to provide configuration and test features. Actel has created 
VariCore EPGA cores ranging from 2x1 up to 4x4 PEG blocks. 
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Figure 41: VariCore SRAM Architecture – A 4x4 array 

 
The aspect ratio and shape of this tiling can be varied to obtain the best design fit on the SoC 
device. As the number of PEG blocks increases, so does the potential number of shapes. 
Actel supports a subset of these, typically rectangular, shapes. The ideal shape for the 
VariCore IP core is a square since this tends to reduce the internal delays within the core. 
However, there may be applications where a rectangular or ‘L’ shaped core provides a more 
efficient implementation at the physical level. 
 
12.3.7.2 PEG block 
The PEG itself contains an 8x8 array of functional group (FG) blocks. 
 
12.3.7.3 Functional Group 
There are 64 functional groups within each PEG. Each FG contains four logic units (LUs). To 
support high-speed arithmetic functions, a hard-wired carry chain is included in the FG that 
connects the output of one LUT (look-up table) directly to the input on the next. If the carry 
input on the LUT is used, then the designer can use only two of three data inputs on the LUT. 
This carry chain extends vertically across all the FGs within the PEG block. 
 
12.3.7.4 Logical Unit 
Each logic unit contains two three-input LUTs and a register, as shown in Figure 42. 

 

Figure 42: The EPGA Logic Unit 

 



Survey of FPGA reconfigurable Systems: Hardware platforms and Software 

 71 

The register input can be driven by either one of the three-input LUTs and the outputs can 
either come directly from the LUTs or the register output. It should be noted that the four LUs 
within the FG share the same register control lines. Although this is a LUT3 architecture, it is 
possible to implement a LUT4 function using the two three-input LUTs and the MUX. The 
same configuration can also be used to create a MUX4 function. 

8.4. ATMEL 
Here are described the FPGAs that are available from ATMEL. These are the AT40K, 
AT40KLV, and AT6000 families.  

8.4.1. AT40K/AT40KLV FPGA family 
The AT40K/AT40KLV [60] is a family of fully PCI-compliant, SRAM-based FPGAs with 
distributed 10 ns programmable synchronous/asynchronous, dual-port/single-port SRAM, 8 
global clocks, Cache Logic ability (partially or fully reconfigurable without loss of data), 
automatic component generators, and range in size from 5,000 to 50,000 usable gates.  
 
The AT40K/AT40KLV is designed to quickly implement high-performance, large gate count 
designs through the use of synthesis and schematic-based tools. Atmel’s design tools 
provide seamless integration with industry standard tools such as Synplicity, ModelSim, 
Exemplar and Viewlogic. The AT40K/AT40KLV can be used as a coprocessor for high-speed 
(DSP/processorbased) designs by implementing a variety of computation intensive, 
arithmetic functions. These include adaptive finite impulse response (FIR) filters, fast Fourier 
transforms (FFT), convolvers, interpolators and discrete-cosine transforms (DCT) that are 
required for video compression and decompression, encryption, convolution and other 
multimedia applications. 
 
12.4.1.1 SRAM 
The AT40K/AT40KLV FPGA offers a patented distributed 10 ns SRAM capability where the 
RAM can be used without losing logic resources. Multiple independent, synchronous or 
asynchronous, dual-port or single-port RAM functions (FIFO, scratch pad, etc.) can be 
created using Atmel’s macro generator tool. 
 
12.4.1.2 Array and Vector Multipliers 
The AT40K/AT40KLV’s patented 8-sided core cell with direct horizontal, vertical and diagonal 
cell-to-cell connections implements ultra fast array multipliers without using any busing 
resources. The AT40K/AT40KLV’s Cache Logic capability enables a large number of design 
coefficients and variables to be implemented in a very small amount of silicon, enabling vast 
improvement in system speed at much lower cost than conventional FPGAs. 
 
12.4.1.3 Automatic Component Generators 
The AT40K/AT40KLV FPGA family is capable of implementing user-defined, automatically 
generated, macros in multiple designs; speed and functionality are unaffected by the macro 
orientation or density of the target device. This enables the fastest, most predictable and 
efficient FPGA design approach and minimizes design risk by reusing already proven 
functions. The Automatic Component Generators work seamlessly with industry standard 
schematic and synthesis tools to create the fastest, most efficient designs available. The 
patented AT40K/AT40KLV series architecture employs a symmetrical grid of small yet 
powerful cells connected to a flexible busing network.  
 
Devices range in size from 5,000 to 50,000 usable gates in the family, and have 256 to 2,304 
registers. The AT40K/AT40KLV series FPGAs utilize a reliable 0.6µm single-poly, CMOS 
process. Multiple design entry methods are supported. The Atmel architecture was 
developed to provide the highest levels of performance, functional density and design 
flexibility in an FPGA. The cells in the Atmel array are small, efficient and can implement any 
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pair of Boolean functions of (the same) three inputs or any single Boolean function of four 
inputs. The cell’s small size leads to arrays with large numbers of cells, greatly multiplying 
the functionality in each cell.  
 
12.4.1.4 Cache Logic Design 
The AT40K/AT40KLV, AT6000 and FPSLIC families are capable of implementing Cache 
Logic (dynamic full/partial logic reconfiguration, without loss of data, on-the-fly) for building 
adaptive logic and systems. As new logic functions are required, they can be loaded into the 
logic cache without losing the data already there or disrupting the operation of the rest of the 
chip; replacing or complementing the active logic. The AT40K/AT40KLV can act as a 
reconfigurable coprocessor. 

8.4.2. AT6000 FPGA Family 
AT6000 Series [62] SRAM-based Field Programmable Gate Arrays (FPGAs) are ideal for 
use as reconfigurable coprocessors and implementing compute-intensive logic. Supporting 
system speeds greater than 100 MHz and using a typical operating current of 15 to 170 mA, 
AT6000 Series devices are ideal for high-speed, compute-intensive designs. These FPGAs 
are designed to implement Cache Logic, which provides the user with the ability to 
implement adaptive hardware and perform hardware acceleration. The patented AT6000 
Series architecture employs a symmetrical grid of small yet powerful cells connected to a 
flexible busing network.  
 
Devices range in size from 4,000 to 30,000 usable gates, and 1024 to 6400 registers. Pin 
locations are consistent throughout the AT6000 Series for easy design migration. High-I/O 
versions are available for the lower gate count devices. AT6000 Series FPGAs utilize a 
reliable 0.6 µm single-poly, double-metal CMOS process Multiple design entry methods are 
supported. The Atmel architecture was developed to provide the highest levels of 
performance, functional density and design flexibility in an FPGA. The cells in the Atmel 
array are small, very efficient and contain the most important and most commonly used logic 
and wiring functions. The cell’s small size leads to arrays with large numbers of cells, greatly 
multiplying the functionality in each cell. A simple, high-speed busing network provides fast, 
efficient communication over medium and long distances. 
 
12.4.2.1 Symmetrical Array 
At the heart of the Atmel architecture is a symmetrical array of identical cells. The array is 
continuous and completely uninterrupted from one edge to the other, except for bus 
repeaters spaced every eight cells. In addition to logic and storage, cells can also be used as 
wires to connect functions together over short distances and are useful for routing in tight 
spaces. 
 
12.4.2.2 Cell Structure 
The Atmel cell is simple and small and yet can be programmed to perform all the logic and 
wiring functions needed to implement any digital circuit. Its four sides are functionally 
identical, so each cell is completely symmetrical.  The Atmel AT6000 Series cell structure is 
shown in Figure 43. 
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Figure 43: The AT6000 Series Cell Structure 

 
In addition to the four local-bus connections, a cell receives two inputs and provides two 
outputs to each of its North (N), South (S), East (E) and West (W) neighbors. These inputs 
and outputs are divided into two classes: “A” and “B”. There is an A input and a B input from 
each neighboring cell and an A output and a B output driving all four neighbors. Between 
cells, an A output is always connected to an A input and a B output to a B input. Within the 
cell, the four A inputs and the four B inputs enter two separate, independently configurable 
multiplexers. Cell flexibility is enhanced by allowing each multiplexer to select also the logical 
constant “1”. The two multiplexer outputs enter the two upstream AND gates. 
 
12.4.2.3 Logic States 
The Atmel cell implements a rich and powerful set of logic functions, stemming from 44 
logical cell states which permutate into 72 physical states. Some states use both A and B 
inputs. Other states are created by selecting the “1” input on either or both of the input 
multiplexers.  
 

8.5. QUICKLOGIC 
The available FPGA families from QuickLogic are the Eclipse, pASIC 1, pASIC 2, pASIC 3, 
and the QuickRam, and will be described briefly below. 

8.5.1. Eclipse Family 
The Eclipse [63] features an enhanced Supercell with an additional D flip-flop register and 
associated control logic. The Eclipse logic Supercell structure is similar to the 0.35 mm 
QuickLogic logic cell with the addition of a second register. Both registers share CLK, SET 
and RESET inputs. The second register has a two-to-one multiplexer controlling its input. 
The register can be loaded from the NZ output or directly from a dedicated input. The Eclipse 
SuperCell is shown in Figure 44.  
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Figure 44: (a) Eclipse SuperCell, (b) pASIC 1 Internal Logic Cell, and (c) pASIC 3 Family 
Logic Cell 

The complete logic cell consists of two 6-input AND gates, four two-input AND gates, seven 
two-to-one multiplexers and two D flip-flop with asynchronous SET and RESET controls. The 
cell has a fan-in of 30 (including register control lines) and fits a wide range of functions with 
up to 17 simultaneous inputs. It has 6 outputs; 4 combinatorial and 2 registered. The high 
logic capacity and fan-in of the logic cell accommodate many user functions with a single 
level of logic delay while other architectures require two or more levels of delay. 
 
12.5.1.1 RAM Modules 
The Eclipse Family includes multiple dual-port 2,304-bit RAM modules for implementing 
RAM, ROM and FIFO functions. Each module is user-configurable into four different block 
organizations. Modules can also be cascaded horizontally to increase their effective width or 
vertically to increase their effective depth. The RAM can also be configured as a modified 
Harvard Architecture, similar to those found in DSPs. The number of RAM modules varies 
from 12 to 36 blocks within the Eclipse family, for a total of 46.1Kbits to 82.9Kbits of RAM. 
Using two "mode" pins, designers can configure each module into 128 x 18 (Mode 0), 256 x 
9 (Mode 1), 512 x 4 (Mode 2), or 1024 x 2 blocks (Mode 3). The blocks are also easily 
cascadable to increase their effective width and/or depth.  
 
12.5.1.2 Routing 
Six types of routing resources are provided, as in the QuickRAM devices: short (sometimes 
called segmented) wires, dual wires, quad wires, express wires, distributed networks and 
defaults. Short wires span the length of 1 logic cell, always in the vertical direction. Dual 
wires run horizontally and span the length of 2 logic cells. Short and dual wires are 
predominantly used for local connections. They effectively traverse one or two logic cells 
utilize an interconnect element to continue to the next cell or to change direction. Quad wires 
have passive link interconnect elements every fourth logic cell. As a result, these wires are 
typically used to implement intermediate length or medium fan-out nets. Express lines run 
the length of the programmable logic uninterrupted. Each of these lines has a higher 
capacitance than a quad, dual or short wire, but less capacitance than shorter wires 
connected to run the length of the device. The resistance will also be lower because the 
express wires don't require the use of "pass" links. Express wires provide higher 
performance for long routes or high fan-out nets. Distributed networks are described in the 
clock/control section. These wires span the programmable logic, and are driven by "column 
clock" buffers. Each dedicated clock network pin buffer is hard wired to a set of column clock 
buffers. Five global networks "global buffers" can be connected through special purpose 
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routing called "HSCK lines" to either a dedicated pin buffer, or any vertical routing wire 
crossing it. 

8.5.2. pASIC 1 Family  
The pASIC 1 Family [64] of very-high-speed CMOS user-programmable ASIC (pASIC) 
devices is based on the first FPGA technology to combine high speed, high density and low 
power in a single architecture. pASIC 1 devices range in density from 1,000 to 8,000 usable 
ASIC gates, equivalent to 2,000 to 14,000 usable programmable (PLD) gates. All pASIC 1 
devices are based on an array of highly flexible logic cells which have been optimized for 
efficient implementation of high-speed arithmetic, counter, data path, state machine, random 
and glue logic functions. Logic cells are configured and interconnected by rows and columns 
of routing metal and ViaLink metal-to-metal programmable-via interconnect elements. 
ViaLink technology provides a nonvolatile, permanently programmed custom logic function 
capable of operating at counter speeds of over 150 MHz. Internal logic cell nominal worst 
case delays are under 2 ns and total input to output combinatorial logic delays are under 8 
ns. This permits high-density programmable devices to be used with today’s fastest 
microprocessors, while consuming a fraction of the power and board area of PAL/GAL, 
CPLD and discrete logic solutions. 
 
12.5.2.1 Architecture 
The pASIC 1 device architecture consists of an array of user-configurable logic building 
blocks, called logic cells and shown in Figure 44, set in a grid of metal wiring channels similar 
to those of a gate array. Through ViaLink elements located at the wire intersections, the 
output of any cell may be programmed to connect to the input of any other cell. This regular 
and orthogonal interconnect makes the pASIC 1 architecture similar in structure and 
performance to a metal masked gate array. Abundant wiring resources permit 100% 
automatic placement and routing of designs using up to 100% of the logic cells. The pASIC 1 
internal logic cell is a general-purpose building block that can implement most TTL and gate 
array macro library functions. It has been optimized to maintain the inherent speed 
advantage of the ViaLink technology while ensuring maximum logic flexibility. The logic cell 
consists of two 6-input AND gates, four 2-input AND gates, three 2-to-1 multiplexers and a D 
flip-flop. Multiple outputs from the logic cell allow the automatic place and route software to 
pack unrelated logic functions into a single cell to maximize silicon utilization. The pASIC 1 
logic cell is unique among FPGA architectures in that it offers up to 14-input-wide gating 
functions. This allows many logic functions to be accomplished in a single cell delay that 
require two or more delays with other architectures. It can implement all possible Boolean 
transfer functions of up to three variables as well as many functions of up to 14 variables The 
multiplexer output feeds the D-type flip-flop which can also be configured to provide J-K, S-R, 
or T-type functions. Two independent SET and RESET inputs can be used to 
asynchronously control the output condition. Three types of input and output structures are 
provided on pASIC 1 devices to configure buffering functions at the external pads. They are 
the Bi-directional Input/Output (I/O) cell, the Dedicated Input (I) cell and the Clock Input cell 
(I/CLK). 
 
12.5.2.2 Technology 
The pASIC 1 Family is based on a 0.65 micron high-volume CMOS fabrication process with 
the ViaLink programmable-via antifuse technology inserted between the metal deposition 
steps.  

8.5.3. pASIC2 
QuickLogic’s pASIC 2 family [65] includes seven FPGAs ranging from 5,000 to over 16,000 
usable PLD gates and 84 to 256 package pins. This family employs a unique combination of 
architecture, technology, and software tools to provide high speed, high usable density and 
flexibility in the same devices. The flexibility and speed make pASIC 2 devices an efficient 
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and high-performance silicon solution for designs described using HDLs such as Verilog and 
VHDL, as well as schematics. 
 
Devices in the pASIC 2 family are based on an array of highly flexible logic cells which have 
been optimized to efficiently implement a wide range of logic functions at high speed. Each 
cell can implement one large function, or five independent smaller functions. This flexibility 
gives synthesized designs efficient logic utilization plus high performance within the same 
device. Logic cells are configured and interconnected by rows and columns of routing metal 
and ViaLink metal-to-metal programmable-via antifuses. Due to their small size, ViaLink 
antifuses may be placed at every desired routing track junction. In the pASIC 2 family, the 
benefits of ViaLink technology are further enhanced by a three-layer metal process which 
allows all routing and programmable elements to be placed above, rather than adjacent to 
the logic cells.  
 
All devices share a common architecture and development software to allow easy transfer of 
designs from one product to another. Different devices in the same package are pin-
compatible with one another, permitting easy design migration within the family. In addition, 
pASIC 2 devices are architectural supersets of pASIC 1 devices, providing a means for users 
to upgrade existing designs by integrating additional logic or increasing performance. 
 
The pASIC 2 family contains devices covering a wide spectrum of I/O and density 
requirements. The seven members range from 192 logic cells to 672 logic cells arranged in 
regular arrays. The single lines between logic cells represent channels containing up to thirty 
wires, which are actually placed above the logic cells in the physical devices. 
 
QuickLogic pASIC 2 devices are fabricated on a conventional high-volume CMOS process. 
The base technology is a 0.65 micron, n-well CMOS technology with a single polysilicon 
layer and three layers of metal interconnect. The only deviation from the standard process 
flow occurs when a single mask is used for the amorphous silicon to form the ViaLink 
elements between the metal deposition steps. 

8.5.4. pASIC 3 
The pASIC 3 family [66] is fabricated on a 0.35mm 4-layer metal process using QuickLogic’s 
patented ViaLink technology to provide a unique combination of high performance, high 
density, low cost, and complete flexibility.  
 
Devices in the pASIC 3 family are based on an array of highly flexible logic cells which have 
been optimized to efficiently implement a wide range of logic functions at high speed. Each 
cell can implement one large function, five independent smaller functions, or any combination 
in-between. Logic cells are configured and interconnected by rows and columns of routing 
metal and ViaLink metal-to-metal antifuses. Because ViaLink antifuses are small, fast, and 
are placed between metal layers above the logic cells (rather than on the silicon substrate), 
they can be located at every routing track junction. This approach allows abundant 
interconnect resources with small die sizes. 
 
12.5.4.1 Logic Cell and RAM Module Organization 
The pASIC 3 family contains devices covering a wide spectrum of density requirements. The 
five members range from 96 logic cells to 1,584 logic cells arranged in regular two-
dimensional arrays. Horizontal and vertical routing channels containing up to thirty wires run 
above the logic cells to connect functions. Each logic cell, which is shown in Figure 44, 
includes one pre-configured register, plus the logic to implement an additional independent 
latch. Therefore, users have up to three fully independent flip-flops for every two logic cells. 
Since each input and I/O cell also include a register, the total number of available flip-flops in 
a device equals the number of logic cells multiplied by 1.5 plus the total number of I/O pins.  
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12.5.4.2 Technology 
QuickLogic pASIC 3 devices are fabricated on a conventional high-volume CMOS process. 
The base technology is a 0.35 micron, n-well CMOS technology with a single polysilicon 
layer and four layers of metal interconnect. The only deviation from the standard process 
flow occurs when a single mask is used for the amorphous silicon to form the ViaLink 
elements between the metal deposition steps. As the size of a ViaLink via is identical to that 
of a standard metal interconnect via, programmable elements can be packed very densely. 
The packing density is limited only by the minimum dimensions of the metal-line to metal-line 
pitch. As a result, pASIC 3 devices typically have four to six times the number of 
programmable elements per usable logic gate, with smaller die sizes, than do SRAM-based 
FPGAs. Furthermore, the ViaLink technology can easily scale to smaller process geometries 
in the future. 
 
12.5.4.3 Array of Logic Cells 
The pASIC 3 device architecture consists of an array of user-configurable logic building 
blocks, called logic cells, set beneath a grid of metal wiring channels similar to those of a 
gate array. Through ViaLink elements located at the wire intersections, the output(s) of any 
cell may be programmed to connect to the input(s) of any other cell. By moving all 
interconnect resources above the logic cells, die sizes are less than half of two-layer metal 
technologies. The regular and orthogonal interconnect makes the pASIC 3 architecture 
similar in structure and performance to a metal-masked gate array. It also ensures that 
system operating speed is far less sensitive to partitioning and placement decisions, as 
minor revisions to a logic design can easily be incorporated without re-routing problems, 
resulting in only small changes in performance. The pASIC 3 logic cell is a general-purpose 
building block that can implement most TTL and gate array macro library functions. It is 
equivalent to the pASIC 2 cell, allowing easy design upgrades. The cell has been optimized 
to maintain the inherent speed advantage of the ViaLink technology while ensuring maximum 
logic flexibility. Since the logic cell has multiple outputs, it can implement one large function 
or multiple smaller independent functions in parallel. The function of a logic cell is determined 
by the logic levels applied to the inputs of the AND gates and multiplexers.  
 
The complete pASIC 3 logic cell consists of two 6-input AND gates, four two-input AND 
gates, six two-to-one multiplexers and one D flip-flop with asynchronous set and reset 
controls. The cell has a fan-in of 29 (including register control lines) and fits a wide range of 
functions with up to 16 simultaneous inputs.  
 
The pASIC 3 macro library contains more than 400 of the most frequently used logic 
functions optimized to fit the logic cell architecture. A detailed understanding of the logic cell 
is therefore not necessary to design successfully with pASIC 3 devices. CAE tools will 
automatically map a conventional logic schematic or HDL file into a device and provide 
excellent performance and utilization. 
 
12.5.4.4 Routing  
Five types of routing resources are provided in pASIC 3 devices: segmented wires, dual 
wires, express wires, quad wires, and distributed networks. Segmented wires run vertically 
throughout the routing array and dual wires run horizontally. Segmented and dual wires are 
predominantly used for local connections. They effectively traverse one or two logic cells and 
then use a ViaLink element to continue to the next cell or to change direction. Their low 
resistance and capacitance provide high performance for local logic cell connections. 

8.5.5. QuickRam 
Devices in the QuickRAM family [67] are based on an array of highly flexible logic cells which 
have been optimized to efficiently implement a wide range of logic functions at high speed. 
Each cell can implement one large function, five independent smaller functions, or any 
combination in-between.  
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12.5.5.1 Logic Cell and RAM Module Organization 
The QuickRAM family contains devices covering a wide spectrum of density requirements. 
The five members range from 96 logic cells to 1,584 logic cells arranged in regular two-
dimensional arrays. Horizontal and vertical routing channels containing up to thirty wires run 
above the logic cells to connect functions. Each logic cell includes one pre-configured 
register, plus the logic to implement an additional independent latch.  
 
In addition to the logic cell and I/O cell registers, the QuickRAM devices include multiple 
dual-port 1,152-bit RAM modules for implementing FIFO, RAM and ROM functions. Each 
module is user-configurable into 64x18, 128x9, 256x4, or 512x2 blocks. Modules can also be 
cascaded horizontally to increase their effective width or vertically to increase their effective 
depth.  
 
12.5.5.2 Technology 
QuickLogic QuickRAM devices are fabricated on a conventional high-volume CMOS 
process. The base technology is a 0.35 �m, n-well CMOS technology with a single 
polysilicon layer and four layers of metal interconnect. The only deviation from the standard 
process flow occurs when a single mask is used for the amorphous silicon to form the 
ViaLink elements between the metal deposition steps. 
 
12.5.5.3 Array of Logic Cells 
The QuickRAM device architecture consists of an array of user-configurable logic building 
blocks, called logic cells, set beneath a grid of metal wiring channels similar to those of a 
gate array. Through ViaLink elements located at the wire intersections, the output(s) of any 
cell may be programmed to connect to the input(s) of any other cell. By moving all 
interconnect resources above the logic cells, die sizes are less than half of two-layer metal 
technologies. The regular and orthogonal interconnect makes the QuickRAM architecture 
similar in structure and performance to a metal-masked gate array. It also ensures that 
system operating speed is far less sensitive to partitioning and placement decisions, as 
minor revisions to a logic design can easily be incorporated without re-routing problems, 
resulting in only small changes in performance. The QuickRAM logic cell is a general-
purpose building block that can implement most TTL and gate array macro library functions. 
It is equivalent to the pASIC 2 cell, allowing easy design upgrades. The cell has been 
optimized to maintain the inherent speed advantage of the ViaLink technology while ensuring 
maximum logic flexibility. Since the logic cell has multiple outputs, it can implement one large 
function or multiple smaller independent functions in parallel. 
 
The function of a logic cell is determined by the logic levels applied to the inputs of the AND 
gates and multiplexers. ViaLink sites located on signal wires tied to the gate inputs perform 
the dual role of configuring the logic function of a cell and establishing connections between 
cells. The complete QuickRAM logic cell consists of two 6- input AND gates, four two-input 
AND gates, six twoto-one multiplexers and one D flip-flop with asynchronous set and reset 
controls. The cell has a fan-in of 29 (including register control lines) and fits a wide range of 
functions with up to 16 simultaneous inputs. The high logic capacity and fan-in of the logic 
cell accommodate many user functions with a single level of logic delay (resulting in high 
performance) while other architectures require two or more levels of delay. 
 
12.5.5.4 Routing  
Five types of routing resources are provided in Quick-RAM devices: segmented wires, dual 
wires, express wires, quad wires, and distributed networks. Segmented wires run vertically 
throughout the routing array and dual wires run horizontally. Segmented and dual wires are 
predominantly used for local connections. They effectively traverse one or two logic cells and 
then use a ViaLink element to continue to the next cell or to change direction. Their low 
resistance and capacitance provide high performance for local logic cell connections. 
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8.6. Leopard Logic 
At this paragraph will be described the HyperBlock FP from Leopard Logic. 

8.6.1. HyperBlock FP 
The HyperBlox FP family [91] of embedded FPGA cores allows the combination of the 
performance and density of standard cells with the benefits of field programmability. It is 
available in 0.18 �m and 0.13 �m CMOS technology. The core sizes range from 3,000 to 
48,000 ASIC gates, while the typical system speeds are between 200 and 400 MHz. The 
HyperBlox FP cores provide some built-in functions for easy system integration and reliable 
operation: 
 
•  The Configuration Loader which allows a 32-bit word configuration data to be 

downloaded for fast and easy configuration. Partial reconfiguration is also supported. 
•  The Configuration Monitor checks continuously the bitstream integrity during operation to 

ensure maximum reliability.  
•  Every HyperBlox core has a bult-in self test controller for fast and reliable manufacturing 

testing. 
 
The HyperBlox FP family has 5 products, that are described in Table 5. 
 

HyperBlox 
Core 

Number 
of LUTs 

Number 
of F/F 

User I/O FPGA 
System 
Gates 

ASIC 
Gates  
(2-NAND) 

FP_256 256 512  512 24,000 3,000 
FP_512 512 1,024 1,024 48,000 6,000 
FP_1k 1,024 2,048 2,048 96,000 12,000 
FP_2k 2,048 4,096 4,096 192,000 24,000 
FP_4k 4,096 8,192 8,192 384,000 48,000 

Table 5: Products of the HyperBlox FP family 

 

8.7. Lattice 
The Lattice is the last one of the FPGA vendors, whose products are described in this report. 
The available families from Lattice are the ispXPGA, ORCA2, ORCA3, and ORCA4. 

8.7.1. ispXPGA 
 
12.7.1.1 Architecture  
The ispXPGA architecture [87] is a symmetrical architecture consisting of an array of 
Programmable Function Units (PFUs) enclosed by Input Output Groups (PICs) with columns 
of sysMEM Embedded Block RAMs (EBRs) distributed throughout the array. Figure 45 
illustrates the ispXPGA architecture. Each PIC has two corresponding sysIO blocks, each of 
which includes one input and output buffer. On two sides of the device, between the PICs 
and the sysIO blocks, there are sysHSI High-Speed Interface blocks. The symmetrical 
architecture allows designers to easily implement their designs, since any logic function can 
be placed in any section of the device. The PFUs contain the basic building blocks to create 
logic, memory, arithmetic, and register functions. They are optimized for speed and flexibility 
allowing complex designs to be implemented quickly and efficiently. The PICs interface the 
PFUs and EBRs to the external pins of the device. They allow the signals to be registered 
quickly to minimize setup times for high-speed designs. They also allow connections directly 
to the different logic elements for fast access to combinatorial functions. 
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These three components of the architecture are interconnected via a high-speed, flexible 
routing array. The routing array consists of Variable Length Interconnect (VLI) lines between 
the PICs, PFUs, and EBRs. There is additional routing available to the PFU for feedback and 
direct routing of signals to adjacent PFUs or PICs. 
 
 

 

Figure 45: The ispXPGA architecture 

 
12.7.1.2 Programmable Function Unit Description 
The Programmable Function Unit (PFU) is the basic building block of the ispXPGA 
architecture. The PFUs are arranged in rows and columns in the device with PFU (1,1) 
referring to (row 1, column 1). Each PFU consists of four Configurable Logic Elements 
(CLEs), four Configurable Sequential Elements (CSEs), and a Wide Logic Generator (WLG). 
By utilizing these components, the PFU can implement a variety of functions. Table 6 lists 
some of the function capabilities of the PFU.  
 
There are 57 inputs to each PFU and nine outputs. The PFU uses 20 inputs for logic, and 37 
inputs drive the control logic from which six control signals are derived for the PFU. 
 

Function Capability 
Look-up table LUT-4, LUT-5, LUT-6 
Wide logic functions Up to 20-input logic functions 
Multiplexing 2:1, 4:1, 8:1 
Arithmetic logic Dedicated carry chain and booth multiplication logic 
Single-port RAM 16x1, 16x2, 16x4, 32x1, 32x2, 64x1 
Double-port RAM 16x1, 16x2, 32x1 
Shift register 8-bit shift registers (up to 32-bit shift capability) 

Table 6: Function Capability of ispXPGA PFU 
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12.7.1.3 Configurable Logic Element 
The CLE is made up of a four-input Look-up Table (LUT-4), a Carry Chain Generator (CCG), 
and a two-input AND gate. The LUT-4 creates various combinatorial and memory elements, 
the CCG creates a single one-bit full adder, and the two-input AND gate can expand the 
CCG to incorporate Booth Multiplier capability by feeding the output of the AND gate to one 
of the inputs of the CCG. 

8.7.2. ORCA 2 
ORCA Series 2 SRAM-based FPGAs [88] include patented architectural enhancements that 
make functions faster and easier to design while conserving the use of PLCs and routing 
resources. All devices are offered in a variety of packages, speed grades, and temperature 
ranges.  
 
ORCA Series 2 FPGAs consist of two basic elements: Programmable Logic Cells (PLCs) 
and Programmable Input/output Cells (PICs). An array of PLCs is surrounded by PICs. Each 
PLC contains a Programmable Function Unit (PFU). The PLCs and PICs also contain routing 
resources and configuration RAM. All logic is done in the PFU. Each PFU contains four 16-
bit Look-Up Tables (LUTs) and four latches / Flip-Flops (FFs). The LUTs can be programmed 
to operate in one of three modes: combinatorial, ripple, or memory. In combinatorial mode, 
the LUTs can be programmed to realize realize any four-, five-, or six-input logic functions. In 
ripple mode, the high-speed carry logic is used for arithmetic functions, the multiplier 
function, or the enhanced data path functions. In memory mode, the LUTs can be used as a 
16x4 read/write or read-only memory (asynchronous mode or synchronous mode) or a 16x2 
dual-port memory.  
 
The PLC architecture provides a balanced mix of logic and routing that allows a higher 
utilized gate/PFU than alternative architectures. The routing resources carry logic signals 
between PFUs and I/O pads. The routing in the PLC is symmetrical about the horizontal and 
vertical axes. This improves routability by allowing a bus of signals to be routed into the PLC 
from any direction. Each PIC is comprised of I/O drivers, I/O pads, and routing resources. 
Each I/O can be programmed to be either an input, output, or bidirectional signal. Other 
options include variable output slew rates and pull-up or pull-down resistors.  

8.7.3. ORCA 3 
The ORCA Series 3 [89] FPGAs are a new generation of SRAM-based FPGAs built on the 
successful OR2C/TxxA FPGA Series. Designed from the start to be synthesis friendly and to 
reduce place and route times while maintaining the complete routability of the ORCA 2C/2T 
devices, Series 3 more than doubles the logic available in each logic block and incorporates 
system-level features that can further reduce logic requirements and increase system speed.  
 
ORCA Series 3 devices contain many new patented enhancements and are offered in a 
variety of packages, speed grades, and temperature ranges. The ORCA Series 3 FPGAs 
consist of three basic elements: programmable logic cells (PLCs), programmable 
input/output cells (PICs), and system-level features. An array of PLCs is surrounded by PICs. 
Each PLC contains a programmable function unit (PFU), a supplemental logic and 
interconnect cell (SLIC), local routing resources, and configuration RAM. Most of the FPGA 
logic is performed in the PFU, but decoders, PAL-like functions, and 3-state buffering can be 
performed in the SLIC. The PICs provide device inputs and outputs and can be used to 
register signals and to perform input demultiplexing, output multiplexing, and other functions 
on two output signals. Some of the system-level functions include the new microprocessor 
interface (MPI) and the programmable clock manager (PCM). 
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12.7.3.1 PLC Logic 
Each PFU within a PLC contains eight 4-input (16-bit) LUTs, eight latches/Flip-Flops, and 
one additional F/F that may be used independently or with arithmetic functions. The PFU is 
organized in a twin-quad fashion: two sets of four LUTs and FFs that can be controlled 
independently. LUTs may also be combined for use in arithmetic functions using fast-carry 
chain logic in either 4-bit or 8-bit modes. The carry-out of either mode may be registered in 
the ninth FF for pipelining. Each PFU may also be configured as a synchronous 32x4 single- 
or dual-port RAM or ROM. The F/Fs (or latches) may obtain input from LUT outputs or 
directly from invertible PFU inputs, or they can be tied high or tied low. The F/Fs also have 
programmable clock polarity, clock enables, and local set/reset. The SLIC is connected to 
PLC routing resources and to the outputs of the PFU. It contains 3-state, bidirectional buffers 
and logic to perform up to a 10-bit AND function for decoding, or an AND-OR with optional 
INVERT (AOI) to perform PAL-like functions. The 3-state drivers in the SLIC and their direct 
connections to the PFU outputs make fast, true 3-state buses possible within the FPGA, 
reducing required routing and allowing for real world system performance. 
 
12.7.3.2 PIC Logic 
Series 3 PIC addresses the demand for ever-increasing system clock speeds. Each PIC 
contains four programmable inputs/outputs (PIOs) and routing resources. On the input side, 
each PIO contains a fastcapture latch that is clocked by an ExpressCLK. This latch is 
followed by a latch/Flip-Flop that is clocked by a system clock from the internal general clock 
routing. The combination provides for very low setup requirements and zero hold times for 
signals coming on-chip. It may also be used to demultiplex an input signal, such as a 
multiplexed address/data signal, and register the signals without explicitly building a 
demultiplexer. Two input signals are available to the PLC array from each PIO, and the 
ORCA 2C/2T capability to use any input pin as a clock or other global input is maintained. On 
the output side of each PIO, two outputs from the PLC array can be routed to each output 
flip-flop, and logic can be associated with each I/O pad. The output logic associated with 
each pad allows for multiplexing of output signals and other functions of two output signals. 
The output FF in combination with output signal multiplexing, is particularly useful for 
registering address signals to be multiplexed with data, allowing a full clock cycle for the data 
to propagate to the output. The I/O buffer associated with each pad is very similar to the 
ORCA 2C/2T Series buffer with a new, fast, open-drain option for ease of use on system 
buses. 
 
12.7.3.3 Routing 
The abundant routing resources of the ORCA Series 3 FPGAs are organized to route signals 
individually or as buses with related control signals. Clocks are routed on a low-skew, high-
speed distribution network and may be sourced from PLC logic, externally from any I/O pad, 
or from the very fast ExpressCLK pins. Express-CLKs may be glitchlessly and independently 
enabled and disabled with a programmable control signal using the new StopCLK feature. 
The improved PIC routing resources are now similar to the patented intra-PLC routing 
resources and provide great flexibility in moving signals to and from the PIOs. This flexibility 
translates into an improved capability to route designs at the required speeds when the I/O 
signals have been locked to specific pins. 
 
12.7.3.4 Configuration 
The FPGA’s functionality is determined by internal configuration RAM. The FPGA’s internal 
initialization/configuration circuitry loads the configuration data at powerup or under system 
control. The RAM is loaded by using one of several configuration modes. The configuration 
data resides externally in an EEPROM or any other storage media. Serial EEPROMs provide 
a simple, low pin count method for configuring FPGAs. A new, easy method for configuring 
the devices is through the microprocessor interface. 



Survey of FPGA reconfigurable Systems: Hardware platforms and Software 

 83 

8.7.4. ORCA 4 
The ORCA Series 4 [90] architecture is a new generation of SRAM-based programmable 
devices from Lattice. Designed with networking applications in mind, the Series 4 family 
incorporates system-level features that can further reduce logic requirements and increase 
system speed. ORCA Series 4 devices contain many new patented enhancements and are 
offered in a variety of packages, and speed grades. The hierarchical architecture of the logic, 
clocks, routing, RAM and system level blocks create a seamless merge of FPGA and ASIC 
designs. Modular hardware and software technologies enable system-on-chip integration 
with True Plug and Play design implementation. The architecture consists of four basic 
elements: programmable logic cells (PLCs), programmable input/output cells (PIOs), 
embedded block RAMs (EBRs), and system-level features. A high-level block diagram 
consists of elements that are interconnected with a rich routing fabric of both global and local 
wires. An array of PLCs and its associated resources are surrounded by common interface 
blocks (CIBs) which provide an abundant interface to the adjacent PIOs or system blocks. 
Routing congestion around these critical blocks is eliminated by the use of the same routing 
fabric implemented within the programmable logic core. PICS provide the logical interface to 
the PIOs which provide the boundary interface off and onto the device. Also the interquad 
routing blocks separate the quadrants of the PLC array and provide the global routing and 
clocking elements. Each PLC contains a PFU, SLIC, local routing resources, and 
configuration RAM. Most of the FPGA logic is performed in the PFU, but decoders, PAL-like 
functions, and 3-state buffering can be performed in the SLIC.  
 
The PIOs provide device inputs and outputs and can be used to register signals and to 
perform input demultiplexing, output multiplexing, uplink and downlink functions, and other 
functions on two output signals. The Series 4 architecture integrates macrocell blocks of 
memory known as EBR. The blocks run horizontally across the PLC array and provide 
flexible memory functionality. Large blocks of 512x18 quad-port RAM compliment the 
existing distributed PFU memory. The RAM blocks can be used to implement RAM, ROM, 
FIFO, multiplier, and CAM, typically without the use of PFUs for implementation. System-
level functions such as a microprocessor interface, PLLs, embedded system bus elements 
(located in the corners of the array), the routing resources, and configuration RAM are also 
integrated elements of the architecture. For Series 4 FPSCs, all PIO buffers and logic are 
replaced by the embedded logic core on the side of the device. The four PLLs on the right 
side of the device (two in the upper right corner and two in the lower right corner) are 
removed and the embedded system bus extends into the FPSC section. 
 
12.7.4.1 Programmable Logic Cells 
The PLCs are arranged in an array of rows and columns. The location of a PLC is indicated 
by its row and column so that a PLC in the second row and the third column is R2C3. The 
array of actual PLCs for every device begins with R3C2 in all Series 4 generic FPGAs. PIOs 
are located on all four sides of the FPGA. Every group of four PIOs on the device edge has 
an associated PIC. The PLC consists of a PFU, SLIC, and routing resources. Each PFU 
within a PLC contains eight 4-input (16-bit) LUTs, eight latches/Flip-Flops, and one additional 
F/F that may be used independently or with arithmetic functions. The PFU is the main logic 
element of the PLC, containing elements for both combinatorial and sequential logic. 
Combinatorial logic is done in LUTs located in the PFU. The PFU can be used in different 
modes to meet different logic requirements. The LUTs twin-quad architecture provides a 
configurable medium-/large-grain architecture that can be used to implement from one to 
eight independent combinatorial logic functions or a large number of complex logic functions 
using multiple LUTs. The flexibility of the LUT to handle wide input functions, as well as 
multiple smaller input functions, maximizes the gate count per PFU while increasing system 
speed. The PFU is organized in a twin-quad fashion: two sets of four LUTs and F/Fs that can 
be controlled independently. Each PFU has two independent programmable clocks, clock 
enables, local set/reset, and data selects. LUTs may also be combined for use in arithmetic 
functions using fast-carry chain logic in either 4-bit or 8-bit modes. The carry-out of either 
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mode may be registered in the ninth FF for pipelining. Each PFU may also be configured as 
a synchronous 32x4 single- or dual-port RAM or ROM. The F/Fs (or latches) may obtain 
input from LUT outputs or directly from invertible PFU inputs, or they can be tied high or tied 
low. The F/Fs also have programmable clock polarity, clock enables, and local set/reset.  
 
The LUTs can be programmed to operate in one of three modes: combinatorial, ripple, or 
memory. In combinatorial mode, the LUTs can realize any 4-, 5-, or 6-input logic function and 
many multilevel logic functions using ORCA’s SWL connections. In ripple mode, the high-
speed carry logic is used for arithmetic functions, comparator functions, or enhanced data 
path functions. In memory mode, the LUTs can be used as a 32x4 synchronous read/write or 
ROM, in either single- or dual-port mode. The SLIC is connected from PLC routing resources 
and from the outputs of the PFU. It contains eight 3-state, bidirectional buffers and logic to 
perform up to a 10-bit AND function for decoding, or an AND-OR with optional INVERT to 
perform PAL-like functions. The 3-state drivers in the SLIC and their direct connections from 
the PFU outputs make fast, true 3-state buses possible within the FPGA. 
 

8.8. Summary 
The Table 7 summarizes some of the main characteristics about the FPGAs that have been 
described previously at this section. The comparison of the FPGAs is based on the 
technology maturity, the design flow, the technology implementation, the technology 
portability, the available data-sheet information and their testability. 
 
FPGA Technology 

Maturity 
Design Flow Technology 

Implementation 
Technology 
Portability 

Data-sheet 
Information 

Testability 

Altera 

Chips and 
development 
board 
available 

Complete 
design tools, 
Third party 
EDA tools 
support 

Standard SRAM 
process 

Firm, 
HardCopy 
devices can 
be used to 
transfer 
from PLD to 
ASIC 

Complete 

JTAG and PC 
trace 
debugging, 
graphical view 
of floor 
planning 

Xilinx 

Chips and 
development 
board 
available 

Third party 
EDA tools 
support 

Standard SRAM 
process 

Firm Complete 
JTAG 
debugging 
environment 

Atmel Chips 
available 

ASIC design 
flow 

Standard SRAM 
FPGA and RISC 
microcontroller, 
standard 
peripherals 

No Enough 

Co-verification 
environment, 
Source-level 
debugging 

Actel Chips 
available 

Compatible 
design flow 
with ASIC, 
third party 
EDA tools 
support 

Standard CMOS 
SRAM 
technology 

Yes, leading 
silicon 
foundries 
support 

Enough 
Built-in self 
test interface 

Table 7: Comparison between some the most well-known FPGAs 

 

9. Academic Software tools for designing fine-grain platforms 

9.1. Introduction 
A typical programmable logic design involves three steps: 

•  Design entry 
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•  Design implementation 
•  Design verification  

All of the three steps, which are shown in Figure 46, are described briefly below. 
 
 

 
 

Figure 46: Traditional Design Synthesis Approach and the Modeling Approach 

9.1.1. Design Entry 
A variety of tools are available to accomplish the design entry step. Some designers prefer to 
use their favorite schematic entry package while others prefer to specify their design using a 
hardware description language such as Verilog, VHDL, or ABEL. Others prefer to mix both 
schematic and language-based entry in the same design. There has been an on-going battle 
as to which method is best. Traditionally, schematic-based tools provided experienced 
designers more control over the physical placement and partitioning of logic on the device. 
However, this extra tailoring took time. Likewise, language-based tools allowed quick design 
entry but often at the cost of lower performance or density. Synthesis for language-based 
designs has significantly improved in the last few years, especially for FPGA design. In either 
case, learning the architecture and the tool helps you to create a better design. Technology-
ignorant design is very possible, but at the expense of density and performance. 

9.1.2. Design Implementation 
After the design is entered using schematic capture or synthesized, it is ready for 
implementation on the target device. The first step involves converting the design into the 
format supported internally by the tools. Most implementation tools read "standard" netlist 
formats and the translation process is usually automatic. Once translated, the tools perform a 
design rule check and optimization on the incoming netlist. Then the software partitions the 
designs into the logic blocks available on the device. Partitioning is an important step for 
FPGAs, as good partitioning results in higher routing completion and better performance for 
FPGAs. After that the implementation software searches for the best location to place the 
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logic block among all of the possibilities. The primary goal is to reduce the amount of routing 
resources required and to maximize system performance. This is a compute intensive 
operation for FPGAs. The implementation software monitors the routing length and routing 
track congestion while placing the blocks. In some systems, the implementation software 
also tracks the absolute path delays in order to meet user-specified timing constraints. 
Overall, the process mimics printed circuit board place and route. When the placement and 
routing process is complete, the software creates the binary programming file used to 
configure the device. In large or complex applications, the software may not be able to 
successfully place and route the design. Some packages allow the software to try different 
options or to run much iteration in an attempt to obtain a fully-routed design. Also, some 
vendors supply floor-planning tools to aid in physical layout. Layout is especially important for 
larger FPGAs because some tools have problems recognizing design structure. A good floor-
planning tool allows the designer to convey this structure to the place and route software.  

9.1.3. Verification 
Design verification occurs at various levels and steps throughout the design. There are a few 
fundamental types of verification as applied to programmable logic. Functional simulation is 
performed in conjunction with design entry, but before place and route, to verify correct logic 
functionality. Full timing simulation must wait until after the place and route step. While 
simulation is always recommended, programmable logic usually does not require exhaustive 
timing stimulation like gate arrays. In a gate array, full timing simulation is important because 
the devices are mask-programmed and therefore not changeable. In a gate array, you can 
not afford to find a mistake at the silicon level. One successful technique for programmable 
logic design is to functionally simulate the design to guarantee proper functionality, verify the 
timing using a static timing calculator, and then verify complete functionality by testing the 
design in the system. Programmable logic devices have a distinct advantage over gate 
arrays. Changes are practically free. With in-system programmable (ISP) devices, such as 
SRAM based FPGAs, changes are possible even while the parts are mounted in the system. 
Using in-system verification techniques, the design is verified at full speed, with all the other 
hardware and software. Creating timing simulation vectors to match these conditions would 
be extremely difficult and time consuming. Some of the device vendors supply additional in-
system debugging capabilities.  
 

9.2. Public Domain Tools 
This paragraph describes the available public domain cad tools that cover a range of 
architectures. Those tools are open source, which means the source code of them is 
available in order to make any changes targeting improvement of their functionality. The 
main providers of those tools are the UCLA and the Toronto FPGA Research Group.  

9.2.1. Tools from UCLA 
The available CAD Tools from the UCLA could be used for interconnection, technology 
mapping and as a multilayer router. Those tools are: 
 
13.2.1.1 TRIO 
TRIO [68] stands for Tree, Repeater, and Interconnect Optimization. It includes many 
optimization engines in order to perform Routing-tree construction, Buffer (repeater) 
insertion, Device and wire sizing, and Spacing. TRIO uses two types of models to compute 
the device delay and also two types of interconnect capacitance models.  
 
13.2.1.2 RASP_SYN 
RASP_SYN tool [69] is a LUT-based FPGA technology mapping package and is the 
synthesis core of the UCLA RASP System. It uses a lot of mapping algorithms, some of them 
are the Depth minimization, Depth optimal, Optimal mapping with retiming, Area-delay 
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tradeoff, FPGA resynthesis, Simultaneous area delay minimization, Mapping for FPGAs with 
embedded memory blocks for area minimization while maintaining the delay, Delay optimal 
mapping for heterogenous FPGAs, Delay-oriented mapping for heterogenous FPGAs with 
bounded resources, Performance-driven mapping for PLA with area/delay trade-offs, 
Simultaneous logic decomposition with technology mapping. The first step of the entire flow 
of RASP_SYN package involves the gate decomposition, in order to get K-bounded circuit, 
where K is the fan-in limit of LUTs of the target architecture. Then, run the generic LUT 
mapping, and the post-processing mainly for area reduction. Finally, takes place the 
architecture specific mapping.  
 
13.2.1.3 IPEM 
IPEM [70] is another tool from the UCLA which provides a set of procedures that estimate 
interconnect performance under various performance optimization algorithms for deep 
submicron technology. Since it adopts adopting several models derived from corresponding 
interconnection optimization algorithms, IPEM is fast and accurate. Also it has the advantage 
that the users can easily use it with its ANSI C interface and library. The output of this tool 
produces considering interconnect optimization in logic level synthesis, as well as the 
interconnect planning. 
 
13.2.1.4 MINOTAUR 
The last available tool from UCLA is the MINOTAUR [71] which is a performance driven 
multilayer general area router. It is used to utilize current high-performance interconnect 
optimization results in order to obtain interconnect structures which address delay and signal 
integrity required. In addition to that, the tool considers global congestion by routing all layers 
simultaneously, and places no restriction on the layers a route may use. Moreover it 
combines the freedom and flexibility of maze routing solutions with the global optimization 
abilities of the iterative deletion method. 
 
13.2.1.5 FPGAEVA 
FpgaEva [72] is a heterogeneous FPGA evaluation tool that incorporates a set of 
architecture evaluation related features into a user friendly Java interface. This tool uses the 
state-of-the-art mapping algorithms and supports user-specified circuit models like 
area/delay of LUTs of different size, while it allows the user to compare multiple 
architectures. In addition to that, fpgaEva has the advantage that it is written in Java and so 
the remote evaluation mode permits user to run it from any computer. 
 
13.2.1.6 V4R 
V4R [73] is an efficient multilayer general area router for MCM and dense PCB designs.  It 
uses no more than four vias to route every net and yet produces high quality routing 
solutions.  It combines global routing and detailed routing in one step and produces high 
quality detailed routing solutions directly from the given netlist and module placement.  As a 
result, V4R is independent of net ordering, runs much faster, and uses far less memory 
compared to other multilayer general area routers.  Compared with the 3D maze router, on 
average the V4R router uses 44% fewer vias, 2% less wirelength, and runs 26 times faster.  
Compared with the SLICE router, on average the V4R router uses 9% fewer vias, 4% less 
wirelength, and runs 3.5 times faster.  The V4R also uses fewer routing layers compared to 
the 3D maze router and the SLICE router. 

9.2.2. Tools from Toronto FPGA Research Group 
Apart from the available tools from UCLA there are also CAD tools from the Toronto FPGA 
Research Group. Those tools could be used for variable serial data width arithmetic module 
generation, for placement, routing and for technology mapping. A briefly description of the 
characteristics of those tools is following. 
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13.2.2.1 PSAC-Gen 
The first tool from this group is the PSAC-Gen [74] which stands for Parametrizeable Serial 
Arithmetic Core Generator. It is a tool that allows design and implementation of bit-serial and 
digit-serial arithmetic circuits using simple arithmetic expressions. In other words, it is used to 
easily generate a wide variety of arithmetic circuits involving addition, subtraction, and 
multiplication. The PSAC-Gen takes as input an arithmetic circuit description and creates a 
set of VHDL files that describe the circuit.  
 
13.2.2.2 Edif2Blif 
EDIF is an industry-standard file format that allows EDA tools to communicate with each 
other, including the ability to transfer netlists, timing parameters, graphical representations, 
and any other data the vendors wish. The Edif2Blif tool [75] converts netlists from the 
industry standard Electronic Data Interchange Format (EDIF) to the academic Berkeley Logic 
Interchange Format (BLIF).  
 
13.2.2.3  SEGA 
SEGA [76] was developed as a tool to evaluate routing algorithms and architectures for 
array-based Field-Programmable Gate Arrays. It was written in a modular fashion to permit 
flexibility between modifying the routing algorithm and representing the routing architecture. 
Both SEGA and CGE solve the detailed routing resource allocation problem for array-based 
FPGAs, but SEGA is improved upon CGE in that it considers the speed-performance of the 
routed circuit an important goal (instead of just routability).  
 
13.2.2.4   PGARoute 
PGARoute [77] is a global router for symmetric FPGAs. In order to make the placement, it 
uses the Xaltor program. When the PGARoute finishes its work, it prints out the number of 
logic blocks it used in the longest and in the shortest row. 
 
13.2.2.5  Transmogrifier C 
Transmogrifier C [78] is a compiler for a simple hardware description language. It takes a 
program written in a restricted subset of the C programming language, and produces a netlist 
for a sequential circuit that implements the program in a Xilinx XC4000 series FPGA. This 
tool could be used in order to produce the reconfiguration bit-stream. 
 
13.2.2.6  Chortle 
The next available tool from the Toronto FPGA Research Group is the Chortle [79], which 
used to map a Boolean network into a circuit of lookup tables. During this mapping, it 
attempts to minimize the number of lookup tables required to implement the Boolean 
network. 
 
13.2.2.7  VPR and T-VPACK 
VPR [80] is a placement and routing tool for array-based FPGAs that was developed from 
Toronto FPGA Research Group. The VPR was written to allow circuits to be placed and 
routed on a wide variety of FPGAs. It is used to perform placement and either global routing 
or combined global and detailed routing. Although this tool was initially developed for island-
style FPGAs, it can also be used with row-based FPGAs. The cost function that is used in 
this tool is the “linear congestion cost” while the router is based on the Pathfinder negotiated 
congestion algorithm. 
 
Figure 47 summarizes the CAD flow with the VPR tool. 
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Figure 47: The CAD flow with the VPR tool 

 
First, a system for sequential circuit analysis (SIS) is used to perform technology-
independent logic optimization on a circuit. Next this circuit is technology-mapped by 
FlowMap into four-input look-up tables (4-LUTs) and registers. The Flowpack post-
proccessing algorithm is then run to further optimize the mapping and reduce the number of 
LUTs required. VPack packs 4-LUTs and registers together into the logic blocks. The netlist 
of logic blocks and a description of the FPGA global routing architecture are then read into 
the placement and routing tool. The VPR first places the circuit, and then repeatedly globally 
routes (or attempts to route) the circuit with different number of tracks in each channel, or 
channel capacities. VPR performs a binary search on the channel capacities, increasing 
them after a failed routing and reducing them after a successful one, until it finds the 
minimum number of tracks required for the circuit to globally route successfully on a given 
global routing architecture.  
 
13.2.2.8  Power Model (VPR) 
The Power Model [12] is built on top of the original VRP CAD tool. Figure 48 shows the VPR 
framework with the power model, which is part of the area and delay model. An activity 
estimator is used to estimate the switching frequencies of all nodes in the circuit. In the 
current implementation, the activity estimator and the power model are not used to guide the 
placement and routing. It estimates the power consumption only after placement and routing 
has occurred.  
 

 

Figure 48: Framework with power model 
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The Power Model includes terms for dynamic power, short-circuit, and leakage power. The 
model is flexible enough to target FPGAs with different LUT sizes, different interconnect 
strategies (segment length, switch block type, connection flexibility), different cluster sizes 
(for a hierarchical FPGA), and different process technologies. 
 

10. Commercial Software tools for designing fine-grain platforms 
At this section of the document are described some of the most well-known commercial 
software tools for designing fine-grain reconfigurable platforms. These tools are sorted 
alphabetically and they are grouped by the vendor company that produces them. 
 

10.1. Actel 

10.1.1. Development Software 

•  Libero v2.2 Integrated Design Environment (IDE): Actel's Libero v2.2 IDE offers best in 
class tools from such EDA powerhouses as Mentor Graphics, SynaptiCAD, Synplicity, 
and custom developed tools from Actel integrated into a single design package. It 
includes also Actel's "Designer" software,. Designer offers premier backend design 
support for physical implementation. Libero IDE supports all currently released Actel 
devices and is available in three flavors: Libero Silver, Libero Gold, and Libero Platinum. 
Some of the Libero’s IDE Software features are the powerful design management and 
flow control environment, the easy schematic and HDL design, the VHDL or Verilog 
Behavioral, post-synthesis and post-layout simulation capability, the VHDL / Verilog 
synthesis, and the physical implementation with place and route. 

•  Actel Designer R1-2002 Software: The Actel Designer offers an easy to use and flexible 
solution for all Actel’s FPGA devices. It gives designers the flexibility to plug and play with 
other third party tools. Advanced place-and-route algorithms accommodate the needs of 
today’s increasingly complex design and density requirements. The architecture expertise 
are built into the tools to create the most optimized design. The Actel Designer software 
interface offers both automated and manual flows, with the push-button flow achieving 
the optimal solution in the shortest cycle. User driven tools like ChipEdit, PinEdit, and 
Timing Constraint Editor give expert users maximum flexibility to drive the place-and-
route tools to achieve the timing required. The Actel Designer software supports all the 
established EDA standards like Verilog/VHDL/EDIF netlist formats. I/O handling tools like 
I/O-Attribute Editor and PinEdit enable designers to assign different attributes including 
capacitance, slew, pin, and hot swap capabilities to individual I/Os. Actel's highly efficient 
place and route algorithms allow designers to assign package pins locations during the 
design development phase with confidence that the design will place and route as 
specified. Silicon Explorer enables the user to debug the design in real time by probing 
internal nodes for viewing while the design is running at full speed.  

10.1.2. Programming 

•  Silicon Sculptor II: Silicon Sculptor II is a robust, compact, single device programmer with 
stand alone software for the PC. Designed to allow concurrent programming of multiple 
units from the same PC, with speeds equivalent to, or faster than those of Actel's 
previous programmers. It replaces the Silicon Sculptor I as Actel's programmer of choice. 
The Silicon Sculptor II can program all Actel packages, it works with Silicon Sculptor I 
adapter modules, and uses the same software as the Silicon Sculptor I. In addition to 
that, it could allow self-test in order to test its own hardware extensively. 

•  Silicon Sculptor I: Silicon Sculptor is a robust, compact, single device programmer with 
stand alone software for the PC. Silicon Sculptor 6X Concurrent Actel Device 
Programmer, is a six site production oriented device programmer designed to withstand 
the high stress demands of high volume production environments. Actel no longer offers 
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the Silicon Sculptor I and Silicon Sculptor 6X for sale, as both items have been 
discontinued. On the other hand, Actel supports the Silicon Sculptor I and Silicon 
Sculptor 6X by continuing to release new software that allows the programming of new 
Actel devices. 

10.1.3. Verification and Debug 

•  Silicon Explorer II: Actel's antifuse FPGAs contain ActionProbe circuitry that provides 
built-in, no-cost access to every node in a design, enabling 100% real-time observation 
and analysis of a device's internal logic nodes without design iteration. Silicon Explorer II 
is an easy to use integrated verification and logic analysis tool for the PC, accesses the 
probe circuitry that allows designers to complete the design verification process at their 
desks.  

10.1.4. Device Support 
The tools that described above could work properly with product families: ProASICPLUS, 
Axcelerator, ProASIC, eX, SX-A, SX, MX, RT, RH, DX, 1200XL, ACT3, ACT2, and ACT1. 
 

10.2. Cadence 
FPGA HDL design, synthesis, and verification are more demanding than ever due to today's 
complex system-on-programmable-chips (SoPC). There is a need for tools and solutions to 
proficiently manage complex FPGA designs, to dramatically increase design efficiencies, and 
to significantly reduce system costs and development time. Cadence gives the tools and 
solutions to achieve all that. It provides exclusive transaction-level verification capabilities 
that can handle HDL schematics-including component-level and block-based decomposition-
along with algorithmic entry, mixed-language, and mixed-signal simulation.  

10.2.1. Signal Processing Worksystem (SPW) 
The Cadence Signal Processing Worksystem (SPW) starts by building your design with pre-
authored library blocks. Additionally, it is possible to simulate the design and analyze the 
results by easily integrating C, C++, or SystemC code or MATLAB models. From there take 
the design to application-specific integrated circuit (ASIC) or field-programmable gate array 
(FPGA) implementation by describing the hardware architectures using VHDL, Verilog, 
SystemC, or graphical-based blocks, and verify and debug it together with previously-
generated testbenches. The generation of register transfer level (RTL) allows targeting an 
unparalleled efficient datapath synthesis step. 

10.2.2. Cadence FPGA Verification 
The Cadence NC-Sim simulation family is the optimum verification solution for high-end 
FPGA design. The native compiled simulator offers the freedom to transparently mix VHDL 
and Verilog. This makes Cadence NC-Sim the most flexible and adaptable simulator, 
allowing seamless integration into today's complex FPGA design flows. 

10.2.3. ORCAD Capture 
With its fast, universal design entry capabilities, Orcad Capture schematic entry has quickly 
become one of the world’s favorite design entry tools. From designing a new analog circuit, 
revising schematic diagrams on an existing PCB, or drafting a block diagram of HDL 
modules, Orcad Capture provides everything you need to complete and verify the designs 
quickly. 

10.2.4. Cadence Verilog Desktop 
The Cadence Verilog Desktop brings the quality and reliability of the Cadence NC-Verilog 
simulator to every desktop. Built on technology from NC-Verilog, the Verilog Desktop is ideal 
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for engineering teams that want to leverage the performance and capacity created to validate 
multimillion gate ASIC designs. Its unique debug features make Verilog Desktop a perfect fit 
for FPGA and CPLD development and verification. It comes complete with the SimVision 
Graphical Analysis Environment, and the Signalscan waveform display tool. 
 

10.3. Lattice 
The available tool from Lattice is the ispLEVEL, and it will be described below. 

10.3.1. ispLEVER v2.0 
Lattice’s development tool suite, ispLEVER v2.0, supports all Lattice programmable Logic 
products. It includes tools that have developed by both Lattice and leaders in the CAE 
industry for Design Entry, Synthesis, Verification / Simulation, Device Fitting, Place & Route 
and Device Programming. The Table 8 could be used in order to find a configuration of 
ispLEVER, component of ispLEVER, or other software product tailored to meet the designer 
needs [83]. 
 

Software Device Support Synthesis 
Support Simulation 

ispLEVER Advanced 
All Lattice Programmable 
Logic: GPLD, FPGA, 
FPSC, GDX 

This is the full version of ispLEVER, including every available 
option. (PC) 

Mentor Graphics 
 
Synplicity 

ModelSim 
 
Lattice 
Functional 
Simulator 

ispLEVEL UNIX – advanced 
All Lattice Programmable 
Logic: CPLD, FPGA, 
FPSC, GDX 

Includes Lattice device libraries to work with 3rd party EDA 
environments. (UNIX) 

n/a n/a 

ispLEVER Base 
Intended for developers who 
don’t need the full functionality 
provided by ispLEVER 
Advanced. (PC) 

All CPLD, FPGA, and 
GDX 

Mentor Graphics 
 
Synplicity (CPLD 
only) 

ModelSim 
 
Lattice 
Functional 
Simulator 

ispLEVER Starter 
Intended for evaluation, and 
student users, ispLEVEL Starter 
is a complete solution that can 
take the CPLD design from 
concept through device 
programming. (PC) 

All CPLD, GDX Synplicity 
Lattice 
Functional 
Simulator 

Table 8: Lattice Software 

 

10.4. Mentor Graphics 
Here are described the available tools from Mentor Graphics. 

10.4.1. Integrated FPGA Design Flow 

•  FPGA Advantage: FPGA Advantage provides a complete and seamless integration of 
design creation, management, simulation and synthesis, empowering the FPGA designer 
to have a faster path from concept to implementation.  
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10.4.2. HDL Design 

•  HDL Designer: HDL Designer is a complete design and management solution that 
includes all the point tools of the HDL Designer Series. It allows to standardize on a 
toolset that can be used to share designs and designers. HDL visualization and creation 
tools, along with automatic documentation features, foster a consistent style of HDL for 
improved design reuse, so it can fully leverage existing IP.  

•  Debug Detective: Debug Detective takes debugging of HDL designs to the next level. As 
a snap-on to ModelSim it renders on-the-fly graphical and tabular views of HDL source 
code to aid understanding and control, and delivers interactive debug and analysis 
between these views and the ModelSim user interface. This combination enables faster 
debug and improved productivity of the HDL design. 

•  HDL Detective: HDL Detective allows you to understand, visualize and navigate complex 
designs without forcing you to change the design methodology. Its fully automated 
documentation and communication features provide a push-button process for reusing 
HDL designs and commercial IP, so it is possible to visualize the current state of any 
design. HDL Detective also automatically generates documentation for newly developed 
HDL. By translating HDL to diagrammatic representations, the time it takes to understand 
an unfamiliar design can be reduced dramatically. 

•  HDL Author: HDL Author integrates all the design management features of HDL Pilot, 
and adds best-in-class text-based and graphics-based editors to provide a 
comprehensive environment for design creation, reuse and management. To 
accommodate the fullest range of design preferences, HDL Author is available in three 
flavors that give the flexibility to design systems using pure HDL source code, pure 
graphics, or a combination of both. 

o HDL Author Text provides absolute control over all aspects of the design process. 
It includes a Block Editor and an Interface-Based Design (IBD) editor for writing 
code directly, creating documentation, following a reuse methodology, and 
integrating blocks from multiple locations  

o HDL Author Graphics allows intuitive design, using diagrams from which HDL is 
automatically generated and documentation is implicitly available. It includes a 
Block Editor, State Machine Editor, Flow Chart Editor and Truth Table Editor for 
creating a design and documentation using a graphical methodology that’s ideally 
suited to designers or organizations that are migrating to HDL methodologies. 

o HDL Author Pro includes all the above features in a single, economical solution 
that provides complete creative control. 

•  HDL Pilot: HDL Pilot is a unique, comprehensive environment for managing HDL designs 
and data from start to finish. It provides an easy-to-use cockpit from which designers can 
launch common tools for developing complex Verilog, VHDL and mixed-HDL designs. 
HDL Pilot automatically and incrementally imports and analyzes HDL files to simplify 
design navigation, and introduces a simple but effective GUI for the use of version 
control. Common operations such as data compilation for simulation and synthesis are 
performed automatically. And HDL Pilot can be easily customized to recognize different 
data types and tools. 

10.4.3. Synthesis 

•  Precision Synthesis: The Precision Synthesis has a highly intuitive interface that drives 
the most advanced FPGA synthesis technology available, delivering correct results 
without iterations. Timing constraints, coupled with state-of-the-art timing analysis, guide 
optimization when and where it’s needed most, achieving excellent results for even the 
most aggressive designs.  

LeonardoSpectrum: With one synthesis environment, it is possible to create PLDs, FPGAs, 
or ASICs in VHDL or Verilog. LeonardoSpectrum from Mentor Graphics combines push-
button ease of use with the powerful control and optimization features associated with 
workstation-based ASIC tools. Users faced with design challenges can access advanced 
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synthesis controls within LeonardoSpectrum's exclusive PowerTabs. In addition, the powerful 
debugging features and exclusive five-way cross-probing in LeonardoInsight accelerate the 
analysis of synthesis results. Final, Leonardo can be also used for HDL synthesis on FPGAs.  
 

10.4.4. Simulation  

•  ModelSim is one of the most popular and widely used VHDL and mixed-VHDL/Verilog 
simulator and the fastest-growing Verilog simulator. ModelSim products are uniquely 
architected using technology such as Optimized Direct Compile for faster compile times 
and simulation performance, Single Kernel Simulation (SKS) and Tcl/Tk for greater levels 
of openness and faster debugging. Exclusive to ModelSim, these innovations result in 
leading compiler/simulator performance, complete freedom to mix VHDL and Verilog and 
the unmatched ability to customize the simulator. In addition, with each ModelSim 
license, designers enjoy Model Technology’s ease of use, debugging support, robust 
quality and technical support.  

 

10.5. QuickLogic Development Software  
QuickLogic provides support for Windows, Unix, and Web Based comprehensive design 
environment ranging from schematic and HDL-base design entry, HDL language editors and 
tutorials, logic synthesis place and route, timing analysis, and simulation support. The 
available tools are: 
•  QuickWorks: QuickWorks for PC-Workstation, is QuickLogic's comprehensive FPGA and 

ESP design environment including fully-integrated schematic and HDL-based design 
entry, HDL language editors and tutorials, logic synthesis support from Synplicity, 100% 
fully automatic place and route, static timing analysis, Verilog and VHDL functional and 
timing simulation support, and 3rd party interfaces. 

•  QuickTools: QuickTools for Solaris/HP-UX Workstations, contains the following functions 
for placement and routing, static timing analysis, generation of a timing annotated Verilog 
and VHDL netlist for simulation in many industry standard EDA environments, and 
interfaces to 3rd party EDA synthesis and simulation environments. 

 

10.6. Synplicity  

•  Symplify: The Synplify synthesis solution is a high-performance, sophisticated logic 
synthesis engine that utilizes proprietary Behavior Extracting Synthesis Technology 
(B.E.S.T.) to deliver fast, highly efficient FPGA and CPLD designs. The Synplify product 
takes Verilog and VHDL Hardware Description Languages as input and outputs an 
optimized netlist in most popular FPGA vendor formats.  

•  Synplify Pro: Synplify Pro software extends the capability of the Synplify solution to meet 
the needs of today's complex, high density designs. Team design, integration of IP, 
complex project management, graphical FSM debugging, testability and other features 
are included in the Synplify Pro solution. 

•  HDL Analyst: HDL Analyst adds to Synplify the ability to create an RTL block diagram of 
the design from the HDL source code. A post-mapped schematic diagram is also created 
that displays timing information for critical paths. Bi-directional cross-probing between all 
three design views allows to instantly understand exactly what the HDL code produced 
while dramatically improving debug time. 

•  Amplify Physical Optimizer: The Amplify Physical Optimizer product is the first and only 
physical synthesis tool designed specifically for programmable logic designers. By 
performing simultaneous placement and logic optimization, the Amplify product has 
demonstrated an average of over 21% performance improvement and over 45% 
improvement in some cases when compared with logic synthesis alone. Now the Amplify 
product includes Total Optimization Physical Synthesis (TOPS) technology. This boosts 
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performance further and also reduces design iterations through highly accurate timing 
estimations. The Amplify Physical Optimizer product was created for programmable logic 
designers utilizing Altera and Xilinx devices, and who need to converge on aggressive 
timing goals as quickly as possible. RT Level physical constraints, along with standard 
timing constraints, are provided to the Amplify product's highly innovative new physical 
synthesis algorithms, resulting in superior circuit performance in a fraction of the time 
normally required by traditional methodologies.  

•  Certify SC: A new member of Synplicity's Certify verification synthesis software family, 
the Certify SC software is a tool aimed at ASIC and intellectual property (IP) prototyping 
on a single FPGA, and providing advanced hardware debug capabilities to FPGA 
designers. Introducing new features targeted at ASIC conversion and debug access, 
including integration with Xilinx ChipScope debugging tools, the Certify SC software is 
designed to enable ASIC designers to either prototype IP or portions of ASIC designs 
onto high-density FPGAs. Additionally, FPGA designers can now take advantage of the 
advanced debug insertion features of the Certify product as an upgrade option to the 
Synplify Pro advanced FPGA synthesis solution.   

 

10.7. Synopsys 

•  FPGA Compiler II: By leveraging Synopsys expertise in multimillion-gate ASIC synthesis 
technology and applying this expertise to FPGA architecture-specific synthesis, FPGA 
Compiler II provides unsurpassed flow integration and the highest quality of results 
(QoR). It has the unique capability of providing traditional FPGA or ASIC-like design flows 
that precisely meet the needs of programmable logic designers while at the same time 
utilizing an intuitive GUI or scripting mode for design realization.  

 

10.8. Quartus II  
The Quartus II software provides a complete flow for creating high-performance system-on-
a-programmable-chip (SOPC) designs. It integrates design, synthesis, place-and-route, and 
verification into a seamless environment, including interfaces to third-party EDA tools.  

10.8.1. LogicLock Block-Based Design 
LogicLock block-based design is a design methodology available through the Quartus II 
software. With the LogicLock design flow, the Quartus II software is a programmable logic 
device (PLD) design software which includes block-based design methodologies as a 
standard feature, helping to increase designer productivity and shorten design and 
verification cycles. The LogicLock design flow provides the capability to design and 
implement each design module independently. Designers can integrate each module into a 
top-level project while preserving the performance of each module during integration. The 
LogicLock flow shortens design and verification cycles because each module is optimized 
only once.  
 
The Quartus II software supports both VHDL and Verilog hardware description language 
(HDL) text and graphical based design entry methods and combining the two methods in the 
same project. Using the Quartus II block design editor, top-level design information can be 
edited in graphical format and converted to VHDL or Verilog for use in third-party synthesis 
and simulation flows.  
 
NativeLink integration facilitates the inter-operation and seamless transfer of information 
between the Quartus II software and other EDA tools. It allows third-party synthesis tools to 
map primitives directly to Altera device primitives. Because primitives are mapped directly, 
the synthesis tool has control over how the design is mapped to the device. Direct mapping 
shortens compile times and eliminates the need for extra library mapping translations that 
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could limit performance gains provided by the third-party synthesis tool. The NativeLink flow 
allows designers to use the Quartus II software pre-place-and-route estimates in third-party 
EDA tools to optimize synthesis strategies. The Quartus II software can pass post-place-and-
route timing information to third-party EDA simulation and timing analysis tools, addressing 
chip-level and board-level verification issues.  
 
The Quartus II software allows designers to develop and run scripts in the industry-standard 
tool command language (Tcl). The use of Tcl scripts in the Quartus II software could 
automate compilation flows and makes assignments, automates complex simulation test 
benches, and creates custom interfaces to third-party tools.  

10.8.2. Quartus II Synthesis 
The Quartus II design software includes integrated VHDL and Verilog hardware description 
language (HDL) synthesis technology and NativeLink integration to third-party synthesis 
software from Mentor Graphics, Synopsys, and Synplicity. Through these close partnerships, 
Altera offers synthesis support for all its latest device families and support for the latest 
Quartus II software features in industry-leading third-party synthesis software.  

10.8.3. Place & Route 
The PowerFit place-and-route technology in the Quartus II design software uses the 
designer's timing specifications to perform optimal logic mapping and placement. The timing-
driven router algorithms in the Quartus II software intelligently prioritize which routing 
resources are used for each of the design's critical timing paths. Critical timing paths are 
optimized first to help achieve timing closure faster and deliver faster performance (fMAX). The 
Quartus II software supports the latest Altera device architectures such as the Cyclone, 
Stratix, Stratix GX, APEX II, APEX 20KC, and Mercury device families. This cutting-edge 
place-and-route technology provides Quartus II software users with superior performance 
and productivity, including the fastest compile times in the industry. The Quartus II software 
versions 2.0 and later also include the fast fit compilation option for up to 50% faster compile 
times.  

10.8.4. Quartus II Verification & Simulation 
Design verification can be the longest process in developing high-performance system-on-a-
programmable-chip (SOPC) designs. Using the Quartus II design software the verification 
times could be reduced because this high-performance software includes a suite of 
integrated verification tools which integrate with the latest third-party verification products. 
The Quartus II Verification Solutions is shown in Table 9. 
 
 
Verification Method  Description Quartus II Software 

Support 
or Subscription 
Support 

Third-Party Support 

Design Rule 
Checking 

Checks designs 
before synthesis and 
fitting for coding styles 
that could cause 
synthesis, simulation, 
or design migration 
problems 

Quartus II software to 
HardCopy device 
migration design rule 
checking 

Atrenta: SpyGlass 
Synopsys: Leda 

Functional 
Verification 

Checks if a design 
meets functional 
requirements before 
fitting 

ModelSim-Altera 
software 

Cadence: NC-Verilog, 
NC-VHDL 
Mentor Graphics: 
ModelSim Tool 
Synopsys: VCS, 
Scirrocco 
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Testbench 
Generation 

Reduces amount of 
hand-generated test 
vectors 

-Waveform-to-
testbench converter 
-Testbench template 
generator 

 

Static Timing 
Analysis 

Analyzes, debugs, 
and validates a 
design's performance 
after fitting 

Quartus II software 
static timing analyzer 

Synopsys: PrimeTime 

Timing Simulation Performs a detailed 
gate-level timing 
simulation after fitting 

-Quartus II software 
simulator 
-ModelSim-Altera 
software 

Cadence: NC-Verilog, 
NC-VHDL 
Mentor Graphics: 
ModelSim 
Synopsys: VCS, 
Scirrocco 

Hardware/ 
Software Co-
Simulation 

Quickly simulates 
interaction between 
PLD hardware, 
embedded processor, 
memory, and 
peripherals 

ModelSim-Altera 
software 

ModelSim 

In-System 
Verification 

Reports behavior of 
internal nodes in-
system and at system 
speeds 

-Quartus II 
SignalTap II logic 
analyzer 
-Quartus II 
SignalProbe feature 

Bridges to silicon 

Board-Level Timing 
Analysis 

Verifies PLD and 
entire board meets 
system timing 
requirements 

 Innoveda: Blast 
Mentor Graphics: Tau 

Signal Integrity 
Analysis & EMC 

Verifies that high 
speed I/O signals will 
be transmitted reliably 
and within EMC 
guidelines 

Quartus II software 
design-specific IBIS 
model generation 

Cadence: 
SpectraQuest 
Innoveda: XTK, 
Hyperlynx 
Mentor Graphics: 
Interconnectix 

Formal Verification  Identifies differences 
between source 
register transfer level 
(RTL) net lists and 
post place-and-route 
net lists without the 
user creating any test 
vectors 

 Synopsys: 
FormalityVerplex: 
Conformal LEC 

Power Estimation Estimates the power 
consumption of your 
device using your 
design's operating 
characteristics 

-Quartus II software 
simulator 
-ModelSim-Altera 
software 

Mentor Graphics: 
ModelSim 

Table 9: Quartus II Verification Solutions 

10.8.5. Quartus II Web Edition Software 
The Quartus II Web Edition software is an entry-level version of the Quartus II design 
software supporting selected Cyclone, Stratix, APEX II, APEX 20KE, Excalibur, MAX 7000, 
MAX 3000, FLEX 10KE, ACEX 1K, and FLEX 6000 devices. With PowerFit place-and-route 
technology, Quartus II Web Edition software lets to experience the performance and compile 
time benefits of the Quartus II software.  
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The Quartus II Web Edition software includes a complete environment for programmable 
logic device (PLD) design including schematic- and text-based design entry, HDL synthesis, 
place-and-route, verification, and programming.  
 

10.9. Xilinx ISE 

10.9.1. Design Entry 
ISE provides support for today's most popular methods for design capture including HDL and 
schematic entry, integration of IP cores as well as robust support for reuse of IP. ISE even 
includes technology called IP Builder, which allows to capture an IP and to reuse it in other 
designs. 
 
ISE's Architecture Wizards allow easy access to device features like the Digital Clock 
Manager and Multi-Gigabit I/O technology. ISE also includes a tool called PACE (Pinout Area 
Constraint Editor) which includes a front-end pin assignment editor, a design hierarchy 
browser, and an area constraint editor. By using PACE, designers are able to observe and 
describe information regarding the connectivity and resource requirements of a design, 
resource layout of a target FPGA, and the mapping of the design onto the FPGA via 
location/area.  

10.9.2. Synthesis 
Synthesis is one of the most essential steps in the design methodology. It takes the 
conceptual Hardware Description Language (HDL) design definition and generates the 
logical or physical representation for the targeted silicon device. A state of the art synthesis 
engine is required to produce highly optimized results with a fast compile and turnaround 
time. To meet this requirement, the synthesis engine needs to be tightly integrated with the 
physical implementation tool and have the ability to proactively meet the design timing 
requirements by driving the placement in the physical device. In addition, cross probing 
between the physical design report and the HDL design code will further enhance the 
turnaround time.  
 
Xilinx ISE provides the seamless integration with the leading synthesis engines from Mentor 
Graphics, Synopsys, and Synplicity.  It is possible to use any of the above synthesis engines. 
In addition, ISE includes Xilinx proprietary synthesis technology, XST. It gives the option to 
use multiple synthesis engines to obtain the best-optimized result of the programmable logic 
design.  

10.9.3. Implementation & Configuration 
Programmable logic design implementation assigns the logic created during design entry and 
synthesis into specific physical resources of the target device. The term "place and route" 
has historically been used to describe the implementation process for FPGA devices and 
"fitting" has been used for CPLDs.  Implementation is followed by device configuration, 
where a bitstream is generated from the physical place and route information and 
downloaded into the target programmable logic device. 

10.9.4. Verification 
There are five types of verification available at this product: 
 
•  Functional Verification verifies syntax and functionality of a design at the DHL level. 
•  Gate-Level Verification allows you to directly verify your design at the RTL level after it 

has been generated by the Synthesis tool. 
•  Timing Verification is used to verify timing delay in a design ensuring timing specification 

is met. 
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•  Advanced Verification offers designers different options beyond the traditional verification 
tools. 

•  Using Board Level Verification tools ensures your design performs as intended once 
integrated with the rest of the system. 

 

10.9.5. Advanced Design Techniques 
As the FPGA requirements grow, the design problems can change. High-density design 
environments mean multiple teams working through distributed nodes on the same project, 
located in different parts of the world, or across the aisle. ISE advanced design options are 
targeted at making the high-density design as easy to realize as the smallest glue-logic. 
 
•  Floorplanner - The Xilinx High-Level Floorplanner is a graphic planning tool that lets to 

map the design onto the target chip. Floorplanning can efficiently drive the high-density 
design process. 

•  Modular Design - The ability to partition a large design into individual modules. Each of 
those modules can then be floorplanned, designed, implemented, and then locked until 
the remaining modules are finished. 

•  Partial Reconfigurability - Partial reconfiguration is useful for applications requiring the 
loading of different designs into the same area of the device, or the ability to flexibly 
change portions of a design without having to either reset or completely reconfigure the 
entire device. 

•  Incremental Design - By first Area Mapping your design, Incremental Design makes sure 
that any late design changes don't force a full re-implementation of the chip. Only the 
area involved in the change must be re-implemented, the rest of the design stays intact. 

•  High-Level Languages - As design densities increase, the need for a higher-level of 
abstraction becomes more important. Xilinx is driving and supporting the industry 
standards and their supporting tools.  

 

10.9.6. Board Level Integration 
Xilinx understands the critical issues such as complex board layout, signal integrity, high-
speed bus interface, high-performance I/O bandwidth, and electromagnetic interference for 
system level designers. To ease the system level designers’ challenge, ISE provides support 
to all Xilinx leading FPGA technologies:  
•  System IO  
•  XCITE  
•  Digital clock management for system timing  
•  EMI control management for electromagnetic interference  
 
 

11. Conclusions 
A comprehensive survey of the existing fine-grain reconfigurable architectures from both 
academia and industry was presented, which indicated both the strengths and limitations of 
fine-grain reconfigurable hardware. An important consideration in dynamically reconfigurable 
systems is the reconfiguration latency and power consumption. Various techniques have 
been employed to reduce the reconfiguration latency, such as prefetching and configuration 
caching. Prefetch techniques can reduce the reconfiguration latency by allowing pipelining of 
reconfiguration and execution operations. Prefetching requires knowing beforehand what the 
next configuration will be, while caching simply requires knowledge of the most common and 
often required reconfigurations, so they can stored in the configuration cache.  
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In recent years, increased density has helped integrate coarse-grain elements in FPGAs 
such as SRAM, dedicated arithmetic units (multipliers etc.) and DLLs, and also a great 
number of logic gates, making them significant alternatives to ASICs. In fact 75 per cent of 
the ASICs produced in 2001 could fit in a commercial FPGA, and 60 per cent of them have 
timing constraints that could be met in an FPGA implementation. 
 
Although fine-grain architectures with building blocks of 1-bit are highly reconfigurable, the 
systems exhibit low efficiency, when it comes to more specific tasks. An example of this 
category is if an 8-bit adder is implemented in a fine-grain circuit, it will be inefficient 
compared to a reconfigurable array of 8-bit adders, when performing an addition-intensive 
task. In addition to that, an 8-bit adder will also occupy more space in the fine-grain 
implementation. On the other hand, when a system uses building blocks with more than 1-bit, 
for example 2-bit, it has a major advantage compared to the 1-bit building blocks. This 
advantage is that the system could utilize the chip area better, since it is optimized for the 
specific operations. However, a drawback of this approach is represented in a high overhead 
when synthesizing operations that are incompatible with the simplest logic block architecture.  
 
The CLB of the fine-grain reconfigurable architecture that will be used for the design of the 
embedded FPGA will be based on the LP_PGA II platform. This architecture has been 
explored in details above, in terms of the configurable logic block, interconnection, 
performance and the power consumption.  
 
Furthermore, description of implementation flow CAD tools from both industry and academia 
was included. Commercial tools have become very advanced in recent years, supporting a 
constantly increasing subset of VHDL/Verilog. Many of them have also user-friendly 
interfaces, while at the same time allow great manual intervention by the designer. The main 
disadvantage of the available academic tools is the lack of aggregate CAD flow in order to be 
used to design an FPGA based system. Also, many of those tools do not have GUI 
(Graphical User Interface) and their operation has to be done manually, which is quite 
difficult for end-users with no experience of working with command prompt in operating 
systems like Solaris or Linux. On the other hand, many of these tools like VPR and T-VPack 
have been used successfully by [31] [85]. Since we have to make a complete design CAD-
flow with the available academic tools that have been described above, we propose to use 
the tools from the Toronto FPGA Research Group in order to make placement, routing and 
bit-stream generation, while the existing tools from the UCLA could be used for the LUT-
mapping.  
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